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This paper presents an approximate model of the flow and stratification within a 
naturally ventilated enclosure containing multiple sources of buoyancy. The sources 
are assumed to produce plumes which rise without interaction throughout the 
enclosure. Buoyant fluid accumulates at the top of the enclosure and flows out through 
upper level openings, and ambient air flows in at low levels to generate an upward 
displacement ventilation. It is shown that the sources produce a multiple layered 
stratification with each plume terminating in a given layer. The weakest plume, with 
the lowest buoyancy flux, produces the lowest interface, and stronger plumes rise 
higher up within the space before discharging their buoyant fluid into the environment. 
The model is approximate in that it ignores the stratification within the space when 
calculating the properties of each plume, and it is shown that this approximation is 
satisfactory over a wide range of conditions. As a result it is possible to calculate the 
stratification and ventilation rate for any number of unequal, and equal, sources of 
buoyancy within a space. 

1. Introduction 
The modelling of buoyancy-driven flow within naturally ventilated enclosures raises 

many complex issues associated with the rise of convective elements and their 
interaction with the stratification in the space. In an attempt to reduce the problem to 
its simplest form Linden, Lane-Serff & Smeed (1990) have investigated the case of a 
single source of buoyancy within an enclosure with openings at the top and bottom. 
This leads to a steady-state configuration in which the stratification takes the form of 
two uniform layers separated by a sharp interface, and the transport of air in through 
the lower openings through the space and out through the upper openings is via the 
plume. Therefore, the position of the interface is determined by the volume flux within 
the plume which, in turn, depends on the distance from the source. It was shown that 
the position of the interface depends only on the openable areas and on the 
entrainment into the plume, and is not dependent on the strength of the buoyancy flux 
of the source. 

Cooper & Linden (1996) have extended this work to the case of two plumes 
of unequal strength within an enclosure. They generalized the results for a single 
plume by assuming that the flow developed a three-layer stratification as illustrated 
in figure 1. 

The two sources of buoyancy are located on the floor of the enclosure and both have 
positive buoyancy fluxes B, and B,, where B, < B, for definiteness. In this case the 
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FIGURE 1. Ventilated enclosure with two positive buoyancy sources. 

stronger plume rises to the top of the enclosure and produces a buoyant layer 
underneath the ceiling. The weaker plume cools as it rises and reaches its neutral 
buoyancy below the upper layer and produces an intermediate layer as shown in figure 
1. The lower layer is at ambient temperature g' = 0, and the buoyancy of layers 1 and 
2 is denoted by gi and gi, respectively, with g; < gi. Thus two interfaces are formed at 
heights h, and h, as shown. 

The essential features of this model are the following. First, since the interfaces are 
stable, the only way air can be transported from one layer to another is within the 
individual plumes. Thus the flowrate through each interface can be directly connected 
to the volume flux within the two plumes. Secondly, it is assumed that the buoyancy 
of layer 1 is given by the buoyancy of plume B, at the height z = h,, and similarly for 
the buoyancy gi. The buoyancies within layers 1 and 2 are assumed to be uniform with 
height. Thus ambient air enters through the lower opening and is entrained into the 
two plumes in layer 0. It is carried across the interface z = h, by both plumes and the 
weaker plume discharges into layer 1. This air is entrained into the stronger plume B, 
and carried upwards across the interface z = h, and discharged into layer 2. Finally, 
this air flows out through the upper level openings as shown in figure 1. 

It is clear, therefore, that the properties of the plume are important in determining 
the flow and stratification. In order to calculate them we considered plumes arising 
from point sources of buoyancy and evoked the entrainment assumption of Morton, 
Taylor & Turner (1956) which states that the entrainment into a plume is proportional 
to the vertical velocity within the plume at any level. The constant of proportionality 
is known as the entrainment constant a. Using the conservation of volume and 
buoyancy fluxes and the plume properties in this manner it is possible to derive a 
relationship equivalent to that for a single plume. The dimensionless heights of the two 
interfaces are given by 

where A* is the equivalent area of the openings (see Cooper & Linden 1996), 
C = and y? = B,/B, < 1 is the ratio of the buoyancy fluxes. This 
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FIGURE 2. Comparison of the exact and approximate theoretical predictions of the non-dimensional 
interface heights 6, and 6, as functions of the ratio $ = BJB, of the buoyancy fluxes, for the 
dimensionless vent area A * / H 2  = 0.0167. The solid curves are the exact solutions given by Cooper 
& Linden (1996) neglecting entrainment flux Q* and the dashed curves are the approximate model 
discussed in 52. 
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FIGURE 3. Layer buoyancy ratio for any value of A * / H 2 ,  
and total source strengths for two positive plumes. 

relationship is of a very similar form to that for a single plume where the interface 
heights are independent of the total buoyancy fluxes and depend only on the openable 
areas of the vents, the height of the enclosure and the ratio of the buoyancy fluxes $. 

In order to complete the solution to this problem it is necessary to find a relationship 
between h, and h,. The difficulty here is that it is necessary to take account of the fact 
that once the stronger plume passes the interface at z = h,  its buoyancy flux is changed 
as a result of the stratification in layer 1. In Cooper & Linden (1996) we showed that 
it is possible to determine this relationship by calculating the plume B, in layer 1 as a 
forced plume arising from a virtual origin. This computation is somewhat lengthy and 
is given in detail in Cooper & Linden (1996, $52.1 and 2.2). The solution for the 
dimensionless interface heights ti = h,/H, i = 1,2 is shown in figure 2 and the 
buoyancies of the two layers are shown in figure 3. In order to compare these 
theoretical results with experiments it was necessary to include the entrainment flux Q* 
from the top layer by the weaker plume (see $2.3 of Cooper & Linden 1996). However, 
for our present purposes since we are concerned with the effects of the internal 
stratification we will ignore this entrainment, both in the exact and approximate 
models. Hence, the results shown in figure 2 differ from those shown in figure 4 of 
Cooper & Linden (1996). 

As shown by (1) the interface heights depend only on the dimensionless area A * / H 2  
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and the ratio of the buoyancy fluxes. When $ = 0 a single interface forms, and for 
@ > 0 this interface splits into two with the lower interface t1 descending and the upper 
interface f l ,  ascending as $ increases. As can be seen from figure 3,  the buoyancy of the 
intermediate layer increases, while that of the upper layer decreases as $ increases, and 
the two are equal when $ = 1 .  At this point the interface t2 disappears and the result 
for two equal plumes given by ( 3 )  of Cooper & Linden (1996) with n = 2 is obtained. 

Thus this solution gives the full range of behaviour for the two-plume case for all 
possible values of the ratio of buoyancy fluxes 0 < $ d 1 .  In principle, the extension 
of this result to three or more unequal plumes can be carried out in the same way but 
the calculation of the plumes as they pass through successive interfaces becomes 
extremely complicated. It requires a re-definition of a virtual origin for each interface 
and each plume and, consequently, the calculations become unwieldy. From a practical 
point of view, the most sensitive design criterion is the height of the lower interface tl 
and we see from figure 2 that once @ > 0.2 there is very little variation in with further 
increase in $. This is because the positions of the interface are determined primarily by 
the plume volume fluxes Q where Q = CB1/3h513. This formula shows that the volume 
flux in the plume is very sensitive to the interface height but relatively insensitive to the 
buoyancy flux. It, therefore, seems worthwhile to investigate the possibility of ignoring 
the changes in buoyancy flux for the stronger plumes as they pass through the 
interfaces and concentrate only on the volume fluxes, as though each plume were rising 
in ambient fluid throughout its full height. This approach is found to provide a very 
accurate description of the behaviour of the lower interface and reasonably good 
descriptions of the upper interface in the two-plume case as described in $2. The 
agreement between the exact and approximate calculations in the two-plume case 
allows us to generalize to multiple plumes in $3, and the three-plume case is discussed 
in $4. The results and the implications for building design are discussed in $5, and the 
conclusions are given in $6. 

2. The approximate two-plume solution 
In this section we repeat the analysis of Cooper & Linden (1996) for the case of two 

unequal plumes, but with the approximation that the buoyancy flux in the strong 
plume B, remains unchanged as it rises through layer 1 (see figure 1). We also retain 
the assumption in the approximate theory that the entrainment flux Q* into layer 1 by 
the weaker plume is zero for the sake of this comparison. We first write down a series 
of conservation relations and also the plume properties based on top hat profiles and 
the entrainment assumption. 

The application of Bernoulli's theorem shows that the volume flux through the top 
and bottom openings is given by 

Q, = Q b  = A*(g; , (H-h, )+g~(h, -h l ) )1 /2 .  (2) 
Given the form of the flow shown in figure 1 a number of volume flux, buoyancy flux 
and density relations may then be identified. Since the only vertical transfer of fluid 
across the stable interfaces takes place within the plumes, conservation of volume flux 
implies 

(3) 
[Note: the same terminology as used in Cooper & Linden (1996) is used here where the 
first term of the double subscripts refers to the plume and the second term to the 
interface, e.g. Q,, is the volume flux in plume 2 passing through interface 1 and between 
layers 1 and 2, see Cooper & Linden (1996) figure 1 1  .] 
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Multiple sources of buoyancy in a naturally ventilated enclosure 181 

In a steady state the buoyancy fluxes into and out of each of the layers are equal and 
hence 

In the lower layer (layer 0), in which the density is constant (at the ambient value), the 
buoyancy fluxes within each plume are constant. For the weaker plume 

Bi + B2 = Qii Gii + Q21 GLi = Q22 GL2- (4) 

B, = G; Q, = constant, (5 )  
and volume flux and reduced gravity at z = h, are given by 

ell = C(Bl hYl3 ,  

(7) 2h-5 113 G;, = z ( B ,  1 1 =s;, 
respectively. As stated above C = fg(&01)~/~ 7 c 2 I 3 ,  where 01 is the entrainment constant 
for the plume. Throughout this paper we take 01 = 0.083, and so C = 0.1 1. 

Equivalent relations hold for the strong plume in layer 0: 

B, = GL Q, = constant, (8) 
Q,, = C(B2h!)1/3, (9) 

The strong plume entrains the buoyancy flux from the weaker plume in layer 1, and 
hence at interface 2, z = h,, 

Q,, = C(B, + B2)lI3 h;I3, 

In (11) and (12) we have assumed that the stratification in layer 1, g; ,  does not affect 
the plume. This is the only change to the model presented in Cooper & Linden (1996) 
but it represents a major simplification to the problem as it is no longer necessary to 
re-calculate the behaviour of the strong plume in this layer. Now, (3), (6) and (1 1) imply 
that 

Thus, we have a direct relationship between the two interface heights and this may be 
substituted into (l), and the problem is now solved in this approximate manner. The 
approximate solution may be written as 

where ti = hi/H, i = 1,2 are the dimensionless interface heights. 
The results of this approximate solution given by (1) and (14) are shown in figure 2 

for comparison with the exact solution. We see that the height of the lower interface 
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c1 is very accurately determined by this approximate solution over the full range of @. 
The height of the upper interface on the other hand is under-estimated at large values 
of $, and for $ = 1 when &/El = 22/5 the value is in error by approximately 20 O h .  The 
lower interface is accurately determined because, as mentioned above, it is controlled 
by the volume fluxes in the plumes and these remain unchanged as they flow through 
the ambient layer 0. Since the buoyancy flux of the strong plume is reduced as it flows 
through the buoyant layer 1 its volume flux is also reduced (see (9)), and consequently 
it rises further before the required volume flux is achieved compared with that which 
is calculated assuming there is no change in the buoyancy flux as is done in this 
approximate solution. Therefore, the underestimate in the position of the upper 
interface is in accord with the approximations used here. The relative buoyancies of the 
two layers given by (16) is the same as the exact result (see (33) of Cooper & Linden 
1996). 

The accuracy of this approximate solution, which depends on the volume flux of a 
plume being relatively sensitive to the height but insensitive to the buoyancy flux, gives 
confidence in applying this approach to multiple plumes. 

3. Multiple plumes 
In this section we extend this approximate solution and treat the case of n unequal 

plumes of buoyancy fluxes B, < B, < . . . < B,, and we denote their relative strengths 
by @i = BJB,, i = I ,  . . . , n - 1. We assume that all the sources of buoyancy are located 
on the floor of the enclosure and the flow develops into a series of n + 1 layers separated 
by interfaces at z = hi. As before we denote the dimensionless interface heights by 
ti = z i /H,  i = 1, . . . , n. This flow is drawn schematically in figure 4. 

The pressure balance for the whole enclosure which relates the total flowrate to the 
internal stratification equivalent to (2) is given by 

(1 7) 
where the notation is a simple generalization of that in $2  and is illustrated in figure 4. 

Extending the notation described in $2 we may now write down the properties of the 
plumes at each interface within the enclosure. 

Interface 1 

are with unchanged buoyancy fluxes 

Q, = Q, = A * ( g ~ ( H - h , ) + g ~ _ , ( h , - h , - , ) + .  . . +g~(~z-h)J1’z,  

All n plumes pass through this interface and so the (exact) relationships for this level 

(1 8) i Bi, = Bi, 

Qi, = CBiy h;l3, 
1 

G;, = c B;i3 hl5I3, G;, = gi, 
for i =  1, ..., n. 

Interface 2 
The weakest plume does not reach this interface and we assume that the buoyancy 

flux B, carried by this plume is entrained equally into the remaining n - 1 plumes so that 
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FIGURE 4. Ventilated enclosure with n positive buoyancy sources. 

Interface m < n 
Continuing this procedure for a general interface we have 

for i = m, . . . , n. 

Interface n 

so that 
At the top of the enclosure all the buoyancy flux is carried by the strongest plume 

Again, assuming that the transport across each interface takes place only in the plumes, 
we can write down the following relationships for the volume flowrates across each 
interface 

n 

Q t = Q b = Q n n =  C Qt,  (m=1, . . . ,n ) .  (22) 
i=m 

The pressure balance (1 7), the plume relations (20) and the volume conservation 
relation (22) now give 

5 1 2  
n 

(23) - - 
112 , 

A* 
H2C312 

m=l 

where 
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The interface heights are related by 
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i=m 

Equations (23)-(26) give the full solution to the approximate problem. We see that the 
interface heights are again dependent only on the dimensionless vent area A * / H 2  and 
the ratios of the buoyancy fluxes. Consequently, the general result obtained for the 
special cases of one and two plumes, that the positions of the interfaces are independent 
of the total buoyancy from the sources, continues to apply. The buoyancies of the 
layers, however, do depend on the total buoyancy flux. We now explore some special 
cases of these solutions in $4. 

4. Three plumes 
For the case of 3 plumes B, < B2 < B,, (20) implies that 

and 
Thus (26) gives the relative interface heights as 

where 9i = Bi/B,, i = 1,2. The relative buoyancies of the layers (25) are 

!!A= / 9;/3(1+ 9;13 + 9;/3) 
g; 1 + 1c.l+ 92 

& -  ’ - (9, + fr91)213 [(I +$1Cr1Y3 + <$$, + 92>1131 
g; (1 + 91+ 92) 

3 

The interface height is then given by (23) and (24) which in this case reduce to 

where 

(32) 

(33) 

We now examine a number of special cases. 

4.1. B, = B, = B, three equal plumes 
When the strengths of the plumes are equal 9, = 1 ,  9, = 1 and from (28)-(3 1) we have 
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FIGURE 6. Ratio of layer buoyancies for the three-plume case shown in figure 5 .  

Thus the densities of layers 1 ,2  and 3 are equal and the stratification reverts to a simple 
two-layer form, with the upper layer at a uniform density. The height of the remaining 
interface 6, is given by (32) and (34) with I-, = 1 and T, = T', = 0. In this limit (32) 
reduces to 

A* - 3 g 3  
~- 
H2C312 [I -(,]1/2' 

which recovers the required result (3) of Cooper & Linden (1996) with n = 3. 

4.2. B, = :B2 
The properties of the system may be determined for any values of the buoyancy fluxes 
and so, by way of an example, we choose the case B, = +B, < B,. The results for the 
heights of the three interfaces are plotted against $ 2  = B,/B3 in figure 5, and the 
corresponding buoyancies are shown in figure 6. The value of the dimensionless area 
A * / H 2  = 0.0167 as in figures 2 and 3 for the two-plume case, and the results for the 
interface heights in the latter case are shown as solid curves in figure 5.  

We see that the presence of a third plume is to lower the height of the ambient layer 
0. This reduction is caused by the increased volume flux carried by three plumes and, 
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FIGURE 7. Comparison of the approximate solutions (solid curves) with the asymptotic solution 
(dashed curves) for the case B, < B, < B,, plotted against $,. 

hence, the interface is lowered in order to compensate for this flux increase. As $2 

increases interfaces 1 and 2 decrease in height while interface 3 rises within the 
enclosure. The total width of the stratified zone as measured by the distances between 
the top and bottom interfaces is larger at small $2 in the three-plume case, but is less 
as $, + 1. However, the comparison between the exact and the approximate solutions 
in the two-plume case ($2) suggests that the interface heights for interfaces 2 and 3 will 
be underpredicted in this limit. The corresponding ratios of the layer buoyancies are 
shown in figure 6. The strength of the stratification (gL-gi) across the lowest interface 
increases with B,/B3,  while the buoyancies of layers 2 and 3 approach the same value 
as BJB3 z 0.7. For values of the flux ratio larger than this value, the approximate 
model predicts gk > g;  which is an unstable stratification. However, this is not a 
physical effect but a result of inaccuracies caused by ignoring the detailed dynamics of 
the plumes. 

4.3. B,  < B, < B, 
The results of 94.2 show that most of the variation in the height 6, of the lowest 
interface occurs for $, < 0.2. A similar result was found in the two-plume case. 
Hence, we can further approximate the flow by considering the solution in the limit 
$, < $2 < 1. In this case there is one strong plume and two weak ones, and 
(29)-(31) reduce to 

The height of the lowest interface is given by 

This asymptotic solution is plotted against the full solution for $1 = $k2, A*/H' = 

0.0167 over the range 0 < $2 < 0.2 in figure 7. We see that the agreement is quite good 
over this range of buoyancy fluxes, and hence that (36) and (37) give useful 
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Multiple sources of buoyancy in a naturally ventilated enclosure 187 

approximate forms for the interface heights and the stratification. From the results 
shown in figure 4, we conclude that the height of the lowest interface remains fairly 
constant with further increase in yk2, and hence (37) provides a good approximation to 
the solution. In particular, we note that adding two plumes of strengths both equal to 
10% of the strongest plume (i.e. = kz = 0.1) is equivalent to reducing the 
dimensionless area by a factor of 2.7. Thus the distribution of the buoyancy flux among 
a number of plumes has a large influence on the flow. 

5. Discussion 
We return now to the case of multiple plumes and, in the light of the results obtained 

for three plumes in $4, we consider some general implications for the flow and 
stratification within the enclosure. 

Consider first the case where the n plumes have equal strength Bt = B, i = 1 , .  . . , n.  
Then from (20) and (26) we have that 

215 

(m = I ,  ..., n). 
n + l - m  

Substituting this result into (25) we find 

& 
y =  1 (m = 1 ,  ..., n) 
gn 

(39) 

and hence a two-layer stratification occurs in this case also. From (24) we see that 

I ' , = O ,  r , = O  ( m = 2  ,..., n), 

and so, using (38) in (23), we recover the result (3) from Cooper & Linden (1996) for 
n equal plumes. Thus, although the solution given in $3 is approximate we expect the 
height of the lowest interface to be predicted accurately over the whole range of 
ki < 1. The heights of the higher interfaces are likely to be underpredicted by the 
model. 

The solutions for the two- and three-plume cases showed that accurate estimates of 
the lower interface were predicted by considering the asymptotic forms of the flow 
when ki 4 1, i = 1, . . . , n - 1. The results given in $4.3 may be extended to the multiple 
plume case in this limit and we find 

The case of n - 1 equal plumes with buoyancy flux Bi = B, i = 1, . . . , n - 1 and one 
strong plume B, such that ki = B/B, 4 1, i = 1,. . . , n- 1 may be calculated explicitly. 
In this case (20) gives 
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1 .o 
0 10 20 30 40 50 

Total number of plumes, n 
FIGURE 8. The ratio of interface heights &/.& plotted against n for the case of (n- 1 )  equal plumes 
of strength B, = B, and one strong plume of strength B,, such that $i = B / B ,  < 1, i = 1, . . . , n - I .  
The dashed curve is for $ = 0.01, and the solid curve is for + = 0.5. 

A three-layer stratification will form and from (26) the ratio of the interface heights is 

Figure 8 shows plots of iJ.$ against the number n of weak plumes for two values 
$ = 0.01 and 0.5. When &JCl --f 1 the effect of the strong plume is lost and the ventilation 
behaves as though it is driven by the II - 1 weak plumes alone, producing a two-layer 
stratification. We see that the heights of the two interfaces approach each other as 
the number of plumes increases, consistent with the limit of (42) that &/&+ 1 as 
n + co. For the case of $ = 0.01, the total strength of the weak plumes is half the strong 
plume, and the two interfaces are very close. Indeed when n = 10, and the weak plumes 
only provide 10 % of the buoyancy into the enclosure, tZ/tl = 1.03, and a two-layer 
structure is a good approximation to the stratification within the space. Even when 
$ = 0.5 and n = 10 and the weak plumes in total provide 5 times the buoyancy of 
the strong plume, c2/& = 1.04. This figure emphasizes that when there are multiple 
sources, the height of the ambient zone is well represented by n equal sources 
independent of the distribution of buoyancy among the sources. However, the strength 
of the stratification above this level is determined by the strength of the sources. 

The strength of the stratification above the ambient zone may be calculated as 
follows. Consider the case of n plumes where 

I iP B,=-B ( i =  1 ,..., n-1, p = c o n s t a n t <  l), 
n 

B, = B. 
(43) 

Then $i = i/3/n, i = 1,. . . , n - 1, $, = 1, and the buoyancy flux carried by plume i 
across interface m is 

I ( i =  1, ..., n-l), 
2(n+ 1 -m) 1 

(44) 

I 
terms of use, available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022112096002558
Downloaded from https:/www.cambridge.org/core. University of Cambridge Department of Psychology Library, on 06 Jan 2017 at 13:29:46, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0022112096002558
https:/www.cambridge.org/core


Multiple sources of buoyancy in a naturally ventilated enclosure 189 

1 .o 

'"1 
ti w ' 5  0.8 
rc: 

8 0.6 

8 0.4 

- 
." 
2 
.- 3 0.2 

z 
1 

0 0.2 0.4 0.6 0.8 1.0 1.2 

(b) 
- -  

- -  

- -  
:- 

i 

FIGURE 9. The stratification produced by n = 10 plumes, with strengths given by the arithmetic 
progression, plotted against the dimensionless height Z within the enclosure. The strength B of the 
strongest plume is 20 kW, the dimensionless vent area A * / H 2  = 0.0167 and N = 5 m. In (a) p = 0.01, 
and in (b) p = 0.1. Note that g' = 1 m ss2 corresponds to a temperature difference of about 30 "C. 

and the total buoyancy flux through the enclosure is 

B,, = ~ ( i + q ) .  

A measure of the stratification at interface m is the buoyancy frequency 

(45) 

Substitution of (23)-(26) into (46) and use of (21) gives, after considerable algebra, 

Substitution of (44) and (45) into (47) allows the stratification to be calculated. 
Figures 9(a) and 9(6) show the stratification within the enclosure for n = 10 plumes 

for the cases where /3 = 0.01 and /3 = 0.1, respectively, calculated from the exact 
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solution using (21) and (23)-(26). The dimensionless vent area A * / H 2  = 0.0167 and the 
height H of the enclosure is 5 m. The buoyancy flux B of the strongest plume in this case 
is 20 kW, and when /3 = 0.01 (0.1) the total buoyancy flux into the enclosure is 
20.9 (29) kW. We see that there is an unstratified ambient zone and then there is a strong 
stratification immediately above this zone. This stratification results from the large 
change in buoyancy across the lowest interface at z = C l .  Above this the stratification 
decreases with height as a result of the smaller changes in buoyancy across the higher 
interfaces until a large step in density occurs at 6, where the strongest plume enters the 
upper layer which is assumed to be well-mixed. 

It is useful to examine the asymptotic form of the stratification on the assumption 
that /3 < 1, so that $i -g 1, i = 1, . . . , n - 1. Then, using the limiting forms given in (40) 
and (41) we find ignoring O(1) constants 

Thus, we see from (48) that the strength of the stratification as characterized by the 
vertical density gradient (proportional to N 2 )  is proportional to the buoyancy flux as 
B2l3, and inversely proportional to the height of the space as H V 3 .  This dependence 
is a result of the dilution of the warm air in the individual plumes as indicated by (21). 
The strength of the stratification decreases as the dimensionless vent area increases, 
and the relationship is almost linear. 

The feature of the flow that is sensitive to the number of sources is the depth of the 
ambient zone. From the results shown in figures 2 and 4 we expect this depth to be 
relatively insensitive to the specific values of ?,hi and a good estimate is given by the case 
when all the plumes have equal strengths. In this case the exact result is given by (3) 
of Cooper & Linden (1996) and when < is small this equation implies < - n-'/'. Thus, 
distributing the buoyancy flux from a single source into 10 equal sources would reduce 
the height of the ambient zone by a factor of 2.5, and distributing it into 100 sources 
would reduce it by a factor of 6.3. In the limit n + oo,<+ 0 and there is no ambient zone 
within the enclosure. 

The theoretical analysis described above has relevance to the design of natural 
ventilation systems in buildings and prediction of air and contaminant movement in 
large, naturally ventilated spaces. Many practical situations can be identified where 
multiple sources of buoyancy will be present in an enclosure, including the following 
examples. Large, multi-storey, glazed spaces in buildings, or atria, may have substantial 
solar gains that heat surfaces such as floors and walls, which, in turn, heat adjacent air 
that rises causing significant stratification within the space (Cooper 1993). Often there 
are several distinct hot objects and surfaces acting as separate sources of buoyancy in 
such spaces resulting in complex fluid flow and thermal behaviour. Industrial buildings 
are often naturally ventilated and contain multiple sources of hot gases and fumes 
which must be controlled to prevent exposure of occupants to unacceptable 
contaminant concentrations. In event of fire, considerations of smoke clearance from 
buildings by natural ventilation is important in the design of openable ventilation areas 
in atria and other large spaces. Current design guidelines are generally based on a single 
source of heat and smoke in the space. The results described above show that the height 
of a smoke-free zone in a naturally ventilated space will decrease in the event of two 
(or more) fires being present. However, the presence of other thermal plumes will 
confine the smoke from a strong fire plume to a thinner region near the ceiling. 

The results shown in figure 3 show that the position of the lower interface (which is 
usually the most critical as regards control of contaminants such as heat, fumes or 
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smoke) in an enclosure with multiple sources of buoyancy of the same sign is well 
predicted by the relation for n equal plumes for situations where $i > 0.2. Thus, for 
many design purposes the assumption that multiple buoyancy sources have the same 
strength may be adequate in the determination of ventilation opening sizes vis-a-vis the 
thickness of the uncontaminated air layer above floor level. 

6.  Conclusions 
In this paper we have presented an approximate model for the stratification and flow 

through an enclosure in which there are a number of sources of buoyancy. The 
enclosure is connected to an exterior ambient by openings at  high and low levels so that 
a displacement ventilation flow is established with the buoyant fluid leaving at the 
upper level openings and ambient fluid entering at the lower level openings. The 
sources of buoyancy are considered to cause plumes which rise through the enclosure 
without interaction. The model assumes that, in the steady state, the interior 
stratification that results consists of a set of layers each of uniform density separated 
by sharp horizontal interfaces. The weakest plume terminates at the lowest interface 
and stronger plumes terminate at higher interfaces, with the strongest plume reaching 
the top of the enclosure. The model is approximate in the sense that the interior 
stratification is ignored when the dynamics of the plumes are calculated. 

For the case of two plumes the approximate model is compared with the exact 
solution. It is found that the position of the lower interface is given accurately by the 
approximate model, but the height of the upper interface is under-predicted. This 
underestimate results from neglecting the change in the buoyancy flux in the stronger 
plume when it enters the buoyant layer above the lower interface. The model is then 
extended to n plumes and detailed calculations are given for the case n = 3. It is found 
that the behaviour in these more complex flows has the same general character as the 
two-plume case. In particular, the positions of the interfaces are found to be 
independent of the total buoyancy flux into the enclosure, and to depend only on the 
ratio of the fluxes from the plumes. Also it is observed that the position of the lower 
interface is relatively insensitive to the detailed fluxes and, to a good approximation, 
is given by the predicted value when all n plumes have equal strengths. 

The form of the stratification within the space is found to be considerably more 
complex when there are multiple sources of buoyancy of different strengths. 
Immediately above the ambient layer there is a region of strong stratification and 
above that the form of the stratification depends on the buoyancy fluxes of the plumes. 
The main idea behind this approximate solution for the multiple plume case is that the 
stratification and flow are controlled by the entrainment into the plumes. The volume 
flux in the plumes is very strongly dependent on the height and only very weakly 
dependent on the buoyancy flux of the plume. Thus we are able to neglect changes in 
the plume buoyancy flux to obtain the approximate solution. We find, as in the simpler 
single- and two-plume cases, that the height of the ambient zone is independent of the 
total buoyancy flux into the enclosure. 

From a design viewpoint, the height of the lowest interface is the critical parameter. 
These calculations show that this interface is well approximated by the n equal-plume 
result for y%n-l > 0.2. Below these values the stratification is dominated by the strong 
plume and the weaker plumes have only a minor effect. In particular, they do not 
entrain significant amounts of hot upper-layer fluid downwards. The comparison with 
Cooper & Linden (1996), in the case where the entrainment flux Q* = 0, is a valid test 
of the approximate model in those cases. Entrainment is significant if $n-l is large, but 
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as stated above, in that case the lowest interface is determined by the n equal-plume 
value. We believe that this estimate will be adequate for many cases of practical 
interest. Therefore, in determining a design solution to a ventilation problem it is 
necessary to determine the number of significant sources of buoyancy in any particular 
case. 
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