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[Lectures 1-10 JRT: §1 Fluid motion in a rotating reference frame, §2 Departures from
geostrophy, §3 Rotating shallow water equations, §4 Small amplitude motions in rotating
shallow water, §5 Geostrophic adjustment, §6 Quasi-geostrophic equations. §7 Large-scale
ocean circulation. Lectures 11-15 PHH: §8 Density stratification and internal gravity
waves, §9 Derivation of the 3-D quasigeostrophic equations, §10 Waves and instabilities in
the 3-D quasi-geostrophic equations. Lectures 16-18 JRT §11 Fronts, §12 Internal waves
and instability inside fronts: Lectures 19-24 PHH, §13 Wave mean-flow interaction, §14
Mean meridional circulations, §15 Equatorial waves.

These notes include a small number of Figures which show schematic diagrams. Other
pictures etc. that I showed in lectures – e.g. pictures from published articles – I will put
on Moodle – under ’Slides’. I’ve referred to these as ’Slides’ in the notes below.]

8 Stratification and internal gravity waves

8.1 The Boussinesq approximation

We will consider stably stratified flow under the Boussinesq approximation. The latter
is a simplification which excludes some of the complicating factors of variable density. A
brief explanation is as follows.

We start from the equations in a rotating frame of reference for 3-D incompressible flow.
Incompressibility implies that sound waves are excluded and that other effects of large
pressure differences across the fluid domain are neglected. Thus the incompressible equa-
tions are not quantitatively accurate when considering motion in the atmosphere or in-
deed in the ocean across domains with height greater than a few km and modifications
are needed. However they serve as useful model equations.

1
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The governing equations are

Du

Dt
+ f × u = −1

ρ
∇p+ g (8.1a)

∇ · u = 0 (8.1b)

Dρ

Dt
= 0 (8.1c)

where velocity u = (u, v, w), D/Dt = ∂/∂t+ u∂/∂x+ v∂/∂y+w∂/∂z, ρ is density and p
is pressure. g is the gravitational force per unit mass assumed to be constant and vertical.
f = 2Ω, with Ω the vector angular velocity of the frame of reference.

The Boussinesq approximation follows by assuming that the density ρ may be split into
two parts ρ0 and ρ′ with ρ0 constant and ρ′/ρ0 � 1. The pressure may then also be split
into two parts, p0(z), such that −dp0/dz − ρ0g = 0 (i.e. the pressure field p0(z) would be
in hydrostatic balance with the constant density ρ0) and the remainder p′.

Then the vertical component of the momentum equation is written as follows

Dw

Dt
= − 1

ρ0 + ρ′
∂p0
∂z
− 1

ρ0 + ρ′
∂p′

∂z
− g

= − 1

ρ0

∂p0
∂z

+
∂p0
∂z

{
1

ρ0
− 1

ρ0 + ρ′

}
− ∂p′

∂z

1

(ρ0 + ρ′)
− g

' − 1

ρ0

∂p′

∂z
+
ρ′

ρ0
g,

retaining only leading-order terms in ρ′/ρ0 in each of the two terms in the final expression.
In the horizontal components of the momentum equations 1/ρ is is replaced by 1/ρ0, i.e.
again retaining only leading-order terms in ρ′/ρ0.

The Boussinesq equations are therefore

Du/Dt+ f × u = − 1

ρ0
∇p′ + ρ′

ρ0
g (8.2a)

∇ · u = 0 (8.2b)

Dρ′

Dt
= 0 (8.2c)

To summarise, under the Boussinesq approximation, the density ρ is replaced by the
constant value ρ0, except where it is multiplied by the gravitational acceleration g. The
Boussinesq equations make clear the role of buoyancy, that a light fluid parcel experiences
an upward force and a heavy fluid parcel experiences a downward force.

It is now further useful to write ρ′(x, y, z, t) = ρs(z) + ρ̃(x, y, z, t), dividing it into a
background or reference density ρs(z) and a disturbance density ρ̃. The latter might, for
example, be zero when the fluid is at rest.

An important quantity that measures the stability of the reference density state is the
buoyancy frequency or Brunt-Vaisala frequency N defined, in the Boussinesq system, by

N2 = − g

ρ0

dρs
dz

. (8.3)
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If N2 > 0, i.e. if density increases downward then a displaced fluid parcel will tend
to return to its original location. The reference density state is statically stable, vertical
motion is inhibited and a vertically displaced fluid parcel will tend to return to its original
location. N is the frequency of oscillation of vertically aligned slabs of fluid which are
displaced vertically relative to their neighbours. (These properties will be demonstrated
in §8.3 below.)

8.2 Stratification in the atmosphere and ocean

In the ocean the buoyancy frequency N is typically 10−2s−1 in the upper ocean (the
thermocline where the stratification is strong, and 5 × 10−4s−1 in the deep ocean, where
the stratification is weak.

In the atmosphere calculating the buoyancy frequency needs to take account of compress-
ibility, because the density ρ is not conserved by a fluid parcel in reversible, dissipation-
less motion. The quantity that is conserved is the potential temperature θ defined by
θ = T (p/p0)

−2/7 where T is temperature and p is pressure. The corresponding expression
for the buoyancy frequency is

N2 =
g

θ

dθ

dz
. (8.4)

Note for example, that if T is constant in height then N2 is positive, because p decreases
with height. Indeed N2 can be positive when T decreases with height, provide it does
not do so too rapidly. In the Earth’s atmosphere T decreases upwards for about 10km
or so (the troposphere) and then begins to increase (the stratosphere). The corresponding
buoyancy frequencies are 10−2s−1 in the troposphere and 2 × 10−2s−1 in the stratosphere.

[See Slides showing vertical structure of density/temperature in the atmosphere and
ocean.]

For the remainder of the course we will consider a fluid described by the Boussinesq
equations (8.2a-c) and interpret the behaviour we find as a qualitative description of
the atmosphere and the ocean. But a quantitative description of the atmosphere would
need to take account of compressibility as outlined above. (Note that in fact an accurate
description of the ocean, particular when considering when considering the whole depth
range, also needs to take some account of compressibility, because the density depends on
pressure and the pressure variation over several km is very large.)

8.3 Small-amplitude motion about a state of rest

To gain some insight into the effects of stable stratification we consider the Boussinesq
equations (8.2a-c) linearised about a resting state with density structure represented by
the buoyancy frequency N . For simplicity we neglect background rotation for the time
being. It is convenient to introduce the variable σ = −ρ′g/ρ0, sometimes called the
buoyancy.
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The equations are

ũt = −ρ−10 ∇p̃+ σ̃ẑ, (8.5a)

∇ · ũ = 0, (8.5b)

σ̃t +N2w̃ = 0. (8.5c)

The ũ etc notation has been used to denote the fact that these are disturbance quantities
away from the resting state. ẑ denotes the unit vector in the vertical direction.

These equations may be reduced to a single equation for w̃,

∇2w̃tt +N2(w̃xx + w̃yy) = 0. (8.6)

[Take∇. of (8.5a), to give a relation between p̃ and σ̃, then combine the vertical component
of (8.5a) with (8.5c) to eliminate p̃ and σ̃.]

Now consider the special case where N2 is constant and seek plane-wave solutions with
w̃ = Re(ŵeikx+ily+imz−iωt). This leads to the dispersion relation:

ω2 =
N2(k2 + l2)

k2 + l2 +m2
. (8.7)

A first important implication of the dispersion relation is that if N2 > 0 a small amplitude
disturbance will lead to oscillatory motion rather than growing in time, i.e. the resting
state is stable. If N2 < 0 on the other hand , corresponding to density increasing upwards,
then small amplitude disturbances will grow exponentially in time, i.e. the resting state
is unstable. (The latter possibility is important, of course, e.g. in leading to atmospheric
or oceanic convection, but we will now focus on the case with N2 > 0.)

The dispersion relation implies that 0 ≤ |ω| ≤ N , with the lower limit achieved in the
limit k2 + l2 � m2. Define θ = tan−1(m/(k2 + l2)1/2), so that θ is the angle that surfaces
of constant phase, which are perpendicular to the wavenumber vector k = (k, l,m), make
with the vertical, then ω = ±N cos θ. Note that ∇.u = 0 implies that the velocity vector
is perpendicular to k, i.e. the velocity vector lies in surfaces of constant phase. Therefore
θ is also the angle that fluid parcel trajectories make with the vertical.

For θ close to 0, i.e. wave phase surfaces vertical, wavenumber vector horizontal, ω ' ±N .
For θ close to π/2, i.e. wave phase surfaces horizontal, wavenumber vector vertical, ω ' 0.

|ω| ≤ N implies that only disturbances with sufficiently low frequency can propagate as
waves. The response to a localised forcing at frequency greater than N will be localised
near the forcing rather than taking the form of a propagating wave field. Note also that
the angle of the phase surfaces depends only on the frequency, not on the scale of the
waves, so forcing at a single frequency, but with a range of spatial scales, will lead to a
wave field in which the phase surfaces are all oriented in the same direction.

The dispersion relation implies the group velocity

cg = (
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m
) = ± N

(k2 + l2)1/2(k2 + l2 +m2)3/2
(km2, lm2,−m(k2 + l2)). (8.8)
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Note that cg.k = 0, i.e. the group velocity is parallel to phase surfaces and therefore
perpendicular to the phase velocity and that |cg| = N sin θ/|k|, i.e. the group velocity is
an increasing function of wavelength and a decreasing function of frequency.

[See Slides showing schematic diagram of internal gravity wave response structure of
density and velocity field for this solution.]

9 Derivation of the 3-D quasi-geostrophic equations

9.1 Some basic facts about rotation and stratification in 3-D

(i). In a model problem with stratification represented by constant buoyancy frequency
N and with f vertical the dispersion relation for small amplitude waves is

ω2 =
N2k2 + f 2m2

k2 +m2

where k is the horizontal wavenumber and m is the vertical wavenumber. (This is
consistent with the dispersion relation in the case with f = 0 derived in §8.3. See Q6
on Example Sheet 2 for the case with f 6= 0.) It follows that the relative strength
of stratification vs rotation is N/L vs f/D, where L is the horizontal length scale
and D the vertical length scale.

(ii). In the atmosphere and the ocean N is typically much larger than f . f is O(10−4s−1).
N is O(10−3s−1) (deep ocean) or O(10−2s−1) (upper ocean and atmosphere).

(iii). It follows that rotation is important only if the vertical length scale D is much less
than the horizontal length scale L, but this implies that vertical velocities are much
less than horizontal velocities and that the hydrostatic approximation is valid (using
the same scaling arguments as those applied in §3 to the shallow-water system).
Alternatively to justify the hydrostatic approximation it could simply be observed
that D � L for a wide class of atmospheric and oceanic flows.

(iv). Given the above, the Coriolis force may be neglected in the vertical momentum
equation and in the horizontal momentum equation only the part of the Coriolis
force associated with the horizontal velocity need be included.

This can be seen as follows. Write f = fh + fv and u = uh + uv, where h denotes
horizontal and v denotes vertical.

Then (noting that fv × uv = 0)

f × u = (fh + fv)× (uh + uv) = fh × uh + fv × uh + fh × uv ' fh × uh + fv × uh

where the second step follows from |uv| � |uh|. (Note that this second step might
have to be rexamined if fv was very small relative to fh, which is true at very
low latitudes.) The first part of the right-hand side is the vertical component of the
Coriolis force and it may be shown that if the hydrostatic approximation applies then
this is much smaller than the dominant terms in the vertical momentum equations
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and it may therefore be neglected. (This is called the ’traditional approximation’
in §1.) Therefore the only part of the Coriolis force that needs be retained is the
fv × uh contribution to the horizontal component. Retaining this part is equivalent
to replacing the rotation vector by its vertical component only.

Note that |fv| = 2Ω sinφ where Ω is the rotation rate and φ is latitude.

(v). The sequence of equations that follow from last two points, plus the geometric
simplication that the fluid layer is thin compared to the radius of the Earth, are
called the primitive equations. These have, until very recently, been widely used as
a basis for numerical modelling of atmosphere and ocean. (The most recent models
are designed to be valid at very high horizontal resolution, where the hydrostatic
approximation may no longer apply.)

A further very useful approximation is locally to define Cartesian co-ordinates (x, y, z)
with x in the longitudinal direction, y in the latitudinal direction and z in the vertical
direction, and to approximate |fv| = 2Ω sinφ by f0+βy, i.e. the local latitudinal variation
of the Coriolis parameter is retained but approximated as linear in y. (Other geometric
effects of spherical geometry are neglected.) This is called the β-plane approximation.
(Recall §6.)

Under the sequence of approximations described above, the full 3-D equations lead to the
Boussinesq primitive equations on a β-plane

Du

Dt
− (f0 + βy)v = − 1

ρ0
p′x (9.1a)

Dv

Dt
+ (f0 + βy)u = − 1

ρ0
p′y (9.1b)

p′z = −ρ′g (9.1c)

Dρ′

Dt
= 0 (9.1d)

∇.u = 0 (9.1e)

where u = (u, v, w) and D/Dt = ∂/∂t+ u∂/∂x+ v∂/∂y + w∂/∂z.

This set of equations has five dependent variables and three prognostic equations plus two
instantaneous constraints. There are strong similarities to the shallow-water equations
on a β-plane, indeed these equations behave rather like a set of shallow-water systems
communicating in the vertical through the hydrostatic equation. As for the shallow-
water equations, for small Rossby number these equations have ’fast’ modes (Poincaré
waves for the shallow-water equations, hydrostatic inertio-gravity waves for the primitive
equations) and ’slow’ modes that are close to geostrophic balance (discussed in §6 for the
shallow-water equations).
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9.2 Thermal wind equation

When the Rossby number is small we expect the flow to be close to geostrophic balance,
so that

−fv = − 1

ρ0
p′x,

fu = − 1

ρ0
p′y.

Then differentiating in the vertical and using the hydrostatic relation, it follows that

fvz = − g

ρ0
ρ′x and fuz =

g

ρ0
ρ′y

This is the thermal wind equation. (ρ′ is density, but in many contexts can be seen as
equivalent to temperature.)

This equation has been of practical interest since historically it has often been the density
or temperature field that is observed and then the thermal wind equation may be used
to deduce information about the velocity field. The vertical integration introduces an
arbitrary function of x and y. This may be set in the atmosphere by low-level pressure
observations or in the ocean by an ad hoc assumption of a ‘level of no motion’. (The
modern approach is to use ‘data assimilation’ – all available observations, of different
variables and taken at different positions and times are used as input to a dynamical
model and space-time fields of all model variables constructed.)

[See Slides showing variations of temperature and longitudinal velocity in the atmo-
sphere, and variations of density in the ocean with strongly sloping density surfaces in
the Antarctic Circumpolar Current.]

9.3 Potential vorticity

For the shallow-water equations we deduced in §6 a prognostic equation for the slow
motion from the equation from potential vorticity conservation. Recall that the potential
vorticity is conserved exactly, according to the full shallow-water equations, without any
assumption that the motion is slow.

The equations for 3-dimensional density stratified flow under the Boussinesq approxima-
tion also imply, without approximation, material conservation of a potential vorticity –
generally called Rossby-Ertel potential vorticity – in the absence of forcing and dissi-
pation. The expression for the Rossby-Ertel potential vorticity (under the Boussinesq
approximation) is

P =
1

ρ0
(f + ζ).∇ρ′.

The primitive hydrostatic equations also give conservation of potential vorticity, provided
that f + ζ is suitably simplified consistent with hydrostatic scaling. For the Boussinesq
β-plane primitive equations that we are using the relevant expression is

P =
1

ρ0

{
(fv + vx − uy)ρ′z + uzρ

′
y − vzρ′x

}
.
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Exercise: Show from (9.1a), (9.1b), (9.1c), (9.1d) and (9.1e) that DP/Dt = 0 in the
absence of forcing and dissipation.

Note that forcing and dissipation terms have not yet been included in any of the equations
considered in this section. When these are non-zero then there is a non-zero term on the
right-hand side of the equation for DP/Dt. This is potentially important because it gives
rise to features in the P field that can affect (even drive) the evolution of the flow.

9.4 The quasi-geostrophic equations

Repeating the procedure already carried out for the shallow-water equations in §6, we
now obtain a prognostic equation for the slow (i.e. close to geostrophic balance) motion
from the Boussinesq primitive equations on a β-plane.

We write ρ′(x, y, z, t) = ρs(z) + ρ̃(x, y, z, t), where ρs(z) represents density variation in a
hydrostatically balanced basic state where there is no motion. We therefore expect that
ρ̃ is associated with motion of the fluid when it is disturbed from this resting basic state.

We then write pressure as the sum of two terms, p′(x, y, z, t) = ps(z) + p̃(x, y, z, t), where
each term is in hydrostatic balance with the corresponding part of the density field, i.e.

dps
dz

= −ρsg and
∂p̃

∂z
= −ρ̃g

The density equation (9.1d) therefore becomes

Dρ̃

Dt
+ w

dρs
dz

= 0

The velocity field is divided into a part that is in geostrophic balance with the pressure
field (assuming that the Coriolis parameter is the constant f0) and a remainder, referred
to as the ‘ ageostrophic’ velocity, i.e.

u = ug + ua where f0k× ug = − 1

ρ0
∇hp̃

and ∇h indicates the horizontal part of ∇.

Note that the vertical component of ug is zero, and ∇.ug = 0.

We shall also assume that the scale Ly in the y direction is sufficiently small that βLy/f0 �
1. Then if Ro� 1 it follows that |ua| � |ug|.
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The primitive equations may now be written{
∂

∂t
+ (ug + ua).∇

}
(ug + ua)− f0vg − f0va − βy(vg + va) = − 1

ρ0

∂p̃

∂x
(9.2a){

∂

∂t
+ (ug + ua).∇

}
(vg + va) + f0ug + f0ua + βy(ug + ua) = − 1

ρ0

∂p̃

∂y
(9.2b)

−∂p̃
∂z
− ρ̃g = 0 (9.2c){

∂

∂t
+ (ug + ua).∇

}
ρ̃+ wa

dρs
dz

= 0 (9.2d)

∂ua
∂x

+
∂va
∂y

+
∂wa
∂z

= 0 (9.2e)

Given that Ro � 1 we may approximate Du/Dt by Dgug/Dt, where Dg/Dt = ∂/∂t +
ug.∇, and βyu by βyug. There are two aspects of these approximations that require
further comment.

The first is that f0(ua, va) and βy(ug, vg) are considered to be of similar size. This suggests
that the requirement βLy/f0 � 1 noted above is better expressed as βLy/f0 ∼ Ro.

The second is that wadρs/dz is retained, but wadρ̃/dz is not. This requires |dρ̃/dz| �
|dρs/dz|. If the horizontal scale is L and the vertical scale is D, the thermal wind equation
implies that gρ̃/Lρ0 ∼ f0U/D, where U is a typical horizontal velocity. Then it follows
that

ρ̃z
(ρs)z

∼ f0ULρ0
gD2(ρs)z

= (
U

f0L
)(
Lf0
ND

)2 = Ro(
Lf0
ND

)2.

The dimensionless quantity (Lf0/DN)2 is sometimes called the Burger Number and de-
noted by Bu. The approximation that has been made is therefore justified if RoBu� 1
or equivalently Bu� Ro−1, i.e. if Bu is not too large. If Bu ∼ 1 then this is implied by
the fact that Ro� 1.

It remains to eliminate ua, which is done by calculating ∂(9.2b)/∂x - ∂(9.2a)/∂y and then
using the nondivergence of the geostrophic velocity, to form a vorticity equation

Dg

Dt

{
∂vg
∂x
− ∂ug

∂y

}
+ βvg + f0

{
∂ua
∂x

+
∂va
∂y

}
= 0.

(9.2d) and (9.2e) are now used to eliminate ua, va and wa to leave

Dg

Dt

{
∂vg
∂x
− ∂ug

∂y

}
+ βvg + f0

∂

∂z

{
Dgρ̃

Dt
/
dρs
dz

}
= 0

Defining ψ = p̃/ρ0f0, so that u = −ψy, v = ψx and, using (9.2c), ρ̃ = −ρ0f0ψz/g, this
reduces to

Dg

Dt

{
ψxx + ψyy +

{
f 2
0ψz
N2

}
z

}
+ βψx = 0 (9.6a)
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or
Dgq

Dt
= 0 where q =

{
ψxx + ψyy +

{
f 2
0ψz
N2

}
z

+ βy

}
. (9.6b)

Note N2 = −gρ−10 dρs/dz and that, written in terms of ψ,

Dg

Dt
=

∂

∂t
− ψy

∂

∂x
+ ψx

∂

∂y
.

(9.6b) is the quasigeostrophic potential vorticity equation. The quantity q is the quasi-
geostrophic potential vorticity. Under the quasi-geostrophic approximation it is conserved
following the (horizontal) geostrophic flow.

It is possible show that (9.6a) or (9.6b) are approximations to the statement of material
conservation of Rossby-Ertel potential vorticity following the flow along ρ′ surfaces (in a
Boussinesq fluid) or θ surfaces (in a compressible fluid).

Just as for shallow-water quasi-geostrophic flow, if q is known then ψ can be calculated,
in this case through the relation

ψ =

{
∂2

∂x2
+

∂2

∂y2
+

∂

∂z
(
f 2
0

N2

∂

∂z
)

}−1
(q − βy).

The operator being applied to q − βy is sometimes called a potential vorticity inversion
operator. Note that the application of this operator requires requires boundary conditions
on ψ or its derivatives.

(i). At rigid side boundaries, i.e. boundaries on each horizontal level, we typically require
than the normal component of u is zero, equivalent to ψ being constant along the
boundary.

(ii). At rigid top or bottom boundaries we again require the kinematic boundary condi-
tion to be satisfied, i.e. Dz/Dt = w = Dh/Dt on the boundary z = zb + h, where
zb is constant and h represents a topographic perturbation. The variable wa has
been eliminated from the quasi-geostrophic potential vorticity equation, but may
be expressed in terms of other variables via the density equation, implying that the
boundary condition may be approximated as

w ∼ wa = −Dgρ̃

Dt
/
dρs
dz

=
Dh

Dt
' Dgh

Dt
.

This suggests that h ∼ ρ̃/(dρs/dz) ∼ D(U/f0L)(L2f 2
0 /N

2D2) = RoBuD, i.e. h�
D. Therefore to be consistent with the other dynamical assumptions h must be
small compared with the vertical length scale D. This allows ’linearisation’ of the
boundary condition, i.e. that it may be applied at z = zb rather than at z = zb + h.
Finally, substituting for ρ̃ in terms of ψ, it follows that

Dg

Dt
ψz = −N

2

f0

Dg

Dt
h. (9.7)

at z = zb.
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The boundary condition therefore takes the form of a prognostic equation for ψz.
Note that the physical interpretation of this condition is as a statement of material
rate of change of density or temperature (and material conservation in the case
where there is no topography).

The density or temperature at horizontal boundaries therefore have similar status in the
quasi-geostrophic equations to the quasi-geostrophic potential vorticity in the interior of
the flow. Indeed there are some formulations in which the boundary density or tem-
perature is explicitly incorporated into the quasi-geostrophic potential vorticity, as delta
functions localised at the boundaries. This is analogous to the way in which in electro-
statics surface charge can either be separated from interior charge, with the surface charge
implying a boundary condition for the normal component of the interior electric field, or
incorporated within the interior charge distribution as a thin δ-function sheet localised at
the boundary, in which case the boundary condition on the ‘interior’ electric field is that
the normal component is zero at the boundary.

Note the physical interpretation of different contributions to the quasi-geostrophic poten-
tial vorticity q:

q = ψxx + ψyy +
(
f20
N2ψz

)
z

+ βy

relative vorticity stretching term planetary vorticity
(9.8)

The stretching term measures vertical gradients in density perturbations, hence the amount
by which nearby density surfaces move apart or together.

The ratio of the typical size of the relative vorticity term to that of the stretching term
is N2D2/f 2

0L
2. If ND/f0L � 1 then relative vorticity dominates. If ND/f0L � 1

then stretching dominates. When ND/f0L ∼ 1 then relative vorticity and stretching
are comparable. The ratio of horizontal to vertical scale, L/D ∼ N/f0 implied by this
condition is sometime called Prandtl’s ratio of scales.

Recalling similar considerations in §6 for the shallow-water equations, the scale ND/f
might be described as the Rossby deformation scale (or ‘Rossby radius of deformation’)
associated with the vertical scale D. (In the shallow-water system there is a single defor-
mation scale determined by the layer thickness. In the continuously stratified system the
deformation scale depends on the vertical scale D, which might be determined by initial
conditions, or forcing, rather than being uniquely determined for the system as a whole.)

The three-dimensional quasi-geostrophic equations have a strong structural similarity to
the equations for two-dimensional vortex dynamics in the sense that there is a non-local
dependence of the streamfunction ψ on q. In two-dimensional vortex dynamics the non-
locality is purely in the horizontal (e.g. the velocity field associated with a point vortex
extends in the horizontal away from the position of the vortex). In the three-dimensional
quasi-geostrophic equations the non-locality is also in the vertical and the q field in a
localised region on a given level not only affects the ψ field outside that region on the
same level, but also affects the ψ field at other levels.

If N is constant in height then the operator appearing in (9.8) is isotropic in scaled co-
ordinates x, y, Nz/f0. However the evolution equations (9.6a) or (9.6b) are not isotropic
since the flow only has components in the horizontal. We might therefore expect solutions
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of the quasi-geostrophic equations to have some tendency towards isotropy in the scaled
co-ordinates just defined, but the isotropy may not be exact. This has been an ongoing
topic of discussion and research amongst geophysical fluid dynamicists.

[See Slides giving examples of two-dimensional turbulence and three-dimensional quasi-
geostrophic turbulence.]

9.5 Illustrative calculation of a simple three-dimensional quasi-
geostrophic flow

We consider a quasi-geostrophic ‘point vortex’, i.e. we assume q = UL2δ(x, y,Nz/f0),
where δ(x) is the Dirac delta function and solve

ψxx + ψyy +

{
f 2
0

N2
ψz

}
z

= UL2δ(x, y, z)

to give the corresponding ψ(x, y, z). We assume that N is constant and that the βy
term appearing in (9.8) may be neglected. U and L are respectively, a constant velocity
and a constant length, included simply to give dimensional consistency. Note that the
‘dimensions’ of the δ-function in 3-D are (length)−3.

We first rescale z by defining z = Nz/f0. Then in Cartesians (x, y, z) the operator on the
left-hand side of (9.5) is the three-dimensional Laplacian and we deduce that a solution
satisfying the boundary condition ψ → 0 as |x|, |y| and |z| tend to infinity is

ψ(x, y, z) = −UL
2

4π

1

(x2 + y2 + z2)1/2
= − 1

4π

1

(x2 + y2 +N2z2/f 2
0 )1/2

It follows that the horizontal velocity components (u, v) are given by

(u, v) =
UL2

4π

(−y, x)

(x2 + y2 +N2z2/f 2
0 )3/2

and the density perturbation is given by

ρ̃ = −fρ0
g
ψz = −fρ0UL

2

4πg

z

(x2 + y2 +N2z2/f 2
0 )3/2

Away from the point vortex the sum of the relative vorticity and the stretching term in
q is zero, but, consistent with the fact that the circulation (both velocity and density
anomalies) extend away from the point vortex, they are individually non-zero.

[See Slides showing structure of density and velocity field for this solution plus examples
of atmospheric and oceanic vortices.]

10 Waves and instabilities in the three-dimensional

quasi-geostrophic equations

10.1 Introduction

We take the quasi-geostrophic equations (9.6a,9.6b) as a starting point and consider small-
amplitude disturbances superimposed on a background flow that is itself a self-consistent
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solution of the quasi-geostrophic equations. To be specific the background (geostrophic)
flow is assumed to be only in the x-direction and to depend only on y and z, i.e. (ug, vg) =
(U(y, z), 0). There is a corresponding background state quasi-geostrophic stream function
Ψ(y, z) such that −Ψy = U and quasi-geostrophic potential vorticity Q(y, z) = Ψyy +
(f0Ψz/N

2)z + βy.

In §7, when developing the Boussinesq approximation, the ′ (prime) notation was used to
denote difference from constant density and the˜(tilde) notation was then used to denote
horizontally varying part. Having implemented the Boussinesq approximation it is now
convenient to redefine the ′ notation and use it for a different purpose. In this section it
will be used to denote disturbance quantities.

We now write down the quasi-geostropic equations retaining only linear terms in distur-
bance quantities (and noting that the terms involving only background-state quantities
balance, because the background state is a self-consistent solution of the equations). The
linearised quasi-geostrophic potential vorticity equation is

(
∂

∂t
+ U(y, z)

∂

∂x
){ψ′xx + ψ′yy + (

f 2
0

N2
ψ′z)z}+ {β − Uyy − (

f 2
0

N2
Uz)z}ψ′x = 0 (10.1)

and the boundary condition at any e.g. top or bottom boundary, illustrated here for
z = 0,

(
∂

∂t
+ U(y, 0)

∂

∂x
)ψ′z − Uz(y, 0)ψ′x = −N

2

f0
(
∂

∂t
+ U(y, 0)

∂

∂x
)h′. (10.2)

Note the potentially important role played by the quantity β−Uyy−(f 2
0Uz/N

2)z appearing
in (10.1). This is the y-gradient of quasi-geostropic potential vorticity in the background
state. Correspondingly the quantity Uz(y, 0) appearing in (10.2), which is proportional
to the y-gradient of density at the boundary z = 0, may also be important. (Recall that
(10.2) has been derived from the density equation and also that the density distribution
at the boundary has similar status in the equations to the interior distribution of quasi-
geostrophic potential vorticity.)

10.2 Rossby waves – vertical modes

Consider the 3-D quasi-geostrophic equations in an oceanic configuration with a free
surface at z = 0 in the resting undisturbed state, with a flat bottom at z = −H and with
buoyancy frequency N(z).

Assume that in the disturbed state the height of the free surface is displaced to z =
η′(x, y, t). If we assume that disturbances are small then we may estimate p(x, y, 0, t) =
patm + ρ0gη

′ and hence ρ0gw = Dgp̃(x, y, 0, t)/Dt at z = 0. Now using the expression for
the pressure and for the vertical velocity under the quasi-geostrophic approximation, it
follows that the boundary condition at z = 0 is

Dgψ
′
z

Dt
+
N2

g

Dgψ
′

Dt
= 0.

At z = −H, the boundary condition is

Dgψ
′
z

Dt
= 0.
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The quasi-geostrophic potential vorticity equation (10.1) reduces to(
ψxx + ψyy + (

f 2
0

N2
ψz)z

)
t

+ βψx = 0.

We now seek solutions of the form ψ(x, y, z, t) = φ(x, y, t)P (z), where

d

dz
(

1

N2

dP

dz
) = − 1

gh
P (10.3)

with h a suitable constant and with boundary conditions P ′ + (N2/g)P = 0 at z = 0
and P ′ = 0 at z = −H. This is an eigenvalue equation for h, sometimes called the
vertical structure equation, and we may expect a countable sequence of possible values
h1 > h2 > · · · > 0, with the maximum value h1 corresponding to the simplest possible
structure for P (z).

Note furthermore that the height g/N2 is typically large compared to the depth H (or
the vertical length scale associated with variations in stratification) and therefore the
boundary condition at z = 0 may be approximated by P ′ = 0. This is the so-called rigid
lid approximation. (It is equivalent to imposing zero vertical velocity.) Solving with this
boundary condition gives P non-zero at z = 0 and the solution may therefore be used to
give an good first estimate of the pressure variation at z = 0 and hence the variation in
free-surface height.

If N = N0 (constant) then the largest value h1 is N2
0H

2/gπ2, i.e. (gh1)
1/2 = N0H/π.

P1(z) for this case has a single zero in the interior of the layer. P ′1(z), corresponding
to the vertical displacement, has a single maximum in the interior of the layer. This
corresponds to the first baroclinic mode. For realistic oceanic stratification, the first
baroclinic mode is typically found to have (gh1)

1/2 ' 3ms−1 and the second baroclinic
mode (gh2)

1/2 ' 1ms−1.

Given hi and Pi(z) the corresponding equation for φi(x, y, t), describing the horizontal
structure of the ith mode will be(

φixx + φiyy −
f 2
0

ghi
φi

)
t

+ βφix = 0,

i.e. the quasi-geostrophic equation for a single layer of fluid of depth hi as derived in
§6.2. We have therefore reduced the three-dimensional problem to an equivalent single-
layer problem, or a set of such problems, one for each mode, with the layer depths being
determined as the eigenvalues of the vertical structure equation.

Note that for each vertical mode there is a corresponding Rossby radius of deformation,
given by

LiR =
(ghi)

1/2

f0
.

For the first baroclinic mode L1R ' 30km. For the second L2R ' 10km. (These are
both estimates for midlatitudes.) (Note that §6 uses RD to denote Rossby radius of
deformation.)

For scales much larger than LR then the single-layer dispersion relation given in §6.2
implies that the phase and group velocities are westward and given by βL2

R. (Note that the
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waves are non-dispersive in this limit.) This implies that at midlatitudes the phase/group
speed for the first baroclinic mode Rossby wave is about 1.5 ×10−2 ms−1. (This implies
about 10 years to cross the Atlantic Ocean.)

At latitude λ the first baroclinic mode Rossby wave speed is gh1 cosλ/2Ωa sin2 λ. The
speed of propagation therefore increases towards the equator. (This formula clearly breaks
down as the equator is approached and the correct value applying close to the equator
may be deduced from the dispersion relation for equatorial Rossby waves – see later.)

This vertical-mode decomposition is most relevant to oceanic Rossby waves. Oceanic
Rossby waves have now been clearly observed from satellite observations of sea-surface
height . Oceanic Rossby waves are an important mechanism for propagation of informa-
tion in the ocean (on time scales of months to years).

[See Slides for satellite observations interpreted as Rossby-wave propagation.]

10.3 Topographically forced Rossby waves in a flow with vertical
shear

Now consider a basic flow U(z) in z > 0. To simplify the problem we assume that N2

is constant and, additionally, that U ′(0), i.e. the vertical shear vanishes at the lower
boundary. As previously, note that the basic flow is itself a solution of the equations of
motion.

We consider the effect of a steady topographic perturbation h′(x, y) at the lower boundary
and seek solutions that are steady. In the interior we have the steady form of the linearised
quasi-geostrophic PV equation (10.1), giving

U(z)
∂

∂x
{ψ′xx + ψ′yy + (

f 2
0

N2
ψ′z)z}+ {β − f 2

0

N2
U ′′(z)}ψ′x = 0.

Note that the y-gradient of quasi-geostrophic potential vorticity has been simplified by
the assumption that U is independent of y and that N is constant, but still includes a
term depending on the second derivative U ′′(z). The boundary condition (10.2) at z = 0,
simplified by the assumption of vanishing vertical shear, takes the form

− f0
N2

U(0)
∂2ψ′

∂x∂z
= U(0)

∂h′

∂x
at z = 0.

For convenience we assume that the topographic perturbation h is sinusoidal in x and y

h′ = Re
(
ĥeikx+ily

)
.

The form of steady disturbances forced by the topography may be written in the form

ψ′ = Re
(
ψ̂(z)eikx+ily

)
where

f 2
0

N2

d2ψ̂

dz2
−
(
k2 + l2

)
ψ̂ +

(β − f 2
0U
′′(z)/N2)

U(z)
ψ̂ = 0,
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i.e. ψ̂′′ +m(z)2ψ̂ or ψ̂′′ − µ(z)2ψ̂ = 0 where

m(z)2 or − µ(z)2 =

{
β − f 2

0U
′′(z)/N2

U(z)
−
(
k2 + l2

)} N2

f 2
0

Solutions are wave-like in the vertical if (m(z))2 > 0, i.e. if

0 < U(z) <
β − f 2

0U
′′(z)/N2

k2 + l2
= Uc,

otherwise they have exponential behaviour in the vertical.

These statements can be made more precise if we assume that U(z) is slowly varying in
the vertical so that WKBJ-type theory is valid. In the ’wave-like’ case m(z) is then a local
value of the vertical wavenumber. The sign of m(z) is determined by a radiation condition
that the group velocity is upward and detailed calculation shows that m(z) must take the
same sign as k. Correspondingly when there is exponential behaviour the sign of µ(z) is
chosen so that waves decay in the vertical.

Note that:

(i). Disturbances are trapped in the vertical if U < 0 or U > Uc;

(ii). Disturbances can propagate up into westerlies (eastward flow, U > 0) providing
that these are not too strong;

(iii). Uc is a decreasing function of k. If U(z) increases upwards, then the longest waves
(with smallest k) will propagate through the greatest range of heights.

These results were first noted by Charney and Drazin in 1961. They are highly relevant
to the circulation in the stratosphere, which may be disturbed from a symmetric state,
where the flow is around latitude circles, by large-scale Rossby waves that are forced in the
troposphere (by flow over topography and other processes) and, under suitable conditions,
propagate up into the stratosphere.

Particular implications of the points above are as follows.

(i). appears to explain the disturbed circulation in the winter stratosphere compared to
the summer stratosphere;

(ii). may explain why the waves are so weak in the midwinter southern hemisphere
stratosphere, where the winds are very strong;

(iii). explains the increased scale of the waves with height in the winter troposphere and
stratosphere.

Note that the problem above is often formulated in a channel with side walls at y = 0,
y = L implying the boundary conditions ∂ψ′/∂x = 0 at y = 0 and y = L. This easily
incorporated into the solution presented above by assuming that the y- structure of the
disturbances is proportional to sin πy

L
and hence that l2 = π2/L2.

[See Slides showing differences between scales of variation of tropospheric circulation and
stratospheric circulation and differences between the winter and summer stratospheric
circulation.]
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10.4 Baroclinic instability

We now consider a flow for which disturbances that are small-amplitude initially may
grow substantially in amplitude, corresponding to instability of the flow. One important
instability mechanism in the atmosphere and the ocean is associated with sloping density
surfaces, i.e. horizontal density gradients, which exist in the basic state when there is
vertical shear. A traditional description of this instability is that the sloping density
surfaces in the basic flow imply a store of potential energy, which may be released and
converted into disturbance energy as the disturbances grow. This is half correct, but note
for example that there may be flows with sloping density surfaces that are not unstable.

A relevant very simple flow configuration here is that considered by Eady. We consider a
basic state on a f -plane (β is neglected), with constant buoyancy frequency N and with
flow in the x-direction U = Λz, so that ψ0 = −Λzy, with Λ a positive constant, with
constant buoyancy frequency N . The flow is taken to be bounded above and below by
horizontal rigid boundaries at z = 0 and z = H.

Given the above, it follows that the the y-gradient of quasi-geostrophic potential vorticity
appearing in (10.1),

β − Uyy − (
f 2
0

N2
Uz)z = −(

f 2
0

N2
Λ)z = 0.

(The interior quasi-geostrophic potential vorticity is constant in the basic state.) There-
fore the linearised quasi-geostrophic potential vorticity equation (10.1) reduces to the
form

q′t + Λzq′x = 0.

This has the solution q′(x, y, z, t) = q′(x− Λzt, y, z, 0), i.e. the initial q′ field at any level
is simply advected by the horizontal flow at that level. The q′ field is therefore of no
consequence in the analysis of possible instability and it is convenient simply to assume
that q′(x, y, z, 0) = 0 implying q′ is zero at all times.

The important ingredients in this problem are the boundary conditions at z = 0 and
z = H, following from (10.2) as

ψ′zt − Λψ′x = 0 at z = 0 (10.4)

ψ′zt + ΛHψ′zx − Λψ′x = 0 at z = H. (10.5)

These are combined with the interior equation

q′ = ψ′xx + ψ′yy +
f 2
0

N2
0

ψ′zz = 0 (10.6)

We seek solutions of the form

ψ′ = Re
(
ψ̂(z)eikx+ily−ikct

)
.

Note that the time dependence is incorporated via the e−ikct term, with c being a po-
tentially complex phase speed in the x-direction. c will be determined by solution of an
eigenvalue problem. There will be instability if kIm(c) > 0.
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Then q′ = 0 implies that ψ̂zz − µ2ψ̂ = 0 where µ = N0(l
2 + k2)1/2/f0 and hence that

ψ̂ = Aeµz +Be−µz

where A and B are constants.

Substituting into the boundary conditions it follows that

−c (µA− µB)− Λ(A+B) = 0

(ΛH − c)(µAeµH − µBe−µH)− Λ(AeµH +Be−µH) = 0.

Combining these equations gives the solution of the eigenvalue problem

c = 1
2
ΛH ± 1

2
HΛ

(
1− 4cothµH

µH
+

4

µ2H2

)1/2

= 1
2
ΛH ± 1

2
ΛH(F (µH))1/2. (10.7)

where the function F (.) is defined by the second equality. There will be instability if
F (µH) < 0 (since one of the two possible values for c will give kIm(c) > 0). It is simple
to show that F (.) is an increasing function, with F (0) = −1

3
and F (µH)→ 1 as µH →∞.

Hence there is instability if µH < µ̂c = 2.399 where F (µ̂c) = 0.

The growth rate for any value of k and l is given by

kIm(c) =
f0Λ

N

k

(k2 + l2)1/2
{1
2
µH(−F (µH))1/2}.

It is clear from this formula that for given µ the growth rate is maximised when l is zero.
Therefore the maximum growth rate will occur when 1

2
µH(−F (µH))1/2 is maximised,

which determines µ and, for that value of µ, when l = 0. (Recall that µ is proportional to
(k2 + l2)1/2. ) The maximum value of 1

2
µH(−F (µH))1/2 is 0.31 and occurs at µH = 1.61.

Hence in the Eady problem the maximum growth rate is 0.31f0Λ/N , i.e. it is proportional
to the vertical shear Λ multiplied by the ratio f0/N . The maximum growth occurs with
x-wavenumber k equal to 1.61f0/NH , i.e. the corresponding length scale is the height of
the domain H multiplied by the ratio N/f0, and the y-wavenumber l = 0.

The stability properties are affected by the geometry of the domain. If there were side
boundaries at y = 0 and y = L these could be satisfied by superposing solutions of the
form given above with l = ±nπ/L where n = 1, 2, . . . , i.e. the minimum possible value
of |l is π/L. Hence the minimum possible value of µH is πNH/f0L and there will be
no instability if L < 2.399πNH/f0. [The fact that reduced channel width can suppress
instability suggests that the mechanism is not quite as simple as release of potential
energy.]

Returning to the dispersion relation, we note that in the limit µH →∞, c/ΛH → 1/µH
or c/ΛH → 1 − 1/µH. In the first case it follows that B � A, and therefore that the
wave is bottom trapped. In the second it follows that A ∼ B and hence, taking account
that µH � 1, that the wave is top trapped. We thus have a wave trapped at the bottom
boundary, propagating in the positive x-direction against the flow, and another trapped
at the top, propagating in the negative x-direction against the flow.

It is useful to consider the case where there is only a lower boundary. Then, putting
ψ′ = Re(eikx−ikct+ilyψ̂), it again follows from the potential vorticity equation that ψ̂zz −
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µ2ψ̂ = 0, where again µ has been defined by µ = N0(k
2 + l2)1/2/f0. Requiring ψ̂ to be

bounded as z →∞ gives that ψ̂ = Ae−µz. Substituting in the lower boundary condition,
kcψ̂z + Λψ̂k = 0, it follows that the dispersion relation is

c =
Λ

µ
.

So we have an eastward travelling wave trapped at the lower boundary when there is
positive vertical shear (or equivalently, a poleward increase in density). The propagation
mechanism for such a wave may be understood in terms of the circulation induced by a
surface density change. It is appropriate to regard such a wave as a Rossby wave, but
propagating on a surface density gradient, rather than on an interior potential vorticity
gradient.

Returning to the case with two boundaries it can be argued that the instability mechanism
results from the phase locking of two such waves (one trapped on the top boundary, the
other on the bottom boundary) in a configuration such that the velocity field associated
with one tends to increase the amplitude of the other, and vice versa. The fact that
instability occurs only for sufficiently small µH is because at larger values of µH the
interaction between the boundary waves is too weak. This mechanism is discussed in
detail in many papers and textbooks, e.g. in §9.7.2 of Vallis (2017).

Finally we examine the density transport by the growing wave. The relevant quantity
is the density flux in the y-direction, ρ′v′ where represents an x-average. This can be
written in terms of the quasi-geostrophic streamfunction,

ρ′v′ = −ρ0f0
g
ψ′xψ

′
z = −1

2

ρ0f0
g

Re
(
ikψ̂ψ̂∗z

)
= −1

2

ρ0N
2

gf0
Re(ikµ(A∗B − AB∗))

=
kµ

f0

dρs
dz

Im(AB∗) =
kµ

f0

dρs
dz

Im

(
AA∗

c∗µ+ Λ

c∗µ− Λ

)
=

2kµ2

f0

dρs
dz

|A|2ΛIm(c)

|c∗µ− Λ|2 < 0

So the density flux is negative, i.e. light fluid is transported in the positive y-direction
and heavy fluid in the negative y-direction, tending to weaken the y-gradient of density
and hence release some of the potential energy in the background state.

Thus in a growing disturbance, on a basic state where there is a positive density gradient
from equator to pole, there is a poleward flux of light fluid and an equatorward flux of
heavy fluid. It follows that there is release of potential energy from the basic state and this
is one criterion that is used to identify the instability as baroclinic instability. However,
the release of energy from the basic state again does not seem to be a complete explanation
for the instability. After all, we know that the presence of rotation tends to inhibit the
conversion from potential energy to kinetic energy, so just because the potential energy
is there does not mean that instability must result.

The Eady problem was first studied as a paradigm for the waves that provide day-to-day
and week-to-week variations in the atmospheric flow associated with weather systems.
We may insert realistic atmospheric values into the parameters of the Eady problem,
setting H to be 10km, which is the approximate height of the tropopause (the notional
boundary between the troposphere and the stratosphere). (The static stability is much
larger in the stratosphere than in the troposphere, so the tropopause might in some ways
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act as a rigid lid for the tropospheric circulation.) It follows that NH/f0 ' 1000km,
f0Λ/N ' 5 × 10−5s−1 (taking Λ ' 5ms−1km−1), giving maximum growth rates of about
1 per day and the wavelength of the fastest growing mode about 4000 km. This seems in
reasonable accordance with observed weather disturbances. (See JRT lectures for further
comments on the atmospheric and oceanic cases.)

[See Slides showing numerical simulations of baroclinic instability including the nonlinear
regime where the amplitude of disturbances is too large to be described by linearised
theory and other nonlinear mechanisms are important.]
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13 Wave mean-flow interaction

13.1 Definitions

We consider means/averages taken over x. We use the notation () to be the x-average,
e.g.

χ =
1

L

∫ L

0

χdx

where the extent in x of the flow domain is 0 ≤ x < L. We typically assume periodicity in
x, e.g. motivated by atmospheric or circumpolar ocean geometry, with x corresponding
to longitude. Then we define χ′ = χ− χ, with χ′ often being called the ’wave’ or ’eddy’
part. If the mean state is the background state then this matches use of ()′ in §8. (But
note that the mean state may evolve in time, whereas in §8 the background state has
generally been a specified time-independent flow.)

Note that (χx) = 0 (following from periodicity in x). This may be used to derive results
such as θxψ = (θψ)x − θψx = −θψx.
Note also that () is an Eulerian average, i.e. it is taken at fixed values of y and z.

For convenience, in this and the following Section the˜ (tilde) notation for ρ and p will
be dropped, i.e. ρ and p will be interpreted as, respectively, the variation of density and
pressure away from the state with density ρs(z).

13.2 Key facts about wave propagation and wave activity

(1) Dispersion relations: For plane waves, i.e. waves with sinusoidal structure in the
spatial coordinates x, y and z, or some subset of those coordinates, the dispersion relation
gives the frequency ω as a function of the spatial wavenumber k. The phase velocity cp,
with components ω/ki and the group velocity cg, with components ∂ω/∂ki follow from
the dispersion relation. Use of these various quantities requires a scale separation between
the waves and the background state, with the length scale of variation of the background
state being much larger than the wavelength.

See Slides for a summary of the dispersion relations for Rossby waves in a single-layer
fluid and in a continuously stratified fluid, with background flow at rest. The single-layer
result was given in §6.2 and the continuously stratified result follows from a very similar
calculation to that in §8.3.

(2) Wave activity conservation relation: This is an equation of the form

∂A
∂t

+∇.F = D

where A is a wave-activity density, F is a flux and D is a term representing dissipation
of wave activity, associated with physical processes that are dissipative or otherwise non-
conservative. (If the term on the right-hand side is non-zero for non-dissipative/conservative
flows, as is the case for wave energy, for example, then the equation would not be a wave
activity conservation relation.)



P.H.Haynes Part III Fluid Dynamics of Climate Michaelmas 2020 22

The following is a derivation of a wave activity relation from the quasi-geostrophic equa-
tions, which describes the propagation and dissipation of Rossby waves.

Start with the quasi-geostrophic potential vorticity equation (10.1) linearised about a
basic state flow in the x-direction. We use u for the x-component of the velocity and qy
for the corresponding gradient of quasi-geostrophic potential vorticity in the y direction.
Note that this implies that the instantaneous x-mean can be considered as a basic state,
whereas in writing down (10.1) it was assumed that the basic state flow was a self-
consistent steady solution of the equations. This apparent inconsistency can be resolved
by assuming that any time evolution of quantities such as u and q is slow.

Re-write (10.1) in the form
∂q′

∂t
+ u

∂q′

∂x
+ v′qy = D′

where D′ represents the effect of dissipation on q′. Now multiply by q′/qy, assume that
qy is varying slowly in time to give and take the x-mean to give

∂

∂t

{
1
2

q′2

qy

}
+ v′q′ =

q′D′
qy

. (13.1)

Now exploit what is sometimes called the generalised Taylor identity which follows from
multiplying q′ by v′:

v′q′ = ψ′x

(
ψ′xx + ψ′yy + (ψ′z

f 2
0

N2
)z

)
=

(
1
2
ψ

′2
x

)
x

+
(
ψ′xψ

′
y

)
y
−
(
1
2
(ψ′y)

2
)
x

+

(
ψ′xψ

′
z

f 2
0

N2

)
z

−
(

1
2
(ψ′z)

2 f
2
0

N2

)
x

.

Taking the x-mean of the above gives an expression for v′q′ which can be substituted into
(13.1) to give

∂

∂t

{
1
2

q′2

qy

}
+

∂

∂y

{
−u′v′

}
+

∂

∂z

{
− gf0
ρ0N2

v′ρ′
}

=
q′D′
qy

. (13.2)

Note that the terms within the y and z derivatives have been re-expressed in terms of u′,
v′ and ρ′.

The above equation has the structure

∂A
∂t

+
∂F (y)

∂y
+
∂F (z)

∂z
= DA

which expresses the fact that A is the density of a quantity that can be transported by a

flux with components F
(y)

and F
(z)

in the y- and z-directions and destroyed or created in
situ at a rate DA per unit volume. The quantities appearing in this wave activity relation
are often called the Eliassen-Palm wave activity and the Eliassen-Palm flux.

A wave activity conservation relation need not require a scale-separation assumption, but
it is helpful if the conservation relation is consistent with the cases where there is scale-
separation, in the sense that it then satisfies the group-velocity property 〈F〉 = 〈A〉cg,
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where 〈.〉 denotes a phase average. (This is a non-trivial requirement, since the flux F
appearing in the conservation relation is unique only up to addition of non-divergent
vectors G. The group velocity property can be helpful in resolving this non-uniqueness.)
The Eliassen-Palm wave activity and flux satisfy the group-velocity property.

(3) Eddy fluxes and wave propagation: The flux F associates correlations between different
wave or eddy quantities with directions of wave propagation. Important results are that
for the Eliassen-Palm flux the y-component F (y) = −u′v′ and the z-component F (z) =
−gf0v′ρ′/N2ρ0 implying that the eddy flux in the y-direction of the x-component of
momentum, u′v′, satisfies

u′v′

{
< 0 for northward (group) propagation

> 0 for southward (group) propagation

and that the eddy flux in the y direction of density, v′ρ′, satisfies

v′ρ′

{
< 0 for upward (group) propagation

> 0 for downward (group) propagation.

[Note that the results given above relating components of the Eliassen-Palm flux to eddy
fluxes and hence eddy fluxes to the direction of group propagation hold for Rossby waves
under the usual small-Ro assumption and also assuming that the y-gradient of potential
vorticity in the basic state is positive as is always the case in the real atmosphere or ocean
if this gradient is dominated by β. For other waves, e.g. Poincaré waves, internal gravity
waves or equatorial waves (see later) the results will be different.]

13.3 Mean-flow evolution equations and eddy forcing terms

Using the division into ‘mean’ and ‘eddy’ parts, we may apply the averaging operator to
the Boussinesq β-plane primitive equations to give

ut + (uv)y + (uw)z − v(f0 + βy) = 0 (13.3)

vt +
(
v2
)
y

+ (wv)z + (f0 + βy)u = −py
ρ0

(13.4)

−pz − ρg = 0 (13.5)

vy + wz = 0 (13.6)

ρt + (ρv)y + (ρw)z = 0 (13.7)

[Note that to get from (7.4a)-(7.4e) to the above it is necessary to use the non-divergence
of the velocity field (7.4e). The simplest approach is to re-write Du/Dt as ut + (u2)x +
(uv)y + (uw)z (and do the same thing for Dv/Dt and Dρ/Dt)].

The definition of the averaging operator, together with (13.6), implies that

(uv)y + (uw)z = (u v)y + (u v)z +
(
u′v′
)
y

+
(
u′w′

)
z

= v uy + w uz + (u′v′)y + (u′w′)z
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(Note once again that the primes are now used solely to denote disturbances from the
x-average, not the pressure and density perturbations associated with the Boussinesq
approximations. The primes are dropped from the latter quantities and ρ0 is still the
constant background density.)

Now applying small Rossby number scaling as in §7.5, dividing horizontal velocities into
geostrophic and ageostrophic parts and noting that vg is zero, it follows that

ut − f0va = −(u′v′)y (13.8)

f0u = −py
ρ0

(13.9)

−pz − ρg = 0 (13.10)

vay + waz = 0 (13.11)

ρt + wa
dρs
dz

= −(ρ′v′)y. (13.12)

The above are a coupled set of equations for the five Eulerian-mean quantities ut, ρt, p,
va and wa. (Note no subscript on u or v implies that this means the geostrophic part of
the flow.)

There are two ’eddy forcing’ terms, −(u′v′)y and −(ρ′v′)y, determined respectively by the
eddy momentum flux and the eddy density (or heat) flux. The response in each of ut and
ρt depends on some combination of these two terms. In some cases both forcing terms
may be non-zero but the response in each of ut and ρt may be zero.

13.4 The transformed Eulerian mean equations

We now make a transformation defined as follows:

w∗a = wa +

(
ρ′v′
)
y

dρs/dz
(13.13)

and then define v∗a such that
w∗az + v∗ay = 0, (13.14)

Hence

v∗a = va −
∂

∂z

[
ρ′v′

dρs/dz

]
. (13.15)

The x-momentum and density equations then become

ut − f0v∗a = −
(
u′v′
)
y

+

(
f0ρ′v′

dρs/dz

)
z

= ∇ · F (13.16)

ρt + w∗a
dρs
dz

= 0 (13.17)

These, together with (13.9), (13.10) and (13.14) are the so-called transformed Eulerian
mean equations.
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The transformation has combined the two separate eddy forcing terms into a single eddy
forcing term ∇.F in the x-momentum equation and has removed the eddy forcing terms
in the density equation.

The vector F has components (0,−u′v′, f0ρ′v′/(dρs/dz)) and is identical to the flux vector
that appears in the Eliassen-Palm wave activity relation. Here ∇.F is interpreted as the
force acting on the mean flow, due to the eddies.

Note that the transformation introduced above does not imply a different response in ut or
ρt. But the result of the transformation is that the eddy density flux ρ′v′ appears to play
quite a different role. In the standard Eulerian-mean formalism ρ′v′ appears as a forcing
term in the density equation. In the transformed-Eulerian-mean formalism ρ′v′ appears
as part of the force, in fact f0ρ′v′/(dρs/dz) appears to act as a vertical momentum flux.
Therefore in the transformed Eulerian-mean formalism, just as horizontally propagating
Rossby waves transfer momentum in the horizontal, vertically propagating Rossby waves
can be considered to transfer momentum in the vertical.

The Eulerian-mean circulation and the transformed Eulerian-mean circulation satisfy dif-
ferent boundary conditions – e.g. if (ρ′v′)y is non-zero at a lower boundary. See §14 for
more details.

13.5 Non-acceleration conditions

We have the divergence of the mean Eliassen-Palm flux ∇.F appearing as the complete
eddy forcing on the mean flow. We also have the Eliassen-Palm wave activity conservation
relation

∂A
∂t

+∇ · F = D (13.18)

(where again D representing non-conservative effects) and hence that

∇.F = D − ∂A
∂t
.

If follows that if ∂A/∂t = 0, i.e. the waves are steady, and D = 0, i.e. there are no
dissipative or other non-conservative effects acting, then ∇.F = and hence ut = 0, i.e.
there is no acceleration of the mean flow. Such a result is often called a non-acceleration
theorem.

The importance of non-acceleration theorems is that they focus attention on what is
needed for there to be a mean flow acceleration. [Many early calculations assumed steady
non-dissipative waves and then, after significant work, deduced that ut = 0.]

Note that what is referred to as wave dissipation here may correspond to a range of
physical effects. It might be that explicitly dissipative processes such as viscosity or
some other frictional effect, thermal (or density) diffusion or other thermal damping act
on their own. It might be that the waves break, i.e. they become strongly nonlinear,
generating turbulence and thereby enhancing explicitly dissipative processes that would
have otherwise have been weak.

Under quasi-geostrophic scaling it may be shown that

∇ · F = v′q′, (13.19)



P.H.Haynes Part III Fluid Dynamics of Climate Michaelmas 2020 26

the quantity on the right-hand side being the northward flux of quasi-geostrophic potential
vorticity. Indeed a different (but consistent approach) to quantifying the effect of the
eddies on the mean flow would be via the quasi-geostrophic PV equation, which would
take the form

qt +
∂

∂y
(v′q′) = 0. (13.20)

The mean acceleration ut and the rate of change of mean density ρt could then be deduced
by applying the appropriate inversion operator. However, one advantage of using the
transformed Eulerian-mean equations is that the response in the mean circulation (v∗a, w

∗
a),

which is often itself of interest, is visible.

13.6 Wave dissipation

To illustrate some of the consequences of the results presented previously, consider two-
dimensional flow on a β-plane (i.e. governed by the quasi-geostrophic potential vorticity
equation for a single-layer, with the deformation radius LD →∞), with waves propagating
in the y-direction. In this case the term absolute vorticity is often used for the sum of
relative vorticity plus βy which is conserved by fluid elements in the absence of dissipation.

First consider a case where there is no dissipation (so that D = 0). If a wave packet
propagates through some region, then as it arrives ∂A/∂t > 0 and hence ∇.F < 0, as it
leaves ∂A/∂t < 0 and hence ∇.F > 0. The force on the mean flow in this region is first
negative, but then positive, so that the time-integrated force is zero. The net effect of the
waves on the mean flow is zero.

For there to be a net effect in some region then the waves must arrive but not leave, e.g.
if the waves dissipate in that region. In that case as the wave arrives ∂A/∂t > 0 and
hence ∇.F < 0, as before. But then the wave dissipates, with ∂A/∂t = D < 0 and hence
∇.F = 0. Therefore a net negative force is possible.

Example: Rossby wave critical layer

A useful example of wave dissipation and the resulting effect on the mean flow is provided
by the case of the forced Rossby wave on a shear flow U(y). The equation describing
the waves is (10.1) and if it is assumed that ψ′ = Re(ψ̂(y)eik(x−ct)), i.e. the waves have
x-wavenumber k and phase speed c then the equation for p̂si(y) is

(U − c)(ψ̂yy − k2ψ̂) + (β − Uyy) = 0. (13.21)

The locations where U = c are called critical lines. The sign of ψ̂yy/ψ̂ changes from one
side of the critical line to the other, so that one side there is propagation and on the other
evanescence. Also the equation is singular at U = c implying there is no possible steady
linear non-dissipative balance. Therefore other processes must be included to describe the
dynamics which lead to wave dissipation. The small but finite region about the critical
line in which (13.21) is insufficient and other processes become important is called the
critical layer. In a configuration, depicted in Figure 1, where the waves are generated
some distance away from the critical line and propagate towards it then the dissipation
of the waves in the critical layer will imply a systematic force on the flow in that region.
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Figure 1: Schematic diagram of Rossby-wave propagation on a shear flow U(y) with a critical line. The
flow is positive (i.e. eastward) in y > 0 (upper portion of the diagram) and negative (i.e. westward) in
y < 0 (lower portion of the diagram). The waves are forced, with zero phase speed in x-direction, in y > 0
and propagate towards y = 0. In y < 0 the waves are evanescent (i.e. non-propagating and decaying as
y becomes more negative). The critical line is at y = 0, where U(y) = 0. In the neighbourhood of y = 0
the streamlines are closed and form a Kelvin’s cat’s eye pattern. The width of the closed streamline
region, which increases as the wave amplitude increases, defines the width of the nonlinear critical layer.
If dissipation were strong enough then dissipative effects would dominate over a relatively broad region
near y = 0 and the closed streamlines would essentially be irrelevant to the dynamics. (The critical layer
would then be linear and dissipative, rather than nonlinear.) There may be some reflected wave in y > 0,
but the amount of reflection can be determined only by considering the detailed dynamics of the critical
layer.
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Example: rearrangement of absolute vorticity

When nonlinearity is an important part of the processes taking place in the critical layer
then the effect may be understood in terms of rearrangement of the pre-existing absolute
vorticity profile. (This is case that might be described as ’wave breaking’.) In the model
problem considered above and depicted in Figure 1, the rearrangement occurs within
a nonlinear critical layer centred on y = 0 through advection around the ‘cat’s eye’
streamlines.

A very simple model might be that before the waves arrive the absolute vorticity is simply
equal to βy everywhere and after the waves have arrived the absolute vorticity is ’mixed’
within some region |y| < δ to be equal to zero (i.e. the average value in |y| < δ prior to
the arrival of the waves). Thus the change in relative vorticity ∆ζ = −βy in |y| < δ and,
assuming that the change in the x-component of velocity ∆u is zero outside of |y| < δ it
follows that ∆u = 1

2
β(y2 − δ2) in |y| < δ. The change in the x-component of momentum

within the region |y| < δ is therefore∫ δ

−δ
∆u dy = −2

3
βδ3.

Note that the rearrangement of absolute vorticity within a localised region does not locally
conserve momentum – an external force is required – but we expect that the force is
supplied by the transport of momentum by the waves.

[See Slide showing example of advective rearrangement of absolute vorticity and corre-
sponding change in mean flow. More details of the Rossby wave critical layer problem are
given in the ‘PHH critical layers article’ available on the course Moodle page. ]

13.7 Summary

Two important general principles about wave propagation and wave mean-flow interaction
are:

(i). There can be ‘long-range’ transfer of momentum. Propagating waves transfer mo-
mentum from the region where they are generated to the region where they dissipate
or break.

(ii). Dissipating or breaking waves change the potential vorticity distribution in the re-
gion where the dissipation or breaking occurs. This change is not usually consistent
with local conservation of momentum in this region, but it is consistent with the
long-range transfer of momentum by the waves into or out of the region.

In the above we have established that ut = −(u′v′)y (and we have a corresponding ex-
pressions for ut and ρt in the 3-D case), but the most difficult part of the wave mean-flow
interaction problem is to predict the dependence of u′v′ on u. Ideally we would have
−(u′v′)y = F [u] (where the right-hand side might well be a non-local function of u – i.e.
F at a particular value of y might depend on u at many values of y) and could then
solve a self-contained equation for the evolution of u. F would have to incorporate the
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effects of flow-dependent wave propagation and flow-dependent transport of potential vor-
ticity. Certainly in many cases down-gradient diffusion of momentum would be a very
poor model for F – for example if Rossby waves were being generated where the flow was
strong and positive and dissipated where the flow was weak then there would be a wave
activity flux from the strong-flow region to the weak-flow region and hence a momentum
flux from the weak-flow region to the strong-flow region – i.e. momentum transport up
the gradient of momentum.

The above arguments are particularly important in understanding the effect of baroclinic
instability on the mean flow. Recall from the discussion of the Eady problem in §10 that
ρ′v′ < 0 for the growing wave. It is straightforward to show that u′v′ = 0. We now
recognise this as implying Eliassen-Palm flux that is purely upward. In more complicated
basic states with eastward jet-like structure in the y-direction u′v′ 6= 0 and the pattern
of u′v′ implies wave-activity flux out of the jet and hence flux of (eastward) horizontal
momentum into the jet. This implies that momentum fluxes are up-gradient. This can be
explained on the basis that the growing instability corresponds to a source of wave activity
within the jet and hence wave propagation out of the jet. [See Slides showing example
of eddy fluxes in numerical simulation of a ‘baroclinic lifecycle’. Another slide shows
spontaneous formation of jets in ‘β-plane turbulence’ as a result of two-way interaction
between waves (and hence eddy fluxes) and mean flow.]

14 Mean meridional circulations

14.1 Introduction

We examine in more detail the mean response of the fluid to wave forcing, comparing
the Eulerian-mean viewpoint, expressed by the coupled equations (13.8-13.12), and the
transformed Eulerian-mean viewpoint expressed by the coupled equations (13.16, 13.17,
13.14, 13.9, 13.10).

Each of the velocity fields (va, wa) and (v∗a, w
∗
a) represents a circulation in the ’meridional’

(y, z) plane. Since each is non-divergent we may define stream functions χa and χ∗a such
that

(va, wa) = (χaz,−χay) and (v∗a, w
∗
a) = (χ∗az,−χ∗ay).

It may be shown from the Eulerian-mean and transformed Eulerian-mean equations that

f 2
0χazz +N2χayy = f0(u′v′)yz −

g

ρ0
(ρ′v′)yy = −f0F (y)

yz +
N2

f0
F (z)

yy (14.1)

and

f 2
0χ
∗
azz +N2χ∗ayy = f0(u′v′)yz − f 2

0

(
ρ′v′

dρs/dz

)
zz

= −f0(∇.F)z, (14.2)

where F = (0, F (y), F (z)) is the x-averaged EP flux.

These equations express the forcing of the mean meridional circulation by the eddy fluxes
of momentum and density (or, equivalently, by the EP flux divergence).
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14.2 Boundary conditions

The equations (14.1) and (14.2) require boundary conditions on χa or χ∗a. The side
boundary condition is usually straightforward, but the bottom boundary condition needs
to be derived with care, particularly when the bottom boundary is not flat. Consider for
example the case where there is topographic forcing at the lower boundary, so that the
full nonlinear boundary condition is

w =
Dh

Dt
at z = h,

where h(x, y, t) is the topographic height.

If the topography is small amplitude a Taylor series expansion may be used to express
the full boundary condition in terms of quantities at z = 0 and it follows that

w + hwz = ht + uhx + vhy + uzhhx + vzhhy +O(h3),

where all quantities on the right-hand side are evaluated at z = 0.

The continuity equation may be used to rewrite the last term on the left-hand side as

hwz = −hux − hvy
= −(hu)x − (hv)y + hxu+ hyv

and substituting into the previous equation it follows that

w = ht + uzhhx + vzhhy + (hu)x + (hv)y +O(h3).

Now assuming that the velocity in the absence of topography is purely in the x-direction,
so that v = O(h), and that h = 0 for all t, it follows on taking x-averages that , at leading
order, replacing w by wa as consistent with quasi-geostrophic scaling,

wa(y, 0, t) = (h′v′)y.

Thus the Eulerian mean velocity is not necessarily zero at z = 0. Note that the corre-
sponding boundary condition on the transformed Eulerian mean circulation is that

w∗a(y, 0, t) = (h′v′)y +
(ρ′v′)y
dρs/dz

.

If the waves are steady, and there is no density dissipation at the lower boundary, then
the lower boundary condition may be written in the form

uh′x
dρs
dz

= −uρ′x − ψ′xρy.

Multiplying by ψ′ and averaging, it follows after some manipulation that f0h′ψ′x = −F (z)

and hence that the lower boundary conditions on wa and w∗a may be written as

wa = −f−10 (F (z))y and w∗a = 0 on z = 0.

Note that under the above conditions it is w∗a and not wa that is zero at the lower boundary.
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14.3 Model problem

Consider a specific example in the small-Ro regime, a flow confined to a β-plane channel
with rigid walls at y = 0 and y = L, with waves forced by topographic perturbations of
the lower boundary, of the form h = Re(h0e

ikx sin πy/L). The basic state flow is assumed
to be in the x-direction, and the velocity a function of height u0(z).

The details of the vertical variation of the waves depend on u0(z) and on the buoyancy
frequency N . If the latter is only a function of z, as usual in quasi-geostrophic theory,
then ψ′ may be written in the form ψ′ = Re(ψ̂(z)eikx sin πy/L) and it immediately follows
that ψ′xψ

′
y = 0, so that the EP flux is purely vertical and

F (z) =
f 2
0

N2
ψ′xψ

′
z =

f 2
0

N2
Im(kψ̂(z)∗ψ̂′(z)) sin2(

πy

L
) = F0Θ(z) sin2(

πy

L
)

where the constant F0 and the function Θ(z) are defined by the last equality. Note that
to be consistent with the basic properties of Rossby waves, for upward propagation the
product F0Θ(z) should be positive.

Θ(z) is determined by solving the equation for ψ̂(z) given the z variation of the background
state and of any dissipative processes. To avoid this complication of solving this equation
we shall assume a simple form for Θ(z), that

Θ(z) =

{
1 z < Hd

0 z > Hd.

This is a simple representation of a situation where the waves are generated a long way
below z = Hd, propagate upwards and then dissipate in a very thin layer localised around
z = Hd.

Now the problem has reduced to solving (14.1) or (14.2) with a given forcing term on the
right-hand side and with specified boundary conditions. Note that the assumed form for
F (z) gives a forcing term in (14.1) that remains non-zero as z → −∞, but a forcing term
in (14.2) which tends to zero as z → ±∞. Therefore is most straightforward to solve
(14.2) and seek a solution χ∗ that tends to zero as z ±∞. Once χ∗ is known, χ can be
straightforwardly deduced.

The boundary conditions in y are that χaz = χ∗az = 0 on y = 0 and y = L and it is
therefore natural to expand the forcing and the solution in sine Fourier series, writing

F (z) = F0 Θ(z)
∑
n=1

cn sin(
nπy

L
)

χ∗a =
∞∑
n=1

χ∗n(z) sin(
nπy

L
)

where the cns are simply the coefficients in the Fourier series for sin2(πy
L

).

(14.2) then implies that each χ∗n(z) satisfies the ordinary differential equation

f 2
0χ
∗
n
′′(z)− N2π2n2

L2
χ∗n(z) = f0F0cnδ

′(z −Hd),
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where δ(.) is the Dirac delta function. The solution satisfying the boundary conditions
χ∗n → 0 as z → ±∞ is

χ∗n(z) =
1

2

F0cn
f0

exp(−Nπn
Lf0
|z −Hd|) sgn(z −Hd).

All flow variables can now be deduced from the above. Using the notation (.)n to denote
the nth coefficient in the Fourier series, it follows that

(v∗a)n = −1

2

F0cn
f0

Nπn

Lf0
exp(−Nπn

Lf0
|z −Hd|) +

F0cn
f0

δ(z −Hd),

and, noting that (∇.F) = −F0cnδ(z −Hd), that

(ut)n = −1

2
F0cn

Nπn

Lf0
exp(−Nπn

Lf0
|z −Hd|).

Similar expressions may be derived for the Fourier coefficients for w∗a and for ρt. In

particular note that χa = χ∗a + f−10 F (z).

Schematic pictures of the response in various quantities to the eddy forcing specified
above are shown in the Figure below. (A good qualitative approximation to the response
is obtained by considering only the n = 1 Fourier coefficients.)
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Figure 2: Schematic diagram showing response of the transformed Eulerian-mean circulation, the mean
acceleration and mean rate of change of density and the Eulerian-mean circulation, to an eddy forcing
represented by a shallow layer of negative ∇.F.
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Note the contrast between the responses in the transformed Eulerian-mean circulation and
the Eulerian-mean circulation and the implications for the balance in the x-momentum
and density equations.

Transformed Eulerian-mean view: In the wave propagation region below z = Hd the

vertical velocity w∗a is zero and there is vertical transport of momentum via F
(z)

. In the
wave dissipation region centred on z = Hd there is a localised wave force ∇.F which is
redistributed in the vertical by the meridional circulation (v∗a, w

∗
a).

Eulerian-mean view: In the wave propagation region below z = Hd the vertical velocity
w∗ is non-zero. The effect of w∗ on the mean density field is cancelled by the effect of
the eddy flux ρ′v′. There is vertical transport of planetary angular momentum (because
the fluid moving upwards on one side of the channel has a different value of planetary
angular momentum to that moving downwards on the other side of the channel). In the
wave dissipation region there is a latitudinal velocity v∗a which provides a Coriolis force
and hence leads to acceleration.

The transformed Eulerian-mean view is arguably simpler because it removes the cancel-
lation between the effect of vertical advection by the mean flow and the effect of eddy
density fluxes and also because it combines the eddy fluxes into a single forcing term.
Additionally it may be shown that the transformed Eulerian-mean flow is more relevant
to the transport of tracers (e.g. chemicals). Vertical motion in the Eulerian-mean circu-
lation does not imply corresponding vertical motion of tracers, e.g. the upward motion at
high latitudes in the ’Ferrel Cell’ does not imply that tracers are transported upwards.

The transformed Eulerian-mean formalism can be interpreted as an approximation to
taking averages not at fixed z, but over very thin layers between neighbouring density
surfaces. The fact that the thickness and the z-position of the layer are both variable
affects the calculated average. Momentum can be exchanged between neighbouring layers
by pressure forces acting on their boundaries. This is examined in more detail in an
Example Sheet question.

14.4 Dependence of response on vertical scale of ∇.F

In the model problem above ∇.F is non-zero only in a layer with very small vertical scale.
Suppose instead that this ’forcing layer’ has vertical scale D. Then in order-of-magnitude
terms (14.2) implies

max{f
2
0χ
∗
a

D2
,
N2χ∗a
L2
} ∼ f0F0

D
.

The shallow forcing regime is when ND/f0L � 1. Then f 2
0χ
∗
a/D

2 ∼ f0F0/D, hence
χ∗a ∼ F0D/f0 and v∗a ∼ F0/f0. The dominant balance in the momentum equation within
the ’forcing layer’ is therefore that most of ∇.F is balanced by the Coriolis force. The
mean meridional circulation redistributes in the vertical the effect of∇.F and the resulting
acceleration occurs over a region that is much deeper than the forcing layer. (This is the
situation shown the schematic Figure.)

The deep forcing regime is when ND/f0L � 1. Then N2χ∗a/L
2 ∼ f0F0/D, hence χ∗a ∼

(f0L/ND)2F0D/f0 and v∗a ∼ (f0L/ND)2F0/f0. The Coriolis force therefore plays only a
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minor role in the momentum equation within the ’forcing layer’ and at each level ∇.F is
balanced by the x-component of the mean acceleration.

These different regimes can be illustrated by replacing Θ(z) in the example described in
the previous section with a simple function that varies from 1 to 0 over some finite vertical
scale.

The mean meridional circulation may be regarded as arising in order to maintain, under
the effect of eddy forcing, the constraints of geostrophic and hydrostatic balance . Thus if a
force is applied to a rotating system, the response cannot appear purely as an acceleration,
but there must be an accompanying change in the density field. Broadly speaking, if a
force is deep, in coordinates scaled by Prandtl’s ratio, then most of the response will
appear as acceleration, but if it is shallow, then most of the response will appear as a
meridional circulation and hence a density change. Similarly, if an applied heating field
is shallow, then most of the response appears as a change in temperature or density, but
if it is deep, then most will appear as a meridional circulation, and hence as a change in
velocity.

[See Slides showing Eulerian-mean and transformed Eulerian-mean circulations in the
Southern Ocean and in the atmosphere. In each case the Eulerian-mean flow shows regions
where there is vertical motion, but where the effect of this on the density/temperature is
largely cancelled by the eddy fluxes.]
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15 Equatorial waves

We have previously considered the wave motion that is possible when rotation and strat-
ification co-exist and the shallow-water model provided a good context in which to do
that. What emerged from the analysis of the shallow-water model was that when f is
constant, f0 say, (and the background state is at rest) the system supports Poincaré waves
and, in the presence of boundaries, Kelvin waves. When f is allowed to be non-constant,
e.g. via the β-plane assumption f = f0 + βy then, if the Rossby number Ro � 1 the
system supports Rossby waves. More generally Rossby waves are allowed by a variation
in background state potential vorticity. This might be due to the β-effect or it might be
due, in the shallow-water system, to variation in the height of the lower boundary, which
gives rise to topographic Rossby waves.

In very simple terms, a typical frequency of Poincaré waves is f0 and a typical frequency
of Rossby waves is βLD where LD is the deformation radius (gH)1/2/f0. In the case
where the deformation radius LD is much less than the radius of the Earth a (which is
the regime assumed by quasi-geostrophic theory) then Rossby wave frequencies are much
smaller than Poincaré wave frequencies. Corresponding the Rossby wave phase speed
βL2

D is much less than the Kelvin wave phase speed f0LD. On this basis Poincaré and
Kelvin waves are sometimes described as ’fast waves’ and Rossby waves are sometimes
described as ’slow waves’.

This distinction between ’fast waves’ and ’slow waves’ becomes much less clear at low
latitudes. Note, for example, that βLD ∼ f0 when the distance from the equator is
comparable to LD. Therefore dynamics at low latitudes requires a different analysis from
much of what has been presented in earlier parts of the course.

15.1 Horizontal structure and horizontal propagation

The shallow-water equations are a convenient model on which to base a study of low-
latitude dynamics. The latitudinal variation of the Coriolis parameter turns out to be
important in the dynamics and the β−plane approximation is a convenient way to include
this. The equatorial β−plane approximation is that the Coriolis parameter f = βy (i.e.
f0 = 0).

Then the shallow-water equations linearised about a state of rest are:

ut − βyv = −gηx (15.1)

vt + βyu = −gηy (15.2)

ηt +H{ux + vy} = 0 (15.3)

where u and v are respectively horizontal velocity components in x and y directions,
η is free surface displacement, H is the layer depth in the resting state and g is the
gravitational acceleration.

The equations contain two dimensional parameters, β and c = (gH)1/2 and these can be
used to form time and length scales Teq = (cβ)−1/2 and Leq = (c/β)1/2. Leq is usually called
the equatorial deformation radius, i.e. it is the analogue of the extratropical LD = c/f0.
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Taking ∂/∂x (15.2 ) - ∂/∂y ( 15.1) - βy× (15.3 ) gives that

∂

∂t
(vx − uy −

βyη

H
) + βv =

∂

∂t
(ζ − βyη

H
) + βv = 0, (15.4)

where ζ = vx − uy is the relative vorticity, which expresses conservation of potential
vorticity (in the linearised approximation).

Now consider ∂/∂t (15.2) - βy× (15.1) giving

vtt + β2y2v = −gηyt + βygηx.

Now substitute for ηt from (15.3) to give

vtt + β2y2v = gH(uxy + vyy) + βygηx = c2(uy − vx +
βyη

H
)x + c2(vxx + vyy).

Note that the first term on the right hand side includes the potential vorticity associated
with the disturbance, therefore differentiate with respect to time and substitute from
(15.4) to give

vttt + β2y2vt − c2(vxx + vyy)t − βc2vx = 0. (15.5)

This equation is similar in structure to equations obtained for the extratropics. For
example, if βy is replaced by f0 and then the remaining β is replaced by zero then the
resulting equation is simply that for Poincaré waves plus a zero-frequency wave (the latter
corresponding to the fact that the potential vorticity is uniform).

The procedure now is to seek plane wave solutions of the form v = Re(v̂(y)ei(kx−ωt)) with
k and ω respectively the constant x-wavenumber and frequency, where the function v̂(y)
is bounded as |y| → ±∞. Substituting for v and then dividing by ω gives

(
ω2

c2
− β2y2

c2
− k2 − βk

ω
)v̂ + v̂yy = 0. (15.6)

This second-order ordinary differential equation, plus the boundary conditions at |y| →
±∞, define an eigenvalue problem which is the same, for example, as that for the energy
levels of the harmonic oscillator potential in quantum mechanics. The eigenvalue condition
is that

ω2 − c2k2 − βkc2

ω
= (2n+ 1)βc for n = 0, 1, 2, . . . (15.7)

and the corresponding eigenfunctions are

v̂n(y) = Hn(y(β/c)1/2) exp(−y2β/2c) (15.8)

where the Hn(.) are the Hermite polynomials, with H0(s) = 1, H1(s) = 2s, H2(s) =
4s2 − 2, etc.

In order to consider further the dispersion relation defined by (15.7) it is helpful to non-
dimensionalise, writing ω = (βc)1/2ω̂ and k = (β/c)1/2k̂. Then

βcω̂2 − βck̂2 − βc2(β
c

)1/2k̂
1

(βc)1/2
1

ω̂
= (2n+ 1)βc
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and hence

ω̂2 − k̂2 − k̂

ω̂
= (2n+ 1). (15.9)

This is a quadratic equation for k̂, given ω̂, with roots

k̂ = − 1

2ω̂
±
√
ω̂2 +

1

4ω̂2
− (2n+ 1).

At this point it is useful that for any pair (k̂, ω̂) there is a corresponding pair (−k̂,−ω̂).
These two pairs do not represent different wave modes. They are required in order to
generate a real solution of the equations. Therefore it is necessary to consider only half
of the (k̂, ω̂) plane and the convention is to consider only ω̂ > 0, but to allow k̂ of either
sign.

Returning to the solution of the quadratic equations, for n = 0 this gives k̂ = ω̂ − 1/ω̂
or k̂ = −ω̂. The second root turns out to be non-physical. (Consider the corresponding
equations for u, v and η and deduce that there is exponential growth away from the
equator. Therefore for n = 0 the only possibility is

k̂ = ω̂ − 1

ω̂
.

Note that it follows that ω̂ > 1 corresponds to k̂ > 0 and 0 < ω̂ < 1 corresponds to k̂ < 0.

For n = 1, 2, . . . there are real roots for k̂ only if ω̂4 − (2n + 1)ω̂2 + 1/4ω̂2 > 0, implying
that either ω̂2 < n + 1

2
−
√
n(n+ 1) or that ω̂2 >

√
n(n+ 1) + n + 1

2
. This implies a

’frequency gap’ which increases in size as n increases.

The above covers all solutions of the equations with v 6= 0. It turns out that there are
interesting solutions with v = 0 and of course these have been missed by the approach
above, which eliminates u and η to leave a single equation (15.5) for v. To consider this
possibility it is simplest to return to the original equations (15.1), (15.2) and (15.3) and
investigate the consequences of setting v = 0. The equations are

ut = −gηx (15.10)

βyu = −gηy (15.11)

ηt +Hux = 0. (15.12)

(15.10) and (15.12) together require that ηtt− c2ηxx = 0, suggesting solutions of the form
[u, η] = Re([û(y), η̂(y)]ei(kx−ωt)) where ω2 = c2k2 and û = (gk/ω)η̂. Then substituting into
(15.11), which expresses geostrophic balance in the y direction, implies (βyk/ω)η̂ = −η̂y.
This implies exponential decrease in |y| if k/ω > 0 and exponential increase in |y| if
k/ω < 0. The former is allowed and the latter is not, therefore ω2 = c2k2 reduces to
ω = ck. The functions û and η̂ both have a Gaussian form in y, with e.g.

η̂(y) ∝ exp(−βy2/2c).

This wave is the equatorial Kelvin wave analogous to the boundary Kelvin wave on an f -
plane. The propagation is only in the positive x-direction, i.e. only eastward. There is no
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latitudinal velocity and the balance in the latitudinal momentum equation is geostrophic,
between the Coriolis force associated with u and the pressure gradient associated with ηy.

Note that the relation ω = kc, or equivalently ω̂ = k̂ corresponds to a root of (15.9) when
n = −1. Therefore this wave is sometimes described as the n = −1 mode.

Summary

This completes the dispersion relation for equatorial wave modes.

For n = 1, 2, . . . , there are for each ω̂ >
√
n(n+ 1) + n + 1

2
two values of k̂. These are

high frequency waves, essentially inertio-gravity/Poincaré waves. There are also for each
ω̂ < n+ 1

2
−
√
n(n+ 1) two values of k̂. There are low frequency equatorial Rossby waves.

For n = 0 the dispersion relation is ω̂ − 1/ω̂ = k̂, with ω̂ ∼ k̂ as k̂ → ∞ (’gravity-like’)
and ω̂ ∼ 1/k̂ as k̂ → −∞ (’Rossby-like’). The n = 0 mode is therefore often called a
(mixed) Rossby-gravity wave. (It is also sometimes called a Yanai wave.)

For n = −1 the dispersion relation is ω̂ = k̂. This is an equatorial Kelvin wave.

[See Slides showing (ω, k) dispersion diagram for equatorial waves.]

15.2 Horizontal propagation in the real atmosphere or ocean

The above detailed analysis has been for a single-layer fluid. As was previously noted in §8
for Rossby waves, the theory may be applied to continuously stratified fluid by assuming
a vertical structure of the disturbances such that

u(x, y, z, t) = ũ(x, y, t)P (z), v(x, y, z, t) = ṽ(x, y, t)P (z), p(x, y, z, t) = (ρ0/g)η̃(x, y, t)P (z)

where
d

dz
(

1

N2(z)

dP

dz
) = − 1

gh
P = − 1

c2
P. (15.13)

The constant gh = c2 is an eigenvalue, possible values of which are determined by the
equation together with the boundary conditions in the vertical. The horizontal structure
and propagation characteristics of the disturbances are then the same as those for a
shallow-water system with layer depth h. (The constant h is therefore often called the
’equivalent depth’.)

In some configurations, e.g. ’ocean-like’ or ’troposphere-like’ there is a discrete set of
eigenvalues, with each corresponding to a different speed c and to a different vertical
structure, e.g. for the ocean the 1st baroclinic modes, the 2nd baroclinic mode, etc. The
same ideas would be relevant to the atmosphere if the tropopause (the boundary between
troposphere and stratosphere) were viewed as a rigid lid on the basis that the buoyancy
frequency is much larger in the latter than the former. (A similar argument is used
to justify the Eady model presented in §8.4 as relevant to the extratropical atmosphere.)
This might be a good approach for describing tropospheric weather systems, but of course
if vertical propagation of waves from troposphere to stratosphere were of interest then a
different approach would required.

For the equatorial ocean the 1st baroclinic mode has c ∼ 2 ms−1, equivalent to h ∼ 0.4
m.
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The corresponding equatorial deformation scale is

Leq = (
c

β
)1/2 = (

2

2.3× 10−11
)1/2m ∼ 3× 105m ∼ 3 degrees of latitude

The time scale Teq = Leq/c ∼ 1.5 days.

For the tropical troposphere it appears that c ∼ 25 ms−1 is a reasonable fit to the obser-
vations implying

Leq = (
c

β
)1/2 = (

25

2.3× 10−11
)1/2m ∼ 106m ∼ 10 degrees of latitude

The time scale Teq = Leq/c ∼ 0.4 days.

Note that an estimate of c based on dry dynamics and the depth of the tropical troposphere
would be about 50 ms−1, i.e. substantially greater than the value suggested by tropical
observations. This is potentially explained by the important role of moisture in tropical
dynamics, e.g. the fact that upward motion tends to lead to condensation and hence to
internal heating, which can be argued to reduce the effective static stability from the ’dry’
value. There is ongoing research into the subject of convectively coupled equatorial waves.

[See Slides showing examples of oceanic equatorial waves and space-time spectra of
tropical cloudiness, showing good correspondence with dispersion diagram if gravity-
wave speed is suitably chosen. A further slide shows complicated, but structured, time-
longitude variation of tropical cloudiness.]

15.3 The forced problem

We now consider the response of the equatorial atmosphere or ocean to a specified forcing.
The problem to be considered was motivated by the observed longitudinal structure of the
tropical atmosphere and considers the response of the atmosphere to a specified heating.
But the methods could be applied more generally.

Following the previous section, we start with the shallow-water equations on a equatorial
β-plane as a model, expecting that the layer thickness H can be chosen appropriately for
the tropical atmosphere. Heating is represented as a specified source term g−1Q(x, y, t)
on the right-hand side of the mass continuity equation. (The g−1 factor is simply included
for algebraic convenience.) For simplicity the long-wave approximation is made, assuming
that the length-scale of x variation is much larger than the equatorial deformation radius
Leq. This implies that the vt term may be neglected in the y-momentum equation, i.e.
that there is geostrophic balance in the y direction. The equations are therefore:

ut − βyv = −gηx (15.14)

βyu = −gηy (15.15)

ηt +H{ux + vy} = g−1Q(x, y, t) (15.16)
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The unforced form of these equations allow the waves described by the full equatorial
dispersion relation, confined to small values of k̂ and ω̂, i.e. Rossby waves and Kelvin
waves (but not the mixed Rossby-gravity waves or the inertio-gravity waves).

Now introduce the new variables q and r with q = gc−1η+u and r = gc−1η−u. In terms
of the new variables the equations (15.14), (15.15) and (15.16) transform to:

qt + cqx + cvy − βyv =
1

c
Q (15.17)

rt − crx + cvy + βyv =
1

c
Q (15.18)

cqy + βyq = βyr − cry (15.19)

Now write the three variables q, r and v and the forcing Q as sums of the latitudinal
eigenfunctions (15.8), i.e.

[v(x, y, t), q(x, y, t), r(x, y, t), Q(x, y, t)] =
∞∑
n=0

[vn(x, t), qn(x, t), rn(x, t), Qn(x, t)]D̃n(Y )

(15.20)
where the D̃n(Y ) = Hn(Y ) exp(−1

2
Y 2), with Y = y(β/c)1/2, are the eigenfunctions iden-

tified in §13.1, with the properties D̃′n + Y D̃n = 2nD̃n−1 and D̃′n − Y D̃n = −D̃n+1.

Then substituting the series (15.20) into the equations (15.17), (15.18) and (15.19) gives

∂q0
∂t

+ c
∂q0
∂x

=
1

c
Q0 (15.21)

q1 = 0 (15.22)

and, for n = 1, 2, . . .

∂qn+1

∂t
+ c

∂qn+1

∂x
− (cβ)1/2vn =

1

c
Qn+1, (15.23)

∂rn−1
∂t
− c∂rn−1

∂x
+ 2n(cβ)1/2vn =

1

c
Qn−1, (15.24)

2(n+ 1)qn+1 = rn−1. (15.25)

The variables vn and rn−1 may be eliminated from the last three equations to give:

(2n+ 1)
∂qn+1

∂t
− c∂qn+1

∂x
=

1

c
(nQn+1 + 1

2
Qn−1). (15.26)

From the above structure it can be seen that the variable q0 is associated with the Kelvin
wave ((15.21) allows a wave travelling in the positive x-direction with speed c) and the
variables qn+1, vn and rn−1, for n = 1, 2, . . . are associated with the n-th Rossby wave
((15.26) allows a wave travelling in the negative x-direction with speed c/(2n+ 1)).

The response to a forcing Q(x, y) that is non-zero in a localised region and switched on
at t = 0 wiull therefore consist (if Q0 6= 0) of a Kelvin wave propagating eastward away
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from the forcing region and a set of Rossby waves propagating westward away from the
forcing region. As currently defined the solution will not tend to a steady state. A simple
way to allow a steady state solution is to add a identical linear damping to each of the
equations (15.14) and (15.15), i.e. to replace the ∂/∂t by ∂/∂t+α. The qn variables then
satisfy the equations:

αq0 + c
dq0
dx

=
1

c
Q0 (15.27)

(2n+ 1)αqn+1 − c
dqn+1

dx
=

1

c
(nQn+1 + 1

2
Qn−1), (n = 1, 2, . . . ). (15.28)

All other information about the solution can be obtained from the qn, the rn from (15.25)
and the vn from the steady form of (15.23).

The addition of damping means that the wave response to a localised forcing Q(x, y)
decays with distance away from the forcing. The solution to (15.27) represents a Kelvin
wave which appears only to the east of the forcing region and decays in amplitude with
distance away from it, with decay scale c/α. Note that this part of the response is excited
only by Q0, i.e. by the part of Q(x, y) that projects onto D̃0. The solution to (15.28)
represents a set of Rossby waves which appear only to the west of the forcing region
and, again, decay with distance away from it. The larger the value of n the smaller the
propagation speed and therefore the more rapid the decay. The lowest value of n, n = 1,
gives a propagation speed of 1

3
c, therefore the fastest Rossby wave decays to the west on a

scale 1
3
c/α, i.e. one third of the decay scale of the Kelvin wave to the west. Note that the

nth Rossby wave (corresponding to the variables qn+1, rn−1 and vn) is excited by Qn−1
and Qn+1. A forcing for which Q0 is the only component therefore excites both a Kelvin
wave and the n = 1 Rossby wave.

The model presented above, the Matsuno-Gill model, is now considered a classical model
for the ’1st baroclinic mode’ of the tropical troposphere, i.e. a circulation driven by a heat-
ing maximising in mid-troposphere in which there is ascent or descent in mid-troposphere,
and the upper-level horizontal flow is in the opposite direction to the low-level horizontal
flow. If the horizontal velocity in the shallow-water system is interpreted as representing
the low-level horizontal flow, then the mid-tropospheric vertical velocity corresponds to
the convergence of the low-level horizontal flow, i.e. in the steady-state system described
above, to −ux − vy = αη +Q.

The solution for a localised positive forcing with Q0 component only shows eastward low-
level flow to the west of the forcing region (associated with the Rossby-wave component)
and a westward low-level flow to east (associated with the Kelvin-wave component). The
Rossby-wave low level flow has cyclonic flow on either side of the equator (anti-clockwise
to the north and clockwise to the south). Correspondingly at upper levels there are
anticyclones on either side of the equator.

For the tropical troposphere the heating is primarily latent heating associated with precip-
itation. There is relatively large precipitation over the Indonesian and West Pacific regions
and the above model therefore provides a simple representation of the latitude-longitude
structure of the flow in this region.

[See Slides showing simple solutions of the Matsuno-Gill model and observed structure
of tropical tropospheric circulation.]
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Whilst the Matsuno-Gill model is important and often-cited, some aspects of it remain
mysterious. For example, the assumption of constant damping rate α, acting on horizontal
velocities and on η, which may be regarded as representing temperature, is difficulty to
justify physically. Damping of temperature is a simple representation of radiative effects,
damping of horizontal velocities is a simple representation of frictional effects, which are
plausible near the surface, but less plausible at upper levels.

15.4 Vertical propagation

To consider vertical propagation, assume that the vertical structure is oscillatory, and
for convenience that the buoyancy frequency N is independent of z. Then the vertical
structure is defined by a constant vertical wavenumber m. The vertical structure equation
(15.13) implies that the horizontal structure implied by the single-layer models will apply
provided that gh = c2 = N2/m2. The dispersion relation (15.7) becomes

ω2 − N2k2

m2
− βkN2

ωm2
= (2n+ 1)

βN

|m| for n = −1, 0, 1, 2, . . . (15.29)

where the previous analysis of the Kelvin wave has been exploited to allow the n = −1
case, and, as was noted in the previous analysis, only one of the roots of this equation
(regarded as a quadratic equation for k) will be allowed in each of the n = −1 and n = 0
cases. Note that the |m| is required on the right-hand because it was assumed in deriving
(15.7) that c was positive.

It is helpful in analysing (15.29) to define the non-dimensional x- and z- wavenumbers
k̂ and m̂ by k̂ = kω/β and m̂ = mω2/βN . (Note that this non-dimensionalisation is
different to that used in §13.1.) (15.29) then becomes

|m̂|2 − (2n+ 1)|m̂| − k̂2 − k̂ = 0, n = 1, 2, . . . (15.30a)

|m̂| − k̂ − 1 = 0, n = 0 (15.30b)

|m̂| − k̂ = 0 n = −1. (15.30c)

These equations define curves in k̂-m̂ space, on which ω may be determined in terms of
k and m. The curves are symmetric about m̂ = 0, i.e. if m̂ is a solution for given k̂ then
−m̂ is also a solution. (15.30a) has the solutions

|m̂| = M±(k̂) = (n+ 1
2
)± [(k̂ + 1

2
)2 + n(n+ 1)]1/2. (15.31)

According to (15.30ab,c) the M− solution is considered only for n ≥ 1. The requirement
that |m̂| > 0 implies that for n ≥ 1 the minus sign is relevant only when −1 < k̂ < 0.

The group velocity of the different waves can be deduced from the relation between m̂
and k̂. For simplicity assume that m > 0 (and therefore that m̂ > 0), then (15.31) implies
that

mω2

βN
= M±(

kω

β
) (15.32)
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Now take partial derivatives with respect to k and with respect to m.

2
|m|ω
βN

∂ω

∂k
= M ′

±(
kω

β
)[
ω

β
+
k

β

∂ω

∂k
] (15.33)

ω2

βN
+

2mω

βN

∂ω

∂m
= M ′

±(
kω

β
)
k

β

∂ω

∂m
. (15.34)

Now rearrange (and substitute for m) to give the components of the group velocity as

∂ω

∂k
=
ω2

β

M ′
±(k̂)

2M±(k̂)− k̂M ′
±(k̂)

(15.35)

∂ω

∂m
= − ω3

βN

1

2M(k̂)− k̂M ′
±(k̂)

. (15.36)

Now consider the denominator 2m̂ − k̂M ′
±(k̂) in the above expressions (and recall that

m̂ > 0 is being assumed). Is the denominator ever less than or equal to zero?

First consider M+(k̂). From (15.31) M+(k̂) ≥ |k̂+ 1
2
|+ 1

2
. Then |k̂+ 1

2
|+ 1

2
= |k̂+ 1

2
|+|− 1

2
| ≥

|k̂| by the triangle inequality. Also |M ′
+(k̂)| = |k̂ + 1

2
|/[(k̂ + 1

2
)2 + n(n+ 1)]1/2 ≤ 1. Hence

M+(k̂)− k̂M ′
+(k̂) ≥M+(k̂)− |k̂| ≥ 0 and therefore 2M+(k̂)− k̂M ′

+(k̂) ≥M+(k̂).

Now consider M−(k̂), noting that this is relevant only for −1 < k̂ < 0. Consider

d

dk̂
(M−(k̂)− k̂M ′

−(k̂)) = k̂M ′′
−(k̂) = − n(n+ 1)

[(k̂ + 1
2
)2 + n(n+ 1)]3/2

< 0.

Hence, for k̂ < 0 M−(k̂)− k̂M ′
−(k̂) is a decreasing function of k̂ and M−(k̂)− k̂M ′

−(k̂) >

M−(0) = 0, implying again that 2M+(k̂)− k̂M ′
+(k̂) ≥M+(k̂).

Therefore in m̂ >, ∂ω/∂k has the same sign as M ′
±(k) and ∂ω/∂m has the opposite sign

to m̂, i.e. it is negative. It is straightforward to show that for m̂ < 0 the sign of ∂ω/∂k
stays the same and the sign of ∂ω/∂m reverses.

In summary, the function m̂ = M±(k̂) specifies the relation between ω, k and m and
hence the dispersion relation. Each branch of the function M±(.), shown in the figure
taken from Vallis (2017) as curves in the k̂-m̂ plane, corresponds to a different type
of equatorial wave. The shape of the curves M(k̂) implies the direction of the group
velocity, which is indicated by the direction of the arrows in the figure. An important
aspect of the behaviour is that the vertical wavenumber m has the opposite sign to the
vertical component of the group velocity, i.e. the group velocity is upward for m < 0 and
downward for m > 0.

[See Slides showing (k̂, m̂) dispersion diagram for equatorial waves (Fig. 17.9 from Vallis
2017). Note that in Vallis (2017) the discussion of the (k̂, m̂) diagram asserts that the
curves in the diagram are curves of constant frequency and from that makes deductions
about the group velocity. I suggest the following clarification. (As above, consider m > 0
and deduce results for m < 0 by symmetry.)

Consider the variation of ω with k and m. Each branch of the dispersion relation (for
each n and for given k and m there are either one, two or three values of ω) corresponds
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to a set of contours in the (k,m) plane. The contours in the (k,m) plane can be generated
by choosing a particular curve in the (k̂, m̂) plane and then redrawing it many times in
the (k,m) plane, choosing a different value of ω, (and hence different values for k and m)
in each case. The group velocity is perpendicular to these contours and in the direction
of increasing ω. Given that each contour is a re-scaled version of one of the curves in
the (k̂, m̂) plane, and taking account of the rescaling required to go from the (k,m) to
the (k̂, m̂) plane, the rescaled group velocity in the (k̂, m̂) plane is indeed perpendicular
to the curves. However the sense of the arrows is determined by the direction in which
ω increases. It turns out that, whichever choice of curve in the (k̂, m̂) plane is used to
generate the contours, the value of ω always decreases as m increases. This corresponds to
the condition 2m̂− k̂M ′

±(k̂) > 0 derived above. However note that this condition depends

on the details of the curves in the (k̂, m̂) plane, i.e. on the properties of the function
M±(.). The condition does not hold for all functions.]

Example: Seasonal variation in the equatorial ocean

There is seasonal variation of winds at the surface, providing forcing at the annual fre-
quency. Consider the possible n = 2 Rossby wave response. It is convenient to return to
the dimensional form of the dispersion relation (15.29). Consider the relative sizes of the
c2k2 and βkc2/ω terms on the left-hand side. The ratio of the first to the second is kω/β.
For the annual frequency ω/β ∼ (6400 / 700) km ∼ 10 km and if the spatial scale is much
larger than this first term can be neglected. The ω2 term can be neglected on the basis
that the frequency is very small. (Actually neglecting this term requires an assumption
that m � Nk/ω, i.e. that the vertical scale is not too small.) The dispersion relation,
for n = 2 ,then reduces to

ω = − kN

3|m| > 0

implying that ∂ω/∂k = −1
3
N/|m| = ω/k and ∂ω/∂m = 1

3
Nk sgn(m)/|m|2 = −ω/m =

ω2 sgn(m)/Nk.

Consistent with the general considerations above, the vertical group velocity has the
opposite sign to m, therefore for the oceanic response to surface forcing, take m > 0 and
for consistency with the dispersion relation, take k < 0. ∂ω/∂k is negative, implying
group propagation to the west. Each of the physical fields is proportional to the factor
exp(i(kx+mz−ωt). Therefore the phase speed is negative in the x direction and positive
in the z direction. In an (x, z) plot phase lines therefore propagate westward and upward.
Note also that for given frequency, the vertical component of the group speed increases as
N reduces, i.e. it will increase with depth. These features are all visible in the observed
structure of the seasonal cycle in the equatorial Pacific.

[See bf Slides showing latitudinal and vertical propagation of annual variation communi-
cated by equatorial Rossby waves.]

Example: Atmospheric Kelvin waves

The dimensional form of the dispersion relation for Kelvin waves is ω = Nk/|m|, with
k > 0. The vertical group velocity is −Nksgn(m)/m2 = −ω/m, so, as predicted by the
general theory above, m < 0 for upward group propagation. Noting that each physical
field is proportional to exp(i(kx + mz − ωt)) it follows that waves with upward group
velocity have downward phase propagation. This is clearly visible in time-height records
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of, e.g. temperature perturbations in the lower stratosphere associated with Kelvin waves
that are forced by convection in the troposphere.

[See Slides showing time-height structure of Kelvin waves in the lower stratosphere. In
this picture the vertical wavelength is about 4km and the period about 4 days, implying
a vertical group velocity of about 1 km/day.]

Just as horizontally propagating Rossby waves can transport momentum in the horizontal,
vertically propagating equatorial Kelvin waves can transport momentum in the vertical
through the momentum flux u′w′. (This term was neglected in the quasi-geostrophic
approximation applied in the extratropics, but it is of leading-order importance for equa-
torial Kelvin waves.)

Recall that there is a solution of the three-dimensional equations with u(x, y, z, t) =
ũ(x, y, t)P (z) and p(x, y, z, t) = ρ0gη̃(x, y, t)P (z) where P (z) is a solution of the ver-
tical structure equation (15.13) and ũ and η̃ are solutions of the single-layer shallow
water equations. Therefore ρ(x, y, z, t) = −ρ0P ′(z)η̃ (from hydrostatic balance) and
w(x, y, z, t) = −(g/N2)P ′(z)η̃t (from the density equation). Now take P (z) = eimz repre-
senting a wave with vertical wavenumber m, implying c = N/|m|. Combine this with the
(x, y, t) structure of the single-layer Kelvin wave solution to give

u(x, y, z, t) = Re(ûei(kx+imz−kct)D̃0(Y ))

w(x, y, z, t) = (g/N2)Re(mωη̂ei(kx+imz−kct)D̃0(Y )) = Re(−(k/m)ûei(kx−kct))D0(Y )).

This implies that

u′w′ = −1
2

k

m
|û|2 exp(−βy2/c).

Equatorial Kelvin waves therefore transport eastward momentum in the direction of their
group propagation, i.e. upward propagating waves transport eastward momentum up-
wards. This is in contrast to Rossby waves, which transport westward momentum in the
direction of their group propagation. Correspondingly, where Kelvin waves dissipate there
is an eastward force exerted on the mean flow.

This is part of the explanation of the quasi-biennial oscillation – a reversal of the winds
in the tropical stratosphere once every 12 months or so. Some waves, e.g. Kelvin waves,
drive the flow to the east, others drive the flow to the west. The fact that whether or
not these different waves can propagate in the vertical depends on the winds leads to a
two-way feedback between waves and mean flow and hence to an oscillation (the period
of which is determined by the amplitudes of the waves).


