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We develop herein the similarity form of a non-Boussinesq gaseous plume. This 
is done by obtaining the equation for the conservation of enthalpy flux, and using 
it and the continuity equation to demonstrate that the flux of density deficiency is 
conserved, and not the flux of buoyancy as is the case for Boussinesq plumes. We 
then use this conservation relation to describe the form of the similarity solution in 
the non-Boussinesq case. The similarity solution is then used to derive the theoretical 
form of the entrainment velocity across the plume edge, which is seen to be in 
agreement with the 'modified entrainment assumption' suggested empirically from 
experiments by Ricou & Spalding (1961). 

1. Introduction 
A plume is defined as a flow that arises due to free convection from an isolated 

source of buoyancy. In a stationary ambient the flow is vertical in the mean, and can 
be laminar, or turbulent, or undergo transition to turbulence at some height. The 
vertical flow in the plume induces a secondary inward flow of ambient fluid towards 
the plume centreline. 

In turbulent plumes, the ambient fluid is mixed across the plume edge and becomes 
incorporated into the body of the plume. This process is called turbulent entrainment 
and has the effect of increasing the plume volume flux and increasing (or decreasing) 
the plume density. The mechanism of turbulent entrainment, whereby ambient fluid is 
incorporated into the plume and attains vorticity and buoyancy, is poorly understood. 
Details of this process depend on transfers of mass and momentum at small scales 
which are impossible to compute. Instead the process is usually parameterized by 
relating the inflow velocity to the mean flow in the plume. 

In the Boussinesq case, where the mean plume density is comparable to the ambient 
density, self-similarity of the plume in an unstratified ambient implies that the mean 
velocity of the entrained ambient fluid across the plume edge is proportional to the 
mean vertical velocity in the plume. However, there are many instances where plumes 
are non-Boussinesq, for example a small fire may reach temperatures of around 300"C, 
producing a plume above it with an initial density approximately half that of the 
ambient. It has been observed (Ricou & Spalding 1961) that in the non-Boussinesq 
case, where the initial density difference between the plume and the ambient is large, 
there is also a dependence of the entrainment velocity on the ratio of the plume 
density to the ambient density. Morton (1965) has interpreted these observations as 
an additional proportionality of the entrainment velocity to the square root of the 
density ratio of the plume and ambient fluids. 
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Plume theory has mainly been developed in the Boussinesq regime and non- 
Boussinesq plume properties have in the past been grafted onto existing theory when 
required in a rather ad hoc manner. Here we present a mathematical formulation of 
plumes without making the Boussinesq approximation, in order to provide a coherent 
description of non-Boussinesq plumes. This formulation also highlights the position 
of Boussinesq theory as a limiting, simplified case of the more general plume problem. 

2. Boussinesq plumes 
The initial work on isolated sources of buoyancy was performed by Batchelor 

(1954), and Morton, Taylor & Turner (1956, hereafter referred to as MTT), all of 
whom were concerned with describing isolated convection in a meteorological context. 
In such a context it is reasonable to make the Boussinesq approximation, in which 
variations in density are neglected except where they are responsible for the presence 
of the buoyancy force. (For a detailed description of the Boussinesq approximation, 
see Spiegel & Veronis 1960.) 

In this section we proceed by outlining the main points of plume theory, following 
MTT and others. 

In flows where density fluctuations have dynamical implications, they are incor- 
porated into the momentum equations by means of the reduced gravity, given by 
g’ = gp‘/p,  where p’ is the density fluctuation from the basic state with density PO, 
such that 

In the Boussinesq case, where p - PO, the reduced gravity approximates to gp’lpo. 
For an axisymmetric plume we use a cylindrical coordinate system ( r ,  8, z ) ,  with 

the z-axis vertically along the axis of the plume. The time-averaged cross-plume 
profiles of vertical velocity w(r, z )  and density difference p’(r,  z )  are observed to take 
the form of approximate Gaussian distributions with roughly equal widths (Turner 
1979). The description of the plume is simplified by taking the cross-plume average 
of the relevant plume variables. In the Boussinesq plume, we may define the plume 
radius b, and averaged values of the reduced gravity g and the vertical velocity W (as 
functions of height) by three relations. Following Turner (1979), these may be given 

P = Po + P’. 

by 

W2b2(z) = w 2  r dr , JOm 
co 

gWb2(z)  = 1 g’w r dr . 

These averaged variables are known as ‘top-hat’ variables. In the rest of this section 
we shall consider only top-hat variables and so drop the overbar. 

2.1. Similarity theory 
The specific buoyancy flux in a plume is given by the product of the volume flux and 
reduced gravity of the plume. If one assumes that the buoyancy flux is conserved 
with height (an assumption which will later be shown to be correct for an unstratified 
ambient) and that the plume arises from a source of small dimension, then one 
can construct a similarity solution for w ,  p, and g’ from the buoyancy flux B, 
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and the height z. For a geometrically self-similar flow, the width of the plume is 
proportional to the distance from the source and dimensional analysis implies the 
following relationships for the (top hat) pIume properties (see MTT) : 

(1) cc ~ 1 / 3 , - - ) / 3  , b K z ,  g’ K B2/3z-5J3 . 

2.2. Basic equations 
The plumes we wish to describe are turbulent but, within certain limitations, can 
be adequately described by the mean flow variables alone. The momentum equa- 
tions and the continuity equation for steady, axisymmetric flow with the hydrostatic 
approximation are 

a a 
-(rup) + -(rwp) = 0 ,  ar  a z  

( 3 )  

(4) 

where (p’,  p’)  are perturbation density and pressure fields from the hydrostatically 
balanced basic state (PO, p o )  which satisfies 

1 
Po 
--Po = 9 .  

In the Boussinesq approximation we may assume that the fluid is incompressible, 
and so the continuity equation (4) may be written more simply as 

2.3. Plume equations 
In terms of top-hat variables, the equations of mean motion can be obtained from the 
basic equations by integrating across the plume. In conjunction with the Boussinesq 
approximation, this yields (MTT) 

d 
-(b2w) = -rulr==, 
dz 
d 
dz 
-(b2w2) = b2g’, 

d 2 dPo -(b2wg’) = -b W-, dz dz 

volume flux, 

momentum flux, 

buoyancy flux , 

where pa is the density of the ambient fluid. 

the buoyancy flux B = b2wg‘ is conserved, as was assumed previously. 
It can be seen that for an unstratified ambient we have dpoldz = 0, so in this case 

2.4. Entrainment assumption 
The volume flux equation (in ( 6 ) )  is obtained by integrating the incompressible 
continuity equation ( 5 )  radially, and indicates that the increase in plume volume flux 
is supplied by a radial influx from the far field. This influx from infinity clearly 
implies a flow across the plume boundary b. The velocity of fluid across the plume 
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boundary, which is termed the entrainment velocity u,, is then given by 
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bu, = -rulrn . 

Thus the volume flux equation becomes 

d 
dz 
-(b2w) = bu, 

For a self-similar Boussinesq plume, (1) imply that the rate of increase of the volume 
flux d/dz(b2w) - z2/3,  and we have that this increase in volume flux is supplied by 
entrainment with velocity u, around the perimeter of the plume, radius b(.c z). Thus 
in the Boussinesq case the vertical velocity, w, and the horizontal inflow velocity 
across the plume edge, u,, have the same height dependence (K z - ~ ’ ~ ) .  Thus, the 
equations of motion are consistent with similarity theory if w K u,. This relationship 
is the basis of the entrainment assumption introduced by MTT, which states that the 
velocity of the entrained fluid across the plume edge is proportional to the plume 
velocity, 

u, = aw , 
where a is a constant known as the entrainment constant, which has been estimated 
to be approximately 0.1 (Turner 1979). The similarity solution then satisfies the plume 
equations (6). 

3. Non-Boussinesq plumes 
3.1. Mixing in the non-Boussinesq case 

For a mixture of two fluids of different densities, the commonest and easiest as- 
sumption to make is that of ‘linear mixing’, i.e. the density of the mixture is a 
volume-weighted average of the densities of the components. This is the assumption 
that will be used throughout the rest of this paper. However, we will briefly mention 
here the other possible behaviour of such a mixture. 

Firstly, the initial plume fluid may be immiscible with the ambient (e.g. in the 
case of two-phase fluid systems). In such a case the initial plume fluid will remain at 
a constant density throughout its vertical trajectory (in the absence of compression 
or decompression effects). Depending on the properties of the initial plume fluid 
and the ambient fluid, such emissions may break up and take the form of a stream 
of bubbles or drops. Whilst no small-scale mixing or density change takes place, 
drag effects of the ambient on these drops will mean that ambient fluid is still 
accelerated in the plume direction. Therefore, at a sufficient vertical displacement one 
may find that a high volume fraction of moving fluid within the plume boundary is 
ambient fluid. Thus the plume may still be thought of as entraining, although this 
entrainment depends on different parameters from those of ordinary plume theory 
(see, for example Leitch & Baines 1989). 

Alternatively, the plume fluid and ambient fluid may have some other, nonlinear 
mixing behaviour. This may occur if the densities are functions of two or more 
variables, for example temperature and salinity. Such a situation is described in 
Turner & Campbell (1987). This behaviour could possibly be incorporated into the 
plume analysis via a more complex equation of state for the mixture than the one 
considered here. 
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3.2. Entrainment in the non-Boussinesq case 
Batchelor (1954) mentions that for p / p o  - 1 we have vigorous entrainment of the 
ambient, but for p/po  N 0, entrainment falls to zero, and he asserts that “as the 
density ratio varies there will be a smooth transition between these extremes”. 

Consistent with this behaviour, the experiments of Ricou & Spalding (1961) suggest 
that for an arbitrary density ratio, the entrainment assumption should be modified to 
become 

24 1 

1 / 2  0, PIP0  -+o 
( 7 )  

Morton (1965) attempted to justify this dependence on the density ratio. He assumed 
that the rate of entrainment into a strongly buoyant plume is some function of p/po, 
but also depends on the Reynolds stresses which have local magnitude GC ,ow2. Hence, 
on dimensional grounds, it seems reasonable to assume a local entrainment velocity 

It is not possible to extrapolate the modified entrainment assumption into the 
limit of ( p / p o )  --* co, owing to the fundamental changes in the processes of plume 
entrainment in this limit, as mentioned in the previous section. 

4 xw, P I P 0  --+ 1. 
u e = . ( ; )  w 

of a (p/po)1’2 w. 

3.3.  Mass,flux 
In the non-Boussinesq case, we cannot use the simplified continuity equation ( 5 )  to 
describe the volume flux of the plume. Instead we look at the mass flux of the plume 
using the continuity equation (4). Integrating (4) radially gives 

Assuming that w is negligible for r > h, integrating (4) for h < r < m gives 

h’ g ( r u p )  dr = 0 , 

3 bu, = -rulx , 

where u, denotes the inflow velocity at the plume edge. Thus we have 

& 1“ rwp dr = bu,p0 . 

3.4. Radial and vertical momentum 
We may gain some insight into the importance of the pressure perturbation field p’ 
by examining the radial and vertical momentum equations in the interior and the 
exterior of the plume. We make use of the fact that plumes are tall and thin, so that 
the ratio of the radial lengthscale 1 of the plume to its vertical lengthscale 9 can 
be regarded as small. The vertical velocity w in the interior of the plume and the 
radial velocity u in the exterior of the plume both scale as given by the continuity 
equation (4). We additionally assume that both the radial velocity in the interior and 
the vertical velocity in the exterior are negligible compared with the radial velocity in 
the exterior. 

Thus, in the radial momentum equation (2) for the region outside the plume, we 
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may neglect the term containing the vertical velocity w to give 
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au 1 apt 
dr  po dr ' 

u- N -__  (9) 

which can be integrated to give the radial pressure gradient caused by the entrainment 
inflow. 

Inside the plume, the fact that u is negligible compared with both u in the exterior 
and w in the interior means that the radial pressure gradient across the plume is 
much smaller than that in the exterior, and so we have that the pressure perturbation 
is approximately constant in the cross-plume direction, and equal to the pressure 
perturbation outside the plume at any height. 

The fact that the pressure perturbation is constant across the plume implies that 
the vertical pressure gradient must be comparable inside and outside the plume. 
Therefore, given that the radial pressure gradient outside the plume scales as in (9), 
and that the vertical pressure gradient varies little between the plume interior and 
exterior, we can deduce that the pressure term in the vertical momentum equation ( 3 )  
for the plume interior will be smaller than the other terms by at least a factor of 
(1/5?)', and hence can be neglected. 

3.5. Momentum flux 
Having shown that we can neglect the pressure perturbation term, and using continuity 
(4), the z momentum equation ( 3 )  becomes 

- ( rpuw) d + - ( rpw2)  d = -gyp' 
dr d Z  

Integrating this equation radially gives 

3.6. Buoyancy, enthulpy and volume 
The third of the MTT equations describes the rate of change of the buoyancy flux 
with height, and shows that for a Boussinesq plume in an unstratified ambient (the 
case we are considering) the buoyancy flux is conserved. In this section we will show 
that without making the Boussinesq approximation, we may first obtain an equation 
for the rate of change of the volume flux. We then use the mass flux equation to 
describe the rate of change of the density deficiency p ' ,  and discover the conserved 
quantity for non-Boussinesq plumes. 

For the case of a gas plume, the equivalent of the buoyancy flux equation is best 
described in thermodynamical terms. Delichatsios (1981) identifies the buoyancy flux 
with the enthalpy flux and assumes that it is conserved with height. Here, we will also 
look at the enthalpy flux in the plume, but will consider the factors that contribute 
to its rate of change. 

As we have indicated earlier, we may approximate the pressure across the plume 
to be uniform and equal to the ambient pressure just outside the plume boundary. 
Additionally, if we restrict our considerations to plumes with vertical lengthscales 
much smaller than the ambient scale height (- 10 kilometres for the atmosphere), 
we can also neglect the variation of the ambient pressure with height. The plume 
then becomes an isobaric system, so we would expect enthalpy flux only to vary with 
height because of entrainment and heating effects. 
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We begin by examining a generalized system, and then make our discussion specific 
to the case of an ideal gas. The internal energy equation for a system capable of 
expansion work only is given by 

dU = dQ- P d V ,  

or in terms of enthalpy H = U +PI / ,  

dH = dQ + VdP , - j l = Q + V P ,  (11) 
where Q is the total heating power input to the system, and dot superscripts denote 
time derivatives. 

When the system in question is a plume, the total time rate of change of enthalpy 
in the system is equal to the net enthalpy flux across the boundary of the plume, 

H = l p I - d S ,  

where I is the enthalpy flux per unit area, and S p  is a surface bounding the plume, 
consisting of a (circular) horizontal surface covering the plume source, a similar 
surface at some large height above the source where the plume velocity is tending 
to zero, and all the surface covering the mean plume boundary between these two 
planes. In the steady state the pressure has no time dependence, that is 

P = o ,  
and so the flux of enthalpy (1 1) is due to the rate of heat release within the plume. 

The enthalpy flux (12) can be written as 

I . d S =  phv .dS ,  (13) .I, .i, 

. I' Sp 

where u is the velocity, and the specific enthalpy is given by 
P 
P 

h = u + - .  

The specific internal energy u is defined by u = c, T ,  and thus, (1 I )  becomes 

( c , . T p + P ) v . d S = Q .  

We now focus on the gaseous case. For an ideal gas, P = pRT,  so 

c,.Tp + P = pT(c, .  + R )  = pTc, .  

When the specific heat capacity cP is constant, 

and by the divergence theorem we have 

where s p  is the volume enclosed by the surface S p .  If the pressure is constant across 
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the plume, which is the approximation described above for thin plumes, P = P(z) 
and 

In cylindrical polar coordinates (with axisymmetry), taking d/dz, we obtain 

R Q  d P  
Vmvrdr = -- - - 

c,2z dz 1 w r d r ,  

where Q’ = (d/dz)Q is the heating power input per unit height. That is, 

P l ( g ( r u ) + z ( r w )  d r = - - - -  R Qr d P  wrdr  a ) c p 2 n  dz 1 
Taking w to be negligible outside the plume boundary, in a similar manner to the 
derivation of the mass flux equation we obtain 

d l i w r d r  = ___ R Q  + b u , - F z l  1 d P  w r d r  
dz 2nPcp 

Equation (16) describes the rate of change of volume flux in a plume due to the effects 
of external heating (such as the heat evolved in a combusting plume), entrainment, 
and expansion due to the decrease in ambient pressure with height, respectively. 

In a hydrostatic ambient, we have that (l/P)(dP/dz) fi: lsl where E,h = Po/gpo 
is the scale height. As we have previously stated, we shall only consider plumes at 
lengthscales much smaller than the scale height, so that d/dz >> I$;’, and so the last 
term may be ignored. If we further assume that there is no heat input to the plume, 
that is we let 

then we see that the considerations of enthalpy lead us to a straightforward conser- 
vation of volume flux, 

Q ’ = O ,  

$ l * r w d r  = bu,. 

3.7. Top-hat variables 
We wish to define the mean density, density difference, velocity and plume radius, 
p ,  p’, W and b, respectively, in the non-Boussinesq case. We could do this using similar 
definitions to those of Turner as described in $2, but replacing g’ by p’, that is 

a, 

Wb2 = 1 w r d r ,  

W2b2 = w2 r dr , la 
and to make this system complete we must also define 

p’ = p - po . (21) 
Since the plume equations are for volume flux, mass flux and momentum flux, it 
is desirable that these quantities are well-defined in terms of the top-hat variables. 
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Volume flux has already been defined and (18), (19) and (21) give the mass flux to be 
what we would expect, namely 

p E b 2 =  p w r d r .  .I- 
However, we must also obtain an expression for momentum flux s: pw2 r dr. We 
recall that as mentioned previously, the time-averaged profiles of velocity and density 
difference are Gaussian profiles of roughly equal width, 

(with the requirement that 
definitions we find that 

> -po). If we substitute these into the above top-hat 

r x  

pw’ r d r  = ija’b2 + fp‘a2b2 . 

This is rather untidy for our present purposes, so instead of using the above modifi- 
cation of Turner’s definitions, we shall define the top-hat variables directly in terms 
of the volume flux, mass flux and momentum flux. That is 

03 

pmb2 = 1 p w r d r ,  

p d b 2  = pw’rrdr , 

With the above choice of top-hat variables we have that 

1‘ rp‘dr = p‘b2 ( Po + $a’ , ) = p‘b2 , 
Po + 

for a typical range of variation of 8’. 

and (17), in terms of these top-hat variables as 
Thus we may rewrite the mass, momentum and volume flux equations, (8), (10) 

- ( p b 2 ) =  d bu,po, 
dz 
d 2 2  -(pN b ) = -gb2p‘, 
dz 

d 
-(ab2) = bu, . 
dz 

3.8. Density deficiency 
We now examine the density deficiency, p‘, by considering the mass flux equation (28) 
and the volume flux equation (30). It is clear that in the case of an unstratified 
ambient, po = const., these equations can be combined and integrated to give 

(31)  b2- --I - wp - const. = D ,  
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say. That is, we have conservation of the flux of density deficiency D. We can give 
this the dimensions of buoyancy flux upon taking the product with g/po, but note 
that in the non-Boussinesq case this is not the same as the buoyancy flux given by 

2 -  P’ B = g b w T ,  
P 

which is not, in general, conserved. It clearly does tend, however, to the conservation 
of buoyancy flux in the Boussinesq limit. 

3.9. Similarity 
In what follows we will make use of the fact that 

by definition. 
Having shown that the flux of density deficiency is conserved, we may now proceed 

to consider a similarity solution for the non-Boussinesq case. We can then use the 
plume equations to derive its exact form. 

In general, it appears that the solution will be given in terms of the density 
deficiency flux D, the height z ,  the acceleration due to gravity g, and the plume and 
ambient densities p and PO. We may combine D, g and po into a quantity F with the 
units of buoyancy flux, namely 

Dimensional analysis gives solutions for W and b of the form 
F = Dglpo. 

where L, M ,  il and p are unknown constants. (Note that by combining the parameters g 
and D into a single similarity variable, we preclude the free-fall solution W cc (gz)’/2.) 

Conservation of the flux of density deficiency (31) then implies that we will have 
an expression for p’ of the form 

so that using (32) we obtain the similarity solution for 

7 (33) 

g’ in the form 

(34) 

where 

and 

We may now rewrite the momentum equation (29) in terms of the similarity 
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solutions for w,h and g’ to obtain 
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(35)  

which has solution 

where K 1  is a constant of integration. 
It is possible to get a relationship between /1 and p from (36) by requiring that its 

Boussinesq limit be consistent with the Boussinesq similarity solution for g’. In the 
Boussinesq case, we have that 

(37) 

and applying the similarity solution to the momentum equation in this case also gives 
that 

g’ = NF2/3z-s/3 

In the Boussinesq limit we may let 

where /el is small. Then to O(e), 

Using all these relations, we may rewrite (36 )  as 

and for I f /  small we have that 

(1 + 4 3 i + Z P + l  = 1 + ( 3 i  + 2 p  + l)€ , 

so that (36) becomes 

that is 
I eKI ,-: [(3itZp+ I )/(22+2p+l)] 

= g 3 i + 2 p + 1  (39) 

Comparing this with the similarity solution in the Boussinesq regime (37), we see that 
in order to have the same z-dependence we require that 

-4 [3i+2p+1] - - -- 3 ,  5 
3 2 / l + 2 p + 1  

which simplifies to 
22 - 2p = 1 
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51NF2i3 
g 

$1 = 

Thus we can now write (36) more simply using (38), (40) and (41) as 

However, the similarity solution for g’ in the non-Boussinesq regime (34) is another 
relationship between p and z, which must be compatible with (42). We have from 
(33) and (40) that 

or in terms of p ,  

(E - 1) = E z - 5 / 3  g (;)]-3A , 

Now (42) and (43) imply an identity for @ / P O ) ,  that is 

31 

3 Po + - L2 = 51 (;) - 52 (331-1 , for all (ij) 9 

which can only hold in the trivial case 

A = O ,  

and so we have, from (40), 

and 
p = -1 

2 ’  

v = o .  
Thus the similarity solution in the non-Boussinesq case must be given by 

= ,lF1/3z-1/3 , 
-112 

b = M z ( E )  , 

Consequently, we have shown that non-Boussinesq effects only enter the similarity 
solution for the radius. However, these values of 2 , p  and v now imply that (35) 
contains no more information than that given in (38). 

3.10. Entrainment velocity 
Finally, we use this similarity solution to obtain an expression for the entrainment 
velocity u, in the non-Boussinesq regime. 
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Substituting the solutions for W and b into the mass flux equation (28) we obtain 

and so differentiating yields 

U ,  = S L M F  L/3 z -113 (:) ' I 2  

or in terms of the plume velocity, from the similarity solution, 
1 / z  

u ( , = ; M W ( k )  5 , 

(49) 

which is in agreement with the entrainment behaviour observed experimentally by 
Ricou & Spalding (1961) as given in (7). 

4. Conclusions 
We have presented a theoretical description of gaseous plumes in the non- 

Boussinesq regime. 
Firstly, we have obtained expressions for the conservation of mass flux and mo- 

mentum flux from the basic equations in the usual manner. 
We have then derived an equation for the evolution of the volume flux by examining 

the thermodynamics of the system. Consideration of the aspect ratio of a typical plume 
leads us to neglect the variation of radial pressure in its interior. This suggests that 
under certain conditions the enthalpy in a plume should be conserved. Specifically, for 
an ideal gas, this enables us to describe how the rate of change of volume flux (with 
height) depends on the effects of heating, entrainment and expansion. For unheated 
plumes at vertical lengthscales much smaller than the scale height, we obtain a simple 
conservation of volume flux, which we use along with the conservation of mass flux 
to show that the flux of density deficiency is conserved in such a case. 

Finally, we have obtained the plume similarity solutions and an expression for the 
entrainment velocity in the non-Boussinesq regime. In order to do  this, we form a 
quantity with the units of buoyancy flux from the density deficiency flux, which tends 
to the buoyancy flux in the Boussinesq limit. We may then proceed by dimensional 
analysis to derive similarity solutions for the plume variables (mean vertical velocity, 
reduced gravity and radius) which are similar to those in the Boussinesq case. 
However, in this case we must also include in each of the solutions a factor of the 
ratio of the mean plume and ambient densities raised to an arbitrary power. By 
considering the constraints placed upon these solutions by the plume momentum 
flux equation, agreement with the Boussinesq limit, and internal self-consistency, we 
are able to fix the arbitrary index of the density ratio in each solution. It appears 
that the only similarity solution that changes in the non-Boussinesq case is that 
of the plume radius. This acquires a proportionality to the density ratio to the ---: power. In physical terms, this means that a positively buoyant non-Boussinesq 
plume will be wider near the source than a similar Boussinesq plume but will be 
otherwise unaffected, and similarly a negatively buoyant plume will be thinner in the 
non-Boussinesq case. 

We then substitute from these solutions into the mass flux equation to obtain a 
form for the entrainment velocity, expressed as a function of mean plume velocity 
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and density ratio. We find that it is proportional to the plume velocity, as was 
already well-known, and we also find that is is proportional to the square root of the 
density ratio, a dependence which had been previously postulated from experimental 
observations by Ricou & Spalding (1961) and which, until now, had no theoretical 
basis. 

This work was supported by a research studentship from the Department of 
Education for Northern Ireland, and by a CASE studentship from the Health and 
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