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Books

There are many excellent texts. The following are those listed in the Schedules.

• P.A. Glendinning Stability, Instability and Chaos [CUP].
A very good text written in clear language.

• D.K. Arrowsmith & C.M. Place Introduction to Dynamical Systems [CUP].
Also very good and clear, covers a lot of ground.

• P.G. Drazin Nonlinear Systems [CUP].
Covers a great deal of ground in some detail. Good on the maps part of the course.
Could be the book to go to when others fail to satisfy.
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• J. Guckenheimer & P. Holmes Nonlinear Oscillations, Dynamical Systems and Bi-
furcations of Vector Fields [Springer]
Comprehensive treatment of most of the course material and beyond. The style is
mathematically more sophisticated than of the lectures.

• D.W. Jordan & P. Smith Nonlinear Ordinary Differential Equations [OUP].
A bit long in the tooth and not very rigorous but has some very useful material
especially on perturbation theory.

Other books:

• S.H.Strogatz Nonlinear Dynamics and Chaos [Perseus Books, Cambridge, MA.]
An excellent informal treatment, emphasising applications. Inspirational!

• R.Grimshaw An Introduction to Nonlinear Ordinary Differential Equations [CRC
Press].
Very good on stability of periodic solutions. Quite technical in parts.

Motivation

A ’dynamical system’ is a system, whose configuration is described by a state space, with
a mathematically specified rule for evolution in time. Time may be continuous, in which
the rule for evolution might typically be a differential equation, or discrete, in which case
the rule takes the form of a map from the state space to itself. The study of dynamical
systems originates in Newtonian dynamics, e.g. planetary systems, but is relevant to any
system in physics, biology, economics, etc. where the notion of time evolution is relevant.

In this course we shall be concerned with nonlinear dynamical systems, i.e. the rule for time
evolution takes the form of a nonlinear equation. Of course the evolution of some simple
systems such as a pendulum following simple harmonic motion can be expressed in terms
of linear equations: but to know how the period of the pendulum changes with amplitude
the linear equations are not adequate – we must solve a nonlinear equation. Solving a
linear system usually requires a simple set of mathematical tasks, such as determining
eigenvalues. Nonlinear systems have an amazingly rich structure, and most importantly
they do not in general have analytical solutions, or at least none expressible in terms of
elementary (or even non-elementary) functions. Thus in general we rely on a geometric
approach, which allows the determination of important characteristics of the solution
without the need for explicit solution. (The geometry here is the geometry of solutions
in the state space.) Much of the course will be taken up with such ideas.

We also study the stability of various simple solutions. A simple special solution (e.g. a
steady or periodic state) is not of much use if small perturbations destroy it (e.g. a pencil
balanced exactly on its point). So we need to know what happens to solutions that start
near such a special solution. This involves linearizing, which allows the classification of
fixed and periodic points (the latter corresponding to periodic oscillations). We shall also
develop perturbation methods, which allow us to find good approximations to solutions
that are close to well-understood simple solutions.
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Many nonlinear systems depend on one or more parameters. Examples include the simple
equation ẋ = µx − x3, where the parameter µ can take positive or negative values. If
µ > 0 there are three stationary points, while if µ < 0 there is only one. The point µ = 0
is called a bifurcation point, and we shall see that we can classify bifurcations and develop
a general method for determining the solutions near such points.

Many of the systems we shall consider are correspond to second order differential equa-
tions, and we shall see that these have relatively simple long-time solutions (fixed and
periodic points, essentially). In the last part of the course we shall look at some aspects of
third order (and time-dependent second order) systems, which can exhibit “chaos”. These
systems are usually treated by the study of maps (of the line or the plane) which can be
related to the dynamics of the differential system. Maps can be treated in a rigorous
manner and there are some remarkable theorems (such as Sharkovsky’s on the order of
appearance of periodic orbits in one-humped maps of the interval) that can be proved.

A simple example of a continuous-time dynamical system is the Lotka-Volterra system
describing two competing populations (e.g. r=rabbits, s=sheep):

ṙ = r(a− br − cs), ṡ = s(d− er − fs)

where a, b, c, d, e, f are (positive in this example) constants. This is a second order system
which is autonomous (time does not appear explicitly). The system lives in the state
space or phase space (r, s) ∈ [0,∞) × [0,∞). We regard r, s as continuous functions of
time and the dynamical system is said to describe a flow in the state space, which takes
a point describing the configuration at one time to that describing it at a later time. The
solutions follow curves in the phase space called trajectories.

Typical analysis looks at fixed points. These are at (r, s) = (0, 0), (r, s) = (0, d/f),
(r, s) = (a/b, 0) and a solution with r, s 6= 0 as long as bf 6= ce. Assuming, as can
be proved, that at long times the solution tends to one of these, we can look at local
approximations near the fixed points. Near (0, d/f), write u = s−d/f , then approximately
ṙ = r(a − cd/f), u̇ = −du − der/f , so the solution tends to this point (r = u = 0) if
a/c < d/f (so this fixed point is stable), but not otherwise. The concept of stability is
more involved than naive ideas would suggest and so we will be considering the nature
of stability. We use bifurcation theory to study the change in stability as parameters are
varied. As the stability of fixed points changes the nature of the phase portraits, i.e.
patterns of solution curves or trajectories, changes. For the Lotka-Volterra system there
are three distinct phase portraits possible, depending on the parameters. (Showing this
is left as an exercise.)

Other Lotka-Volterra models have different properties, for example the struggle between
sheep s and wolves w:

ẇ = w(−a+ bs), ṡ = s(c− dw)
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This system turns out to have periodic orbits.

In 2 dimensions periodic orbits are common for topological reasons, so it will be useful to
investigate their stability. Consider the system

ẋ = −y + µx(1− x2 − y2), ẏ = x+ µy(1− x2 − y2)

In polar coordinates r, θ, x = r cos θ, y = r sin θ we have

ṙ = µ(r − r3), θ̇ = 1

The case µ = 0 is special since there are infinitely many periodic orbits. This is nonhy-
perbolic or not structurally stable. Any small change to the value of µ makes a qualitative
change in the phase portrait.

The stability of periodic orbits can be studied in terms of maps. If a solution curve (e.g.
in a 3-D phase space) crosses a plane at a point xn and then crosses again at xn+1 this
defines a map of the plane into itself (the Poincaré map).

Maps also arise naturally as approximations to flows,e.g. the equation ẋ = µx−x3 can be
approximated using Euler’s method (with xn = x(n δdt)) to give xn+1 = xn(µδt+1)−x3nδt.
Poincaré maps for 3D flows can have many interesting properties including chaos. A
famous example is the the Lorenz equations (ẋ = σ(y−x), ẏ = rx− y−xz, ż = −bz+xy
(and the corresponding 2-D Poincaré map). Even 1D maps, such as the logistic map
xn+1 = µxn(1− xn) can have chaotic behaviour.
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1 Introduction and Basic Definitions

1.1 Elementary concepts

We need some notation to describe our equations.

Define a State Space (or Phase Space) E ⊆ R
n (E is sometimes denoted by X). Then

the state of the system is denoted by x ∈ E. The state depends on the time t and the
(ordinary) differential equation gives a rule for the evolution of x with t:

ẋ ≡ dx

dt
= f(x, t) , (1)

where f : E × R → E is a vector field.

If
∂f

∂t
≡ 0 the equation is autonomous. The equation is of order n. N.B. a sys-

tem of n first order equations as above is equivalent to an nth order equation in a
single dependent variable. If dnx/dtn = g(x, dx/dt, . . . , dn−1x/dtn−1) then we write
y = (x, dx/dt, . . . , dn−1x/dtn−1) and ẏ = (y2, y3, . . . , yn, g).

Non-autonomous equations can be made (formally) autonomous by defining y ∈ E × R

by y = (x, t), so that ẏ = g(y) ≡ (f(y), 1).

Example 1 Second order system ẍ + ẋ + x = 0 can be written ẋ = y, ẏ = −x − y, so
(x, y) ∈ R

2.

1.2 Initial Value Problems

Typically, seek solutions to (1) understood as an initial value problem:

Given an initial condition x(t0) = x0 (x0 ∈ E, t0 ∈ I ⊆ R), find a differentiable function
x(t) for t ∈ I which remains in E for t ∈ I and satisfies the initial condition and the
differential equation.

For an autonomous system we can alternatively define the solution in terms of a flow φt:

Definition 1 (Flow) φt(x) s.t. φt(x0) is the solution at time t of ẋ = f(x) start-
ing at x0 when t = 0 is called the flow through x0 at t = 0. Thus φ0(x0) = x0,
φs(φt(x0)) = φs+t(x0) etc. (Continuous semi-group). We sometimes write φf

t (x0) to
identify the particular dynamical system leading to this flow.

Does such a solution exist? And is it unique?

Existence is guaranteed for many sensible functions by the **Cauchy-Peano theo-
rem**:

Theorem 1 (Cauchy-Peano). If f(x, t) is continuous and |f | < M in the domain D :
{|t − t0| < α, |x − x0| < β}, then the initial value problem above has a solution for
|t− t0| < min(α, β/M).

But uniqueness is guaranteed only for stronger conditions on f .
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Example 2 Unique solution: ẋ = |x|, x(t0) = x0. Then x(t) = x0e
t−t0 (x0 > 0),

x(t) = x0e
t0−t (x0 < 0), x(t) = 0 (x0 = 0). Here f is not differentiable, but it is

continuous.

Example 3 Non-unique solution: ẋ = |x| 12 , x(t0) = x0. We still have f continuous.
Solving gives x(t) = (t + c)2/4 (x > 0) or x(t) = −(c − t)2/4 (x < 0). So for x0 > 0
we have x(t) = (t − t0 +

√
4x0)

2/4 (t > t0). However for x0 = 0 we have two solutions:
x(t) = 0 and x(t) = (t − t0)|(t − t0)|/4 both valid for all t and both matching the initial
condition at t = t0.

Why are these different? Because in second case derivatives of |x| 12 are not bounded at
the origin. To guarantee uniqueness of solutions need stronger property than continuity;
function to be Lipschitz.

Definition 2 (Lipschitz property). A function f defined on a subset of R
n satisfies a

Lipschitz condition at a point x0 with Lipschitz constant L if ∃(L, a) such that ∀x,y
with |x− x0| < a, |y − x0| < a, |f(x)− f(y)| ≤ L|x− y|.

Note that Differentiable → Lipschitz → Continuous.

We can now state the result (discussed in Part IA also):

Theorem 2 (Uniqueness theorem). Consider an initial value problem to the system (1)
with x = x0 at t = t0. If f satisfies a Lipschitz condition at x0 then the solution φt−t0(x0)
exists and is unique and continuous in a neighbourhood of (x0, t0)

Note that uniqueness and continuity do not mean that solutions exist for all time!

Example 4 (Finite time blowup). ẋ = x3, x ∈ R, x(0) = 1. This is solved by x(t) =
1/
√
1− 2t, so x→ ∞ when t→ 1

2
.

This does not contradict earlier result [why not?] .

From now on consider differentiable functions f unless stated otherwise.

1.3 Trajectories and Flows

Consider the o.d.e. ẋ = f(x) with x(0) = x0, or equivalently the flow φt(x0)

Definition 3 (Orbit). The orbit of φt through x0 is the set O(x0) ≡ {φt(x0) : −∞ <
t <∞}. This is also called the trajectory through x0.

Definition 4 (Forwards orbit). The forwards orbit of φt through x0 is O+(x0) ≡
{φt(x0) : t ≥ 0}; backwards orbit O− defined similarly for t ≤ 0.

Note that flows and maps can be linked by considering xn+1 = φδt(xn) In this course
we adopt a geometric viewpoint: rather than solving equations in terms of “elementary”
(a.k.a. tabulated) functions, look for general properties of the solutions. Since almost all
equations cannot be solved in terms of elementary functions, this is more productive!
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1.4 Invariant and Limit Sets

Work by considering the phase space E, and the flow φt(x0), considered as a trajectory
(directed line) in the phase space. we are mostly interested in special sets of trajectories,
as long-time limits of solutions from general initial conditions. These are called invariant
sets.

Definition 5 (Invariant set). A set of points Λ ∈ E is invariant under f if x ∈ Λ ⇒
O(x) ∈ Λ. (Can also define forward and backward invariant sets in the obvious way).

Clearly O(x) is invariant. Special cases are;

Definition 6 (Fixed point). The point x0 is a fixed point (equilibrium, stationary
point, critical point) if f(x0) = 0. Then x = x0 for all time and O(x0) = x0.

Definition 7 (Periodic point). A point x0 is a periodic point if φT (x0) = x0 for some
T > 0, but φt(x0) 6= x0 for 0 < t < T . The set {φt(x0) : 0 ≤ t < T} is called a periodic
orbit through x0. T is the period of the orbit. If a periodic orbit C is isolated, so that
there are no other periodic orbits in a sufficiently small neighbourhood of C, the periodic
orbit is called a limit cycle.

Example 5 (Family of periodic orbits). Consider
(

ẋ
ẏ

)

=

(

−y3
x3

)

This has solutions of form x4 + y4 = const., so all orbits except the fixed point at the
origin are periodic.

Example 6 (Limit cycle). Now consider
(

ẋ
ẏ

)

=

(

−y + x(1− x2 − y2)
x+ y(1− x2 − y2)

)

Here we have ṙ = r(1 − r2), where r2 = x2 + y2. There are no fixed points except the
origin and there is a unique limit cycle r = 1.

Definition 8 (Homoclinic and heteroclinic orbits). If x0 is a fixed point and ∃y 6= x0

such that φt(y) → x0 as t → ±∞, then O(y) is called a homoclinic orbit. If there
are two fixed points x0,x1 and ∃y 6= x0,x1 such that φt(y) → x0 (t → −∞), φt(y) →
x1 (t→ +∞) then O(y) is a heteroclinic orbit. A closed sequence of heteroclinic orbits
is called a heteroclinic cycle (sometimes also called heteroclinic orbit!)
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When the phase space has dimension greater than 2 more exotic invariant sets are possible.

Example 7 (2-Torus). let θ1, θ2 be coordinates on the surface of a 2-torus, such that
θ̇1 = ω1, θ̇2 = ω2. If ω1, ω2 are not rationally related the trajectory covers the whole
surface of the torus.

Example 8 (Strange Attractor). Anything more complicated than above is called a strange
attractor. Examples include the Lorenz attractor.

We have to be careful in defining how invariant sets arise as limits of trajectories. Not
enough to have definition like “set of points y s.t. φt(x) → y as t → ∞”, as that does
not include e.g. periodic orbits. Instead use the following:

Definition 9 (Limit set). The ω-limit set of x, denoted by ω(x) is defined by
ω(x) ≡ {y : φtn(x) → y for some sequence of times t1, t2, . . . , tn, . . . → ∞}. Can also
define α-limit set by sequences → −∞.

The ω-limit set ω(x) has nice properties when O(x) is bounded: In particular, ω(x) is:

(a) Non-empty [every sequence of points in a closed bounded domain has at least one
accumulation point] (b) Invariant under f [Obvious from definition] (c) Closed [think
about not being in ω(x)] and bounded (d) Connected [if disconnected, ∃ an sequence of
times for which x(t) does not tend to any of the disconnected parts of ω(x)]
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1.5 Topological equivalence and structural stability

What do we mean by saying that two flows (or maps) have essentially the same (topolog-
ical/geometric) structure? Or that the structure of a flow changes at a bifurcation?

Definition 10 (Topological Equivalence). Two flows φf
t (x) and φ

g
t (y) are topologically

equivalent if there is a homeomorphism h(x) : Ef → Eg (i.e. a continuous bijection
with continuous inverse) and time-increasing function τ(x, t) (i.e. a continous, monotonic
function of t) with

φf
t (x) = h−1 ◦ φg

τ ◦ h(x) and τ(x, t1 + t2) = τ(x, t1) + τ(φf
t1
(x), t2)

In other words it is possible to find a map h from one phase space to the other, and a map
τ from time in one phase space to time in the other, in such a way that the evolution of
the two systems are the same. Clearly topological equivalence maps fixed points to fixed
points, and periodic orbits to periodic orbits – though not necessarily of the same period.
A stronger condition is topological conjugacy, where time is preserved, i.e. τ(x, t) = t.

Example 9 The dynamical systems

ṙ = −r
θ̇ = 1

and
ρ̇ = −2ρ

ψ̇ = 0

are topologically equivalent with h(0) = 0, h(r, θ) = (r2, θ + ln r) for r 6= 0 in polar

coordinates, and τ(x, t) = t. To show this, integrate the ODEs to get

φf
t (r0, θ0) = (r0e

−t, θ0 + t), φg
t (ρ0, ψ0) = (ρ0e

−2t, ψ0)

and check
h ◦ φf

t = (r20e
−2t, θ0 + ln r0) = φg

t ◦ h

(Note that in this case the two systems are also topologically conjugate.)

Example 10 The dynamical systems

ṙ = 0

θ̇ = 1
and

ṙ = 0

θ̇ = r + sin2 θ

are topologically equivalent. This should be obvious because the trajectories are the same

and so we can put h(x) = x. Then stretch timescale.

Definition 11 **(Structural Stability)** .The vector field f [system ẋ = f(x) or flow
φf
t (x)] is structurally stable if ∃ǫ > 0 s.t. f+δ is topologically equivalent to f ∀δ(x) with |δ|+

∑

i |∂δ/∂xi| < ǫ.

Examples: The first system above is structurally stable. The second is not (since the
periodic orbits are destroyed by a small perturbation ṙ 6= 0).
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2 Flows in R
2

2.1 Linearization

In analyzing the behaviour of nonlinear systems the first step is to identify the fixed
points. Then near these fixed points, behaviour should approximate linear. In fact near a

fixed point x0 s.t. f(x0) = 0, let y = x−x0; then ẏ = Ay+O(|y|2), where Aij =
∂fi
∂xj

∣

∣

∣

x=x0

is the linearization of f about x0. The matrix A is also written Df , the Jacobian
matrix of f at x0. We hope that in general the flow near x0 is topologically equivalent
to the linearized problem. This is not always true, as shown below.

2.2 Classification of fixed points

Consider general linear system ẋ = Ax, where A is a constant matrix. We need the
eigenvalues λ1,2 of the matrix, given by λ2 − λTrA + DetA = 0. This has solutions

λ = 1
2
TrA±

√

1
4
(TrA)2 −DetA. We can then classify the roots into classes.

• Saddle point(DetA < 0). Roots are real and of opposite sign.

E.g.

(

−2 0
0 1

)

,

(

0 3
1 0

)

; (canonical form

(

λ1 0
0 λ2

)

: λ1λ2 < 0.)

• Node ((TrA)2 > 4DetA > 0). Roots are real and either both positive (TrA > 0:
unstable, repelling node), or both negative (TrA < 0: stable, attracting node).

E.g.

(

2 0
0 1

)

,

(

0 1
−1 −3

)

;(canonical form

(

λ1 0
0 λ2

)

: λ1λ2 > 0.)

• Focus (Spiral) ((TrA)2 < 4DetA). Roots are complex and either both have positive
real part (TrA > 0: unstable, repelling focus), or both negative real part (TrA < 0:
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stable, attracting focus).

E.g.

(

−1 1
−1 −1

)

,

(

2 1
−2 3

)

;(canonical form

(

λ ω
−ω λ

)

: eigenvalues λ± iω.)

Degenerate cases occur when two eigenvalues are equal ((TrA)2 = 4DetA 6= 0) giving

either Star/Stellar nodes, e.g.

(

1 0
0 1

)

or Improper nodes e.g.

(

1 1
0 1

)

.

In all these cases the fixed point is hyperbolic.

Definition 12 (Hyperbolic fixed point). A fixed point x of a dynamical system is hyper-
bolic iff all the eigenvalues of the linearization A of the system about x have non-zero real
part.

This definition holds for higher dimensions too.

Thus the nonhyperbolic cases, which are of great importance in bifurcation theory, are
those for which at least one eigenvalue has zero real part. These are of three kinds:

• A = 0. Both eigenvalues are zero.

• DetA = 0. Here one eigenvalue is zero and we have a line of fixed points. e.g.
(

0 0
0 −1

)

• TrA = 0, DetA > 0 (Centre). Here the eigenvalues are ±iω and trajectories are

closed curves, e.g.

(

0 2
−1 0

)

.
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All this can be summarized in a diagram

To find canonical form, find the eigenvectors of A and use as basis vectors (possibly
generalised if eigenvalues equal), when eigenvalues real. For complex eigenvalues in R

2

we have two complex eigenvectors e, e∗ so use {Re(e), Im(e)} as a basis. This can help
in drawing trajectories. But note classification is independent of basis.

Centres are special cases in context of general flows; but Hamiltonian systems have centres
generically. These systems have the form ẋ = (Hy,−Hx) for some H = H(x, y). At a
fixed point ∇H = 0, and the matrix

A =

(

Hxy Hyy

−Hxx −Hxy

)

⇒ TrA = 0.

Thus all fixed points are saddles or centres. Clearly also ẋ · ∇H = 0, so H is constant on
all trajectories, i.e. trajectories are contours of H(x, y)

2.3 Effect of nonlinear terms

For a general nonlinear system ẋ = f(x), we start by locating the fixed points, x0, where
x0 = 0. Then what does the linearization of the system about the fixed point x0 tell us
about the behaviour of the nonlinear system?

We can show (e.g. Glendinning Ch. 4) that if

(i) x0 is hyperbolic; and
(ii)the nonlinear corrections are O(|x− x0|2),

then the two systems are topologically conjugate.

We thus discuss separately hyperbolic and non-hyperbolic fixed points.

2.3.1 Stable and Unstable Manifolds

For the linearized system we can separate the phase space into different domains corre-
sponding to different behaviours in time.

Definition 13 (Invariant subspaces). The stable, unstable and centre subspaces
of the linearization of f at the fixed point x0 are the three linear subspaces Eu, Es , Ec,
spanned by the subsets of (possibly generalised) eigenvectors of A whose eigenvalues have
real parts < 0, > 0, = 0 respectively.
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Note that a hyperbolic fixed point has no centre subspace.

These concepts can be extended simply into the nonlinear domain for hyperbolic fixed
points. We suppose that the fixed point is at the origin and that f is expandable in a
Taylor series. We can write ẋ = Ax + f(x), where f = O(|x|2). We need the Stable (or
Invariant) Manifold Theorem.

Theorem 3 (Stable (or Invariant) Manifold Theorem). Suppose 0 is a hyperbolic fixed
point of ẋ = f(x), and that Eu, Es are the unstable and stable subspaces of the linearization
of f about 0. Then ∃ local stable and unstable manifolds W u

loc(0), W
s
loc(0), which

have the same dimension as Eu, Es and are tangent to Eu, Es at 0, such that for x 6= 0
but in a sufficiently small neighbourhood of 0,

W u
loc = {x : φt(x) → 0 as t→ −∞}

W s
loc = {x : φt(x) → 0 as t→ +∞}

Proof: rather involved; see Glendinning, p.96. The trick is to produce a near identity
change of coordinates. Suppose that for each x, x = y + z, where y ∈ Eu and z ∈ Es.
The linearized stable manifold is therefore y = 0 and the linearized unstable manifold
is z = 0. We look for the stable manifold in the form y = S(z); then make a change
of variable ξ = y − S(z) so that the transformed equation has ξ = 0 as an invariant
manifold. The function S(z) can be expanded as a power series, and the idea is to check
that the expansion can be performed to all orders, giving a finite (i.e. non-zero) radius of
convergence. The unstable manifold can be constructed in a similar way.

The local stable manifold W s
loc can be extended to a global invariant manifold W s by

following the flow backwards in time from points in W s
loc, Correspondingly W

s
loc can also

be extended to a global invariant manifold.

It is easy to find approximations to the stable and unstable manifolds of a saddle point
in R

2. The stable(say) manifold must tend to the origin and be tangent to the stable
subspace Es (i.e. to the eigenvector corresponding to the negative eigenvalue). (It is
often easiest though not necessary to change to coordinates such that x = 0 or y = 0
is tangent to the manifold). Then for example if we want to find the manifold (for 2D
flows just a trajectory) that is tangent to y = 0 at the origin for the system ẋ = f(x, y),
ẏ = g(x, y), write y = p(x); then

g(x, p(x)) = ẏ = p′(x)ẋ = p′(x)f(x, p(x)),

which gives a nonlinear ODE for p(x). In general this cannot be solved exactly, but we
can find a (locally convergent) series expansion in the form p(x) = a2x

2 + a3x
3 + . . ., and

solve term by term.

Example 11 Consider

(

ẋ
ẏ

)

=

(

x
−y + x2

)

. This can be solved exactly to give x =

x0e
t, y = 1

3
x20e

2t + (y0 − 1
3
x20)e

−t or y(x) = 1
3
x2 + (y0 − 1

3
x20)x0x

−1. Two obvious invariant
curves are x = 0 and y = 1

3
x2, and x = 0 is clearly the stable manifold. The linearization



P.H.Haynes Part II Dynamical Systems Michaelmas Term 2012 14

about 0 gives the matrix A =

(

1 0
0 −1

)

and so the unstable manifold must be tangent to

y = 0; y = 1
3
x2 fits the bill. To find constructively write y(x) = a2x

2 + a3x
3 + . . .. Then

dy

dt
= ẋ

dy

dx
= (2a2x+ 3a3x

2 + . . .)x = −a2x2 − a3x
3 + . . .+ x2

Equating coefficients, find a2 =
1
3
, a3 = 0, etc.

Example 12 Now

(

ẋ
ẏ

)

=

(

x− xy
−y + x2

)

; there is no simple form for the unstable

manifold (stable manifold is still x = 0). The unstable manifold has the form y = ax2 +
bx3+ cx4+ . . ., where [exercise] a = 1

3
, b = 0, c = 2

45
, etc. Note that this infinite series (in

powers of x2) has a finite radius of convergence since the unstable manifold of the origin
is attracted to a stable focus at (1, 1).

2.3.2 Nonlinear terms for non-hyperbolic cases

We now suppose that there is at least one eigenvalue on the imaginary axis. Concentrate
on R

2, generalization not difficult. There are two possibilities:

(i) A has eigenvalues ±iω. The linear system is a centre. The nonlinear system have
different forms for different r.h.s.’s

• Stable focus:

(

−y − x3

x− y3

)
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• Unstable focus:

(

−y + x3

x+ y3

)

• Nonlinear centre:

(

−y − 2x2y
x+ 2y2x

)

(ii) A has one zero eigenvalue, other e.v.non-zero, e.g. (a) ẋ = x2, ẏ = −y [Saddle-node],
(b) ẋ = x3, ẏ = −y [Nonlinear Saddle].

(iii) Two zero eigenvalues. Here almost anything is possible. Change to polar coords.
Find lines as r → 0 on which θ̇ = 0. Between each of these lines can have three different
types of behaviour. (See diagram).
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2.4 Sketching phase portraits

This often involves some good luck and good judgement! Nonetheless there are some
guidelines which if followed will give a good chance of success. The general procedure is
as follows:

• 1. Find the fixed points, and find any obvious invariant lines e.g.x = 0 when x = xh(x, y)
etc.

• 2. Calculate the Jacobian and hence find the type of fixed point. (Accurate calculation
of eigenvalues etc. for nodes may not be needed for sufficiently simple systems - just find
the type.) Do find eigenvectors for saddles.

• 3. If fixed points non-hyperbolic get local picture by considering nonlinear terms.

• 4. If still puzzled, find nullclines, where x or y (or r or θ) are zero.

• 5. Construct global picture by joining up local trajectories near fixed points (especially
saddle separatrices) and put in arrows.

• 6. Use results of Ch. 4 to decide whether there are periodic orbits.

Example 13 (worked example). Consider

(

ẋ
ẏ

)

=

(

x(1− y)
−y + x2

)

. Jacobian A =

(

1− y −x
2x −1

)

.

Fixed points at (0, 0) (saddle) and (±1, 1); A =

(

0 ∓1
±2 −1

)

. TrA2 = 1 < DetA so stable

foci. x = 0 is a trajectory, ẋ = 0 on y = 1 and ẏ ≶ 0 when y ≷ x2.
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3 Stability

3.1 Definitions of stability

If we find a fixed point, or more generally an invariant set, of a dynamical system we want
to know what happens to the system under small perturbations away from the invariant
set. We also want to know which invariant sets will be approached at large times. If in
some sense the solution stays “nearby”, or the set is approached after long times, then
we call the set stable. There are several differing definitions of stability. We will consider
stability of whole invariant sets (and not just of points in those sets). This shortens the
discussion.

Consider an invariant set Λ in a general (autonomous) dynamical system described by a
flow φt. (This could be a fixed point, periodic orbit, torus etc.) We need a definition of
points near the set Λ:

Definition 14 (Neighbourhood of a set Λ). For δ > 0 the neighbourhood Nδ(Λ) = {x :
∃y ∈ Λ s.t. |x− y| < δ}

We also need to define the concept of a flow trajectory tending to Λ.

Definition 15 (flow tending to Λ). The flow φt(x) → Λ iff min
y∈Λ

|φt(x)−y| → 0 as t→ ∞

Definition 16 (Lyapunov stability)[LS]. The set Λ is Lyapunov stable if ∀ǫ > 0 ∃δ >
0 s.t. x ∈ Nδ(Λ) ⇒ φt(x) ∈ Nǫ(Λ) ∀t ≥ 0. (“start near, stay near”).

Definition 17 (Quasi-asymptotic stability)[QAS]. The set Λ is quasi-asymptotically
stable if ∃δ > 0 s.t.x ∈ Nδ(Λ) ⇒ φt(x) → Λ as t→ ∞. (“get close eventually”).

Definition 18 (Asymptotic stability)[AS]. The set Λ is asymptotically stable if it is
both Lyapunov stable and quasi-asymptotically stable.

Example 14 (The origin is LS but not QAS).

(

ẋ
ẏ

)

=

(

−y
x

)

.

All limit sets are circles or the origin.

Example 15 (QAS but not LS).

(

ṙ

θ̇

)

=

(

r(1− r2)
sin2 θ

2

)

.

Point r = 1, θ = 0 is a saddle-node.
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Example 16

(

ẋ
ẏ

)

=

(

y − ǫx
−2ǫy

)

(ǫ > 0). Here y = y0e
−2ǫt, x = x0e

−ǫt + y0ǫ
−1(e−ǫt −

e−2ǫt). Thus for t ≥ 0, |y| ≤ |y0|, |x| ≤ |x0| + 1
4
ǫ−1|y0|, and so x2 + y2 ≤ (x20 + y20)(1 +

ǫ−1 + ǫ−2/16). This proves Lyapunov stability. Furthermore the solution clearly tends to
the origin as t→ ∞.

This example is instructive because for ǫ sufficiently small the solution can grow to large
values before eventually decaying. To require that the norm of the solution decays mono-
tonically is a stronger result, only applicable to a small number of problems.

If an invariant set is not LS or QAS we say it is unstable (or according to some books,
nonstable).

There may be more than one asymptotically stable limit set. In that case we want to
know what parts of the phase space lead to which limit sets being approached. Then we
define the basin of attraction(or domain of stability):

Definition 19 If Λ is an asymptotically stable invariant set the basin of attraction of
Λ, B(Λ) ≡ {x : φt(x) → Λ as t→ ∞}. If B(Λ) = R

n then Λ is globally attracting(or
globally stable). Note that B(Λ) is an open set.

When there are many fixed points the basin of attraction can be quite complicated.

When Λ is an isolated fixed point (x0, say) we can investigate its stability by linearizing
the system about x0 (see previous section of notes).

Theorem 4 (Stability of hyperbolic fixed points). If 0 is a hyperbolic sink then it is
asymptotically stable. If 0 is a hyperbolic fixed point with at least one eigenvalue with
Reλ > 0, then it is unstable.
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3.2 Lyapunov functions

We can prove much about stability of a fixed point (which, for convenience, will be taken
to be at the origin) if we can find a suitable positive function V of the independent
variables that is zero at the origin and decreases monotonically under the flow φt. Then
under certain reasonable conditions we can show that V → 0 so that the appropriately
defined modulus of the solution similarly tends to zero. This is a Lyapunov function,
defined precisely by

Definition 20 (Lyapunov function). Let E be a closed connected region of Rn containing
the origin. A function V : Rn → R which is differentiable except perhaps at the origin is a
Lyapunov function for a flow φ if (i) V(0) = 0, (ii) V is positive definite (V(x) > 0
when 0 6= x), and if also (iii) V(φt(x)) ≤ V(x) ∀x ∈ E (or equivalently if V̇ ≤ 0 on
trajectories).

Then we have the following theorems:

Theorem 5 (Lyapunov’s First Theorem [L1]). Suppose that a dynamical system ẋ = f(x)
has a fixed point at the origin. If a Lyapunov function exists,as defined above, then the
origin is Lyapunov stable.

Theorem 6 (Lyapunov’s Second Theorem [L2]). If in addition V̇ < 0 for x 6= 0 then V
is a Strict Lyapunov function and the origin is asymptotically stable.

An important point is that level sets (e.g. contours in 2-D) of V(x) can be used to define
neighbourhoods of the origin. In particular, for sufficiently small ǫ, there is an α such
that V(x) < α implies that |x| < ǫ and correspondingly there is a β such that V(x) > β
implies that |x| > ǫ.

Proof of First Theorem: We want to show that for any sufficiently small neighbourhood
U of the origin, there is a neighbourhood V s.t. if x0 ∈ V , φt(x0) ∈ U for all positive t.
Let U = {x : |x| < ǫ} ⊆ E and let α = min{V(x) : |x| = ǫ}. Clearly α > 0 from the
definition of V . Now consider the set U1 = {x ∈ U : V(x) < α}. Certainly U1 contains
the origin, but furthermore there is a δ > 0 such that V = {x : |x| < δ} ⊆ U1. Then
x ∈ V implies that V(φt(x)) < α ∀t ≥ 0, since V does not increase along trajectories.
Hence (φt(x)) does not leave U1 and hence it does not leave U , as required.

Proof of Second Theorem: [L1] implies that x remains in the domain U . For any ini-
tial point x0 6= 0, V(x0) > 0 and V̇ < 0 along trajectories. Thus V(φt(x0)) decreases
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monotonically and is bounded below by 0. Then V → α ≥ 0; suppose α > 0. Then
|x| is bounded away from zero (by continuity of V), and so W ≡ V̇ < −b < 0. Thus
V(φt(x0)) < V(x0) − bt and so is certainly negative after a finite time. Thus there is a
contradiction, and so α = 0. Hence V → 0 as t→ ∞ and so |x| → 0 (again by continuity).
This proves asymptotic stability.

To prove results about instability just reverse the sense of time. Sometimes we can
demonstrate asymptotic stability even when V is not a strict Lyapunov function. For this
need another theorem, La Salle’s Invariance Principle:

Theorem 7 (La Salle’s Invariance Principle). If V is a Lyapunov function for a flow φ
then ∀x such that φt(x) is bounded ∃c s.t. ω(x) ⊆ Mc ≡ {x : V(φt(x)) = c ∀t ≥ 0}.(Or,
φt(x) → an invariant subset of the set {y : V̇(y) = 0}.)

Proof : choose a point x and let c = inft≥0 V(φt(x)). By assumption φt(x) remains finite
and ω(x) is not empty. Then if y ∈ ω(x), ∃ a sequence of times tn s.t. φtn(x) → y as
n → ∞, then by continuity of V and since V̇ ≤ 0 on trajectories we have V(y) = c. We
need to prove that y ∈ Mc (i.e. that V(φt(y)) = c for t ≥ 0). Suppose to the contrary
that ∃s s.t. V(φs(y)) < c. Thus for all z sufficiently close to y we have V(φs(z)) < c. But
if z = φtn(x) for sufficiently large n we have V(φtn+s(x)) < c, which is a contradiction.
This proves the theorem.

As a corollary we note that if V is a Lyapunov function on a bounded domain D and
the only invariant subset of {y : V̇(y) = 0} is the origin then the origin is asymptotically
stable.

The following are examples of the use of the Lyapunov theorems.

Example 17 (Finding the basin of attraction). Consider

(

ẋ
ẏ

)

=

(

−x+ xy2

−2y + yx2

)

. We

can ask: what is the best condition on x which guarantees that x → 0 as t→ ∞? Consider
V(x, y) = 1

2
(x2 + b2y2) for constant b.Then V̇ = −(x2 + 2b2y2) + (1 + b2)x2y2. We can

then show easily that
V̇ < 0 if V < (3 + 2

√
2)b2/2(1 + b2) [Check by setting z = by and using polars for (x, z)].

The domain of attraction of the origin certainly includes the union of these sets over all
values of b.
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Example 18 (Damped pendulum). Here

(

ẋ
ẏ

)

=

(

y
−ky − sin x

)

with k > 0. We can

choose V = 1
2
y2+1−cos x; clearly V is positive definite provided we identify x and x+2π,

and V̇ = −ky2 ≤ 0. So certainly the origin is Lyapunov stable by [L1]. But we cannot use
[L2] since V̇ is not negative definite. Nonetheless from La Salle’s principle we see that the
set Mc is contained in the set of complete orbits satisfying y = 0. The only such orbits
are (0, 0) (c = 0) and (π, 0) (c = 2) So these points are the only possible members of ω(x).
Since the origin is Lyapunov stable we conclude that for all points x s.t. V < 2 the only
member of ω(x) is the origin and so this point is asymptotically stable.

Special cases are gradient flows.

Definition 21 A system is called a gradient system or gradient flow if we can write
ẋ = −∇V (x).

In this case we have V̇ = −|∇V |2 ≤ 0, with V̇ < 0 except at the fixed points which
have |∇V | = 0. Thus we can use La Salle’s principle to show that Ω = {ω(x) : x ∈ E}
consists only of the fixed points. Note that this does NOT mean that all the fixed
points are asymptotically stable (see diagram). These ideas can be extended to more
general systems of the form ẋ = −h∇V , where h(x) is a strictly positive continuously
differentiable function. [Proof: exercise].

3.3 Bounding functions

Even when we cannot find a Lyapunov function in the exact sense, we can sometimes
find positive definite functions V s.t. V̇ < 0 outside some neighbourhood of the origin.
We call these bounding functions. They are used to show that x remains in some
neighbourhood of the origin.
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Theorem 8 Let V : E ⊆ R
n → R be a continuously differentiable function, such that

for each k > 0, Vk = {x ∈ E : V(x) < k} is a simply connected bounded domain with
Vk ⊂ Vk′ if k < k′. Then if there is a simply connected compact domain D ⊂ E such that,
for all x /∈ D, V̇(x) < −δ < 0 for some δ > 0, and there is a κ > 0 such that D ⊂ Vκ
then all orbits eventually enter and remain inside the set Vκ.

Proof: exercise (see diagram).
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4 Existence and stability of periodic orbits in R
2

Example 19 Damped pendulum with torque. Consider the system θ̈ + kθ̇ + sin θ = F ,
k > 0, F > 0. We would like to know whether there is a periodic orbit of this equation.
We can find a bounding function of the form V = 1

2
p2 + 1 − cos θ (p = θ̇). Then V̇ =

pṗ + θ̇ sin θ = p(F − kp). Thus V̇ < 0 unless 0 < p < F/k. Maximum value of V on
boundary of this domain is Vmax = 1

2
(F
k
)2 + 2. By previous result on bounding functions

we see that all orbits eventually enter and remain in the region V < Vmax.

What happens within this region? We can look for fixed points: these are at p = 0,
sin θ = F . So there are 2 f.p.’s if F < 1, no f.p.’s if F > 1. In the first case one fixed
point is stable (node or focus depending on k) and the other is a saddle. In the second
case what can happen? Either there is a closed orbit or ?possibly? a space filling curve.
There are some nontrivial theorems that we can use to answer this.

4.1 The Poincaré Index

Closed curves can be distinguished by the number of rotations of the vector field f as the
curve is traversed. This property of a curve in a vector field is very useful in understanding
the phase portrait.

Definition 22 (Poincaré Index). Consider a vector field f = (f1, f2). At any point the
direction of f is given by ψ = tan−1(f2/f1) (with the usual conventions). Now let x
traverse a closed curve C. ψ will increase by some multiple (possibly negative) or 2π.
This multiple is called the Poincaré Index IC of C.

This index can be put in integral form. We have

IC =
1

2π

∮

C
dψ =

1

2π

∮

C
d tan−1

(

f2
f1

)

=
1

2π

∮

C

f1df2 − f2df1
f 2
1 + f 2

2

In fact the index is most easily worked out by hand. There are several results that are
easily proved about Poincaré indices that makes them easier to calculate.

1. The index takes only integer values, and is continuous when the vector
field has no zeroes. It therefore is the same for two curves which can be deformed
into each other without crossing any fixed point.
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2. The index of any curve not enclosing any fixed point is zero. This is because
it can be shrunk to zero size.

3. The index of a curve enclosing a number of fixed points is the sum of the
indices for curves enclosing the fixed points individually. This is because
the curve can be deformed into small curves surrounding each fixed point together
with connecting lines along which the integral cancels.

4. The index of a curve for ẋ = f(x) is the same as that of the system
ẋ = −f(x). Proof: Consider effect on integral representation of the change f → −f .

5. The index of a periodic orbit is +1. The vector field is tangent to the orbit at
every point.

6. The index of a saddle is −1, and of a node or focus +1. By inspection, or
by noting that in complex notation a saddle can be written, in suitable coordinates
as ẋ = x, ẏ = −y or ż = z̄. For a node or focus, curve can be found such that
trajectories cross in same direction.

7. Indices of more complicated, non hyperbolic points can be found by
adding the indices for the simpler fixed points that may appear under
perturbation. This is because a small change in the system does not change the
index round a curve where the vector field is smooth. e.g. index of a saddle-node
ẋ = x2, ẏ = −y is zero, since indices of saddle and node cancel.
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The most important result that follows from the above is is that any periodic orbit contains
at least one fixed point. In fact the total number of nodes and foci enclosed by a periodic
orbit must exceed the total number of saddles enclosed by the orbit by one. Proof: simple
exercise.

4.2 Poincaré-Bendixson Theorem

This remarkable result, which only holds in R
2, is very useful for proving the existence of

periodic orbits.

Theorem 9 (Poincaré-Bendixson). Consider the system ẋ = f(x), x ∈ R
2, and suppose

that f is continuously differentiable. If the forward orbit O+(x) remains in a compact
(closed and bounded) set D containing no fixed points then ω(x) contains a periodic orbit.

We can apply this directly to the pendulum equation with F > 1 to show that there is at
least one (stable) periodic orbit. However we cannot rule out multiple periodic orbits.

The proof of the Poincaré-Bendixson Theorem is quite complicated. Before starting it is
useful to establish a preliminary result concerning multiple intersections of a trajectory
with a transversal. A transversal is a line or curve (typically not closed) that trajectories
cross from one side to the other. A traversal can be defined in a neighbourhod of any
point that is not a fixed point. (See diagram.)

In R
2 traversals have the important property that, if a trajectory has multiple intersec-

tions with the transversal, then successive intersections move monotonically along the
transversal. (See diagram.) Note that this property has no counterpart in higher dimen-
sions.

Proof of the Poincaré-Bendixson Theorem: We first note that since O+(x) remains in a
compact set D, then ω(x) is non-empty, with ω(x) ⊂ D. .
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Choose y ∈ ω(x) and then z ∈ ω(y). Note that y ∈ D and hence z ∈ D and that neither
are fixed points (by assumption). We show first that O+(y) is a periodic orbit. Pick a
local transversal Σ through z, then O+(y) makes intersections with Σ arbitrarily close to
z. [Choose a set of points on O+(y) that come arbitrarily close to z. Given continuity
of f(x) in the neighbourhood of z the trajectory through each point must have a nearby
intersection with Σ.]

If O+(y) intersects Σ at z then O+(y) is closed. [ z ∈ O+(y), if next intersection of
O+(y) is not at z then successive intersections must move away from z by the monotoncity
property. This is inconsistent with z ∈ ω(y).]

If O+(y) does not intersect Σ at z then suppose one intersection is at y1 and the next
is at y2. But y1 ∈ ω(x) and y2 ∈ ω(x), implying that there is an intersection of O+(y)
with Σ that is arbitrarily close to y1, a later intersection that is arbitrarily close to y2

and later to that, an intersection that is arbitrarily close to y1. But this is inconsistent
with the monotonicity property, so y1 = y2 and O+(y) is closed.

Furthermore z = y1 = y2, otherwise z cannot be in ω(y). So z ∈ O+(y) and hence
z ∈ ω(x) (because the latter is invariant). Hence O+(y) ⊂ ω(x). In fact O+(y) = ω(x),
since if ŷ /∈ O+(y) then it cannot be the case that there is an infinite sequence of points
in O+(x) that come arbitrarily close to ŷ.

Example 20 Consider the system
(

ẋ
ẏ

)

=

(

x− y + 2x2 + axy − x(x2 + y2)
y + x+ 2xy − ax2 − y(x2 + y2)

)

. In polar coordinates we get

ṙ = r + 2r2 cos θ − r3, θ̇ = 1 − ar cos θ. Then ṙ > 0 for r <
√
2 − 1, and ṙ < 0 for

r >
√
2 + 1. Thus the trajectories enter the annulus

√
2− 1 ≤ r ≤

√
2 + 1. For any fixed

points we have 1 + 2r cos θ − r2 = 0, 1 − ar cos θ = 0. Hence x = 1/a, r2 = 1 + 2/a.
So there are no fixed points in the annulus if

√
2 − 1 <

√

1 + 2/a <
√
2 + 1. The first

inequality is always satisfied, the second implies 1/a > 1 +
√
2, i.e. a <

√
2 − 1. If this

condition holds then there must be a periodic orbit in the annulus.

4.3 Dulac’s criterion and the divergence test

Suppose that ẋ = f(x) has a periodic orbit C. Then f is tangent to C at every point and
since there are no fixed points on C we have that ρ(x)f(x) ·n = 0 everywhere on C, where
ρ is a C1 function and n is the unit outward normal. Then

∮

C
ρf · ndℓ =

∫

A

∇ · (ρf)dA = 0
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Thus unless ρ and f are such that ∇ · (ρf) takes different signs within the periodic orbit,
we have a contradiction. This is is a special case of

Theorem 10 (Dulac’s negative criterion). Consider a dynamical system ẋ = f , x ∈ R
n.

If there is a C1 scalar function ρ(x), such that ∇·(ρf) < 0 everywhere (or > 0 everywhere)
in some domain E ⊆ R

n, then there are no invariant sets of dimension n−1 wholly within
E and enclosing finite volume.

Proof: suppose there is such a set S enclosing a volume V ⊂ E. Then since S is invariant
ρ(x)f(x).n = 0, where n is the outward normal to S. But

∫

S

ρf .ndℓ dS = 0 =

∫

V

∇ · (ρf) dV.

But ∇·(ρf) is one-signed by assumption and so the integral on the right-hand side cannot
be zero.

Often it is only necessary to take ρ = 1. If conditions of the theorem satisfied in R
2 then

there are no periodic orbits in E, if in R
3 there are no invariant 2-tori, etc.

Example 21 (Lorenz system). Here we are in R
3 and equations are





ẋ
ẏ
ż



 =





σy − σx
rx− y − zx
−bz + xy



 .

Hence ∇· f = −σ− 1− b < 0. Thus this system has no invariant sets of dimension 2 that
enclose non-zero volume. Note that periodic orbits, which are not of dimension 2 and do
not enclose a volume, are not excluded.

Example 22 Return to Example 19 (damped pendulum with torque) and consider the
phase space −∞ < p < ∞, 0 ≤ θ < 2π to be the surface of a cylinder. We have seen
that when F > 1 there are no fixed points and so, by Poincaré-Bendixson, there must be
a periodic orbit in the region V < Vmax. However ∇ · f = −k < 0 and so, by Dulac’s
criterion, there are no periodic orbits not encircling the cylinder. Orbits that do encircle
the cylinder (orbits of ’rotational’ type) are not ruled out, since they have no ‘interior’
and so the theorem does not apply. But now suppose there are two periodic orbits (both
necessarily encircling the cylinder). Consider the integral of ∇ · f over the region between
the two orbits (in an extension of the standard form of Dulac’s criterion) to obtain a
contradiction. Thus there is a unique periodic orbit, of rotational type, when F > 1.
Since it is unique and trajectories enter the region V < Vmax it must be stable.
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Example 23 (Predator-Prey equations). These take the general form
(

ẋ
ẏ

)

=

(

x(A− a1x+ b1y)
y(B − a2y + b2x)

)

, where a1, a2 ≥ 0. The lines x = 0, y = 0 are invariant.

Are there periodic orbits in the first quadrant? Consider ρ = (xy)−1. Then ∇ · ρf =
∂
∂x
(y−1(A− a1x + b1y) +

∂
∂y
(x−1(B − a2y + b2x) = −a1y−1 − a2x

−1 < 0. So there are no
periodic orbits unless a1 = a2 = 0. In this case we potentially have an infinite number of
periodic orbits, which are contours of U(x, y) = A ln y−B ln x+ b1y− b2x, provided these
are closed curves. [When is this true?]

Another useful result excluding periodic orbits relies on the fact that on such orbits the
vector field f is everywhere tangent to the orbit and is never zero.

Theorem 11 (Gradient criterion). Consider a dynamical system ẋ = f where f is defined
throughout a simply connected domain E ⊂ R

2. If there exists a positive function ρ(x)
such that ρf = ∇ψ for some single valued function ψ, then there are no periodic orbits
lying entirely within E.

Proof: if ρf = ∇ψ then for a periodic orbit C,
∮

C ρf · dℓ =
∮

C ∇ψ · dℓ = 0. But this is
impossible as ρf · dℓ has the same sign everywhere on C.

Example 24 Consider the system

(

ẋ
ẏ

)

=

(

2x+ xy2 − y3

−2y − xy2 + x3

)

. Hard to apply Dulac.

But in fact exyf = ∇(exy(x2 − y2)) and so there are no periodic orbits.

4.4 Near-Hamiltonian flows

Many systems of importance have a Hamiltonian structure; that is they may be written
in the form

(

ẋ
ẏ

)

=

(

Hy

−Hx

)

Then it is easy to see that dH
dt

= ẋHx + ẏHy = 0 so that the curves H = const. are
invariant. If these curves are closed then they are periodic orbits, but not limit cycles

since they are not isolated. The Jacobian of f at the fixed point is

(

Hxy Hyy

−Hxx −Hxy

)

.

Thus the trace is always zero and fixed points are either saddles or (nonlinear) centres.

Example 25 Consider ẍ+ x− x2. Writing y = ẋ, we have an equation in Hamiltonian
form, with H = 1

2
(y2 + x2) − 1

3
x3. There are two fixed points, at y = 0, x = 0, 1, which

are a centre and a saddle respectively. Using symmetry about the x-axis we can construct
the phase portrait.
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Writing a system in Hamiltonian form with perturbations is a useful approach to finding
conditions for periodic orbits. Suppose we have the system

(

ẋ
ẏ

)

=

(

Hy + g1(x, y)
−Hx + g2(x, y)

)

(2)

then we can see that
dH

dt
= g2ẋ− g1ẏ . (3)

If there is a closed orbit C, we have from the above that
∮

C dH =
∮

C g2dx − g1dy = 0.
If we can show that this line integrals cannot vanish, we can deduce that there are no
periodic orbits.

Example 26 Consider

(

ẋ
ẏ

)

=

(

y
−x+ x2 + ǫy(a− x)

)

(ǫ > 0). Choose the same H

as in the previous example 25; then for a periodic orbit C we must have
∮

C y
2(a−x) dt = 0.

We can see from the equation that the extrema of x are reached when y = 0, and that
the fixed points of the system are still at (0, 0) (focus/node) and (1, 0) (saddle) (Exercise:
verify this). The index results show that no periodic orbit can enclose both fixed points, so
the maximum value of x on a periodic orbit is 1. Thus if a > 1 there are no periodic orbits
(however small ǫ). (In the lecture I started to worry about whether x could be greater than
1 on some part of an orbit which did not encircle (1, 0). ẋ = y rules this out!)

If the flow is nearly Hamiltonian, and the value of H is such that the Hamiltonian orbit is
closed, we can derive an approximate relation for the rate of change of H. From equation
(3) we have exactly dH/dt = g2ẋ − g1ẏ. If g1, g2 are very small, then H changes very
slowly and trajectories are almost closed. If we average over a period of the Hamiltonian
flow, then the effect of fluctuations in the r.h.s. around the (almost-closed) orbit are
averaged out and we deduce an equation for the slow variation of H:

dH

dt
≈ F(H) = 〈g2ẋ− g1ẏ〉 = ∆H/P (H) (4)

where the brackets denote the average over a period of the Hamiltonian flow, with the
quantities to be averaged evaluated for the Hamiltonian flow itself. ∆H is the predicted
(small) change in H over one period and P (H) is the period. (The error in assuming that
the gi = 0 when calculating ẋ as a function of x (and H) leads to errors of order |gi|2.)
If the reduced system described by this equation has a fixed point this corresponds to
a periodic orbit of the nearly-Hamiltonian flow. It has no fixed points then the nearly-
Hamiltonian flow has no periodic orbits. This method is known as the energy balance or
Melnikov method though the latter term is usually used for the application of the method
to non-autonomous perturbations to Hamiltonian flows.

Example 27 Consider the same example as above but now with ǫ ≪ 1. Then for the

Hamiltonian flow (with ǫ = 0) we have orbits described by y = ±
√

2H − x2 + 2
3
x3 (with

H here corresponding to the value of the Hamiltonian function a particular orbit). The
equation (4) for the slow variation of H is then

dH

dt
=

∆H

P (H)
=

ǫ

P (H)

∮

(a− x)y2dt =
2ǫ

∫ xmax

xmin
(a− x)(2H − x2 + 2

3
x3)

1

2dx

2
∫ xmax

xmin
(2H − x2 + 2

3
x3)−

1

2dx
,
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where xmin, xmax are the extrema of x on the orbit. The denominator of the r.h.s. of this
equation is an explicit expression for P (H). The integrals are written in terms of x by
noting that, for this system, ydt = dx. Setting the l.h.s.=0 gives the possible values of
H, for a specified value of a, for which the perturbed system has a periodic orbit. The
integrals in general cannot be done exactly, except for the special case where H = 1/6, for
which the corresponding orbit of the unperturbed Hamiltonian system is the homoclinic
orbit passing through (1,0). The corresponding value of dH/dt is < 0 for a < 1/7 and > 0
for a > 1/7. For H small, i.e. for a small closed orbit around the fixed point at (0,0), it
is clear that dH/dt has the same sign as a. These results suggest that there is no stable
periodic orbit for a < 0 (trajectories spiral slowly into the origin), that for 0 < a < 1/7
there is a stable periodic orbit and that for a > 1/7 there is no periodic orbit (trajectories
move slowly outward to the fixed point on the homoclinic orbit) and then rapidly outward
along an unbounded trajectory of the unperturbed system. (We see from this that the lower
limit a = 1, deduced earlier, for the existence of periodic orbits the bound a = 1 is not a
very good estimate at least at small ǫ!)

4.5 Stability of Periodic Orbits

4.5.1 Floquet multipliers and Lyapunov exponents

While individual points on a periodic orbit are not fixed points and it therefore does not
make sense to consider their stability, we can consider the stability of the whole orbit as
an invariant set. We can develop a theory (Floquet theory) for determining whether an
orbit is asymptotically stable to infinitesimal disturbances. Consider again ẋ = f(x) (in
R

n) and suppose there is a periodic orbit x = x̂(t). Letting x = x̂+ ξ(t), and linearizing,
we find

ξ̇ = A(t)ξ , where A = Dfx=x̂(t) . (5)

This is a linear ordinary differential equation with periodic coefficients, and there is much
theory concerning it. We want to know what happens to an initial disturbance ξ(0) after
one period P of the original orbit. Integrating equation (5) from t = 0 to t = P , we can
exploit linearity to write the relation ξ(P ) = Fξ(0), where F is a matrix that depends only
on Df on the orbit and not on ξ(0). The eigenvalues of this matrix are called Floquet
multipliers. One of them is always unity for an autonomous system because equation
(5) is always solved by ξ(t) = f(x̂(t)).

Another way to find the Floquet multipliers is via a map. We construct a local transversal
subspace Σ through x̂(0). Then all trajectories close enough to the periodic orbit intersect
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Σ in the same direction as the periodic orbit. Successive intersections of trajectories with
Σ define a map (the Poincaré [Return] Map Φ : Σ → Σ. If z0 is the intersection of x̂
with Σ then Φ(z0) = z0 so that z0 is a fixed point. Linearizing about this point we have
Φ(z) = z0 + (DΦ)(z − z0), where DΦ is an (n − 1) × (n − 1) matrix. Then the Floquet
multipliers can be defined as the eigenvalues of DΦ. This method suppresses the trivial
unit eigenvalue described above. It is easy to prove that the choice of intersection with
the periodic orbit does not affect the eigenvalues of DΦ [Exercise].

We can define the stability of the orbit to small perturbations in terms of the multipliers
µi, i = 1, 2, . . . , (n− 1).

Definition 23 (Hyperbolicity). A periodic orbit is hyperbolic if none of the µi lie on
the unit circle.

Then we have the theorem on stability analogous to that for fixed points:

Theorem 12
(i) A periodic orbit x̂(t) is asymptotically stable (a sink) if all the µi satisfy |µi| < 1.
(ii) If at least one of the µi has modulus greater than unity then the orbit is unstable (i.e.
not Lyapunov stable).

Proof: very similar to that for fixed points: simple exercise.

Definition 24 (Floquet exponents). The Floquet Exponents λi of a periodic orbit are
defined as λi = P−1 log |µi|, where the µi are the Floquet multipliers and P is the period.
These are a measure of the rate of separation of nearby orbits. The term ’Lyapunov
exponent’ is sometimes used for this special case of periodic orbits, and is widely used for
the extension to any type of trajectory, i.e. the Lyapunov exponent measures the rate of
separation of nearby trajectories.

In R
2 there is only one non-trivial µ, which must be real and positive. Recall the proof of

Poincaré-Bendixson Theorem – the monotonicity property requires that a that a trajectory
close to a periodic orbit either moves systematically towards it (µ < 1) or systematically
away from it (µ > 1).

In this case we have µ = exp
(

∫ P

0
∇ · f(x̂(t)) dt

)

.

Proof: consider an infinitesimal rectangle of length δs and width δξ at x̂(0), with the four
corners of the rectangle following trajectories for t > 0. Then A(0) = δξδs. By standard
result for conservation of area, Ȧ =

∫

∂A
f · ndS ∼ ∇ · f ×A. Thus log(A(P )/A(0)) = µ =

exp
(

∫ P

0
∇ · f(x̂(t) dt

)

, as required.

*Remark*: when we are in R
n, n ≥ 3 the µi may be complex; this leads to a wide variety

of possible ways in which periodic orbits can lose stability:

• µ passes through +1. This is similar to bifurcations of fixed points (saddle-node,
pitchfork etc.)
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• µ passes through e±2ıkπ/n (k, n coprime). This leads to a new orbit that has a period
approximately n times the original. In particular when n = 2k we have twice the
period.

• µ passes through e±2ıνπ, ν irrational. the new solution is a 2-torus.

Example 28 (Damped Pendulum with Torque) Here we have ∇ · f = −k, and so µ < 1
and the periodic orbit that we have already shown to exist is thus stable.

4.6 Example – the Van der Pol oscillator

This much studied equation can be derived from elementary electric circuit theory, incor-
porating a nonlinear resistance. It takes the form

Ẍ + (X2 − β)Ẋ +X = 0

which is the equation for a damped oscillator. If β > 0 then we have negative damping
for small X, positive damping for large X. Thus we expect that oscillations grow to finite
amplitude and then stabilize. It is convenient to scale the equation by writing X =

√
βx,

so that
ẍ+ β(x2 − 1)ẋ+ x = 0 . (6)

This equation is a special case of the Liénard equation ẍ + f(x)ẋ + g(x) = 0. For
analysis it is convenient to use the Liénard Transformation. We write y = ẋ + F (x);
F (x) =

∫ x

0
f(s)ds. Then in terms of x, y we have

(

ẋ
ẏ

)

=

(

y − F (x)
−g(x)

)

(7)

For the Van der Pol system, we have g(x) = x, F (x) = β(1
3
x3−x). If β > 0 then it is easily

seen that the (only) fixed point, at the origin, is unstable. It is hard to apply Poincaré-
Bendixson, however, since the distance from the origin does not decrease monotonically
at large distances. However, we expect that there is a stable limit cycle. We can use
qualitative methods to show this, but first we look at the cases of small and large β.
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(a) β ≪ 1. In this case the system is nearly Hamiltonian, with H = 1
2
(x2 + y2), and

g1 = −F (x), g2 = 0. Hence the Hamiltonian flow is parametrized by x =
√
2H sin t,

y =
√
2H cos t, and the period P (H) is 2π. Thus the energy balance method yields

∆H = −
∫ 2π

0

ẏF (x)dt = β

∫ 2π

0

(x2−x
4

3
)dt = β

∫ 2π

0

(2H sin2 t−4H2

3
sin4 t)dt = 2πβ(H−H

2

2
)

Clearly ∆H > 0 if H < 2 and ∆H < 0 if H > 2, so the equation (4) has a stable fixed
point at H = 2, corresponding to a stable periodic orbit with x ≈ 2 sin t.

(b) β ≫ 1. If x2 is not close to unity then the damping term is very large, so we might
expect ẋ = O(β−1); in fact if we write Y = yβ−1 we get

(

ẋ

Ẏ

)

=

(

β(Y − 1
3
x3 + x)

−xβ−1

)

so Ẏ is very small and Y varies only slowly. Either |ẋ| ≫ 1 or else Y ≈ 1
3
x3 − x.

Furthermore the latter, which defines a curve in the x, Y plane, is ’stable’ only if the
gradient of the curve is positive, i.e. only if x2 > 1 in this particular case.

So the trajectory follows a branch of the curve Y = 1
3
x3 − x with positive gradient (the

slow manifold) until it runs out, and then moves quickly (with ẋ≫ Ẏ ) to another branch
of the curve with positive gradient. The geometry of the curve allows a periodic orbit.
Periodic behaviour of this kind is called a relaxation oscillation.

Assuming that there is such a periodic orbit (to be proved below) we can find an approx-
imation to the period. Almost all the time is taken on the slow manifold, so the period
P is given by

P = 2

∫ B

A

dt = 2

∫ 2

3

− 2

3

dY

Ẏ
= 2

∫ 2

3

− 2

3

−β
x
dY = 2β

∫ −1

−2

(1− x2)

x
dx = β(3− 2 ln 2)

We now prove that there is a periodic orbit for all positive β. As a preliminary step note
the general pattern of trajectories by considering the four regions of the plane bounded by
the nullclines. These regions are (I): x > 0, y > F (x), (II): x > 0, y < F (x), (III) x < 0,
y < F (x) and (IV) x < 0, y > F (x). If the trajectory starts in region I then x is increasing
and y is decreasing. Thus trajectory must cross the curve y = F (x) and enter region II.
Now both x and y are decreasing, and ẏ decreases in magnitude as x decreases. Thus
trajectory must cross into region III, where y is increasing and x is decreasing. Hence
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the trajectory enters region IV and, continuing the argument, eventually enters region I
again.

To construct a proof first consider the function Vk(x, y) =
1
2
{x2 + (y − k)2}.

V̇k = x(y − F (x))− yx+ kx = −xF (x) + kx = −β(1
3
x4 − x2) + xk.

Note in particular that V̇0 = −β(1
3
x4 − x2) so that V0 is increasing along trajectories for

|x| <
√
3 and is decreasing for |x| >

√
3. We deduce that V̇0 > 0 if V0 <

3
2
and hence that

trajectories starting in x2 + y2 < 3 eventually enter the region x2 + y2 > 3.

We now show that there is a region (containing x2 + y2 < 3) that trajectories cannot
leave. See diagram below. (x2 + y2 < 3 is shown as a dotted circle.)
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Consider a trajectory starting at A (−x0, y0) with x0 >
√
3 > 0 and y0 > 0. Choose y0

sufficiently large that y − F (x) > 0 stays positive until the trajectory reaches x = −
√
3

at B. Note that V̇ < 0 for −x0 < x < −
√
3, so B lies within the circle passing through A

and centred at O. (The points B2 and C2 are marked as lying on this circle.) But ẏ > 0
for −x0 < x < −

√
3, so B lies above B1 (

√
3, y0).

Now consider −
√
3 < x <

√
3. V̇0 > 0 in this region, so the trajectory moves outward

across circles centred on the origin. In particular the entire trajectory in this region lies
outside the circular arc B1C1. Hence ẋ > y0 − 2

3
β in this region. The change in V0 along

the trajectory from x = −
√
3 to x =

√
3 is given by

∆V0 =

∫ x=
√
3

x=−
√
3

β(x2 − 1
3
x4)dt ≤ 1

y0 − 2
3
β

∫ x=
√
3

x=−
√
3

β(x2 − 1
3
x4)dx =

4
√
3β

5(y0 − 2
3
β)
.

Hence at x =
√
3 the trajectory lies within the circle centred on the origin with radius

(x20+y
2
0+8

√
3β/{5(y0− 2

3
β)})1/2, shown by the circular arc B3C3D3. Hence the intersection

of the trajectory with x = x0 lies below the pointD3 (x0, y1) where y
2
1 = y20+8

√
3β/{5(y0−

2
3
β)})1/2.

Now consider the circle centred on the y axis and passing through D3 and E1 (x0,−y0).
This circle is a contour of the function Vk(x, y) where k = 1

2
(y1−y0). Using the previously

derived expression V̇k < 0 in x > 0 provided that β(1
3
x40 − x20) > kx0. Since k =

1
2
(y1− y0) < 2

√
3β/{5y0(y0− 2

3
β)}, this condition is satisfied provided that (1

3
x20− 1)x0 >

2
√
3β/{5y0(y0 − 2

3
β)}, i.e. it becomes easier to satisfy as y0 becomes larger.

From the above we deduce that there is a continuous curve defined by the trajectory
ABC, the line CC3 (note that ẋ > 0 on this line) and the circle D3E1 that trajectories
cannot cross from the ’inside’. Now complete this curve to a closed curve by reflecting
about the origin. We deduce that no trajectories leave the enclosed region. It follows from
Poincaré-Bendixon that there is at least one closed orbit in this enclosed region, with the
orbit enclosing the region x2 + y2 < 3.

We can also prove that there is a unique closed orbit C0. Assume that there is a second
closed orbit C1, shown with C0 in the diagram below. In each case only half the orbit is
shown, with the other half obtained by reflection in the origin.

If C0 is closed then the value of the function V0(x, y) must be the same at A0 as at C0.
By previous results we have that V0 increases on the section of orbit with −

√
3 < x <

√
3

and decreases on the section with x >
√
3. Thus we have

V0|B0
− V0|A0

= V0|B0
− V0|C0

> 0.

Now consider the change in V0 along the orbit C1. For the part of the orbit A1B1

V0|B1
− V0|A1

=

∫ B1

A1

V̇0 dt =

∫ B1

A1

V̇0
dx

y − F (x)
<

∫ B0

A0

V̇0
dx

y − F (x)
= V0|B0

− V0|A0

where the inequality follows from the fact that V̇0 is a function of x alone, and that, for
given x, y − F (x) is larger on C1 than on C0. For the part of the orbit B1C1

V0|B1
− V0|C1

=

∫ B1

C1

V̇0 dt =

∫ B1

C1

V̇0
dy

x
>

∫ B0

C0

V̇0
dy

x
= V0|B0

− V0|C0
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where the inequality follows from the fact that V̇0/x is an increasing function of x and
that for given y such that −y0 < y < ỹ0, the value of x is greater on C1 than on C0, with
the integral along C1 also having positive contributions from −y1 < y < −y0 and ỹ0 < yỹ1.
It follows that

V0|B1
− V0|C1

> V0|B0
− V0|C0

= V0|B0
− V0|A0

> V0|B1
− V0|A1

.

Hence V0|C1
< V0|A1

and the orbit C1 is not closed.



P.H.Haynes Part II Dynamical Systems Michaelmas Term 2012 37

5 Bifurcations

5.1 Introduction

We return now to the notion of dynamical systems depending on one or more parameters
µ1, µ2, . . .. We are interested in parameter values for which the system is not structurally
stable. Recall the definitions:

Definition 25 (Topological equivalence). Two vector fields f g and associated flows φf ,
φg are topologically equivalent if ∃ a homeomorphism (1-1, continuous, with continu-
ous inverse) h : Rn → R

n, and a map τ(t,x) → R, strictly increasing on t, s.t.

τ(t+ s,x) = τ(s,x) + τ(t, φf
s(x)) , and φg

τ(t,x)h(x) = h(φf
t (x))

(Structural stability). The vector field f is structurally stable if for all twice differ-
entiable vector fields v ∃ǫv > 0 such that f is topologically equivalent to f + ǫv for all
0 < ǫ < ǫv.

It turns out that if for a given f(x,µ) we vary the set of parameters µ then we will have
structural stability in general except on certain sets in µ-space with dimension less than
the entire space. We define a bifurcation point as a point in µ-space where f is not
structurally stable. A bifurcation (change in structure of the solution) will occur when
µ is varied to pass through such a point. A bifurcation diagram is a plot of e.g the
location of the fixed points and the amplitudes of the periodic orbits as functions of µ.

5.2 Stationary bifurcations in R
2

5.2.1 One-dimensional bifurcations

Stationary bifurcations occur when one eigenvalue of the Jacobian at a given fixed point
is zero. These are best understood initially in one dimension. Suppose we have an 1-D
dynamical system ẋ = f(x,µ), and that when µ = 0 the equation has a fixed point at the
origin, which is non-hyperbolic. Thus we have f(0,0) = ∂fx(0,0) = 0 (subscripts denote
partial derivatives). There are three possible types of bifurcation involving one parameter.
The first is the generic case, and the others occur under more restrictive conditions. In
each case we can sketch the bifurcation diagram.

1. Saddle-Node Bifurcation. ẋ = µ−x2. We have x = +
√
µ (stable) and x = −√

µ
(unstable) when µ > 0, a saddle-node at 0 when µ = 0 and no fixed points for µ < 0.
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2. Transcritical Bifurcation. ẋ = µx−x2. There are fixed points at x = 0, µ which
exchange stability at µ = 0.

3. Pitchfork Bifurcation. ẋ = µx ∓ x3. Fixed point at x = 0, also at x = ±√±µ
when ±µ > 0. The (. . .− x3) case is called supercritical, the other case subcritical;
in the supercritical case the bifurcating solutions are both stable, in the subcritical
case the bifurcating solutions are both unstable.

More insight is gained by considering variations of two independent parameters. Suppose
we have

ẋ = µ1 + µ2x− x2 .

This includes both families (1) and (2) as special cases. Fixed points are at

x =
µ2 ±

√

µ2
2 + 4µ1

2
provided that µ2

2 + 4µ1 > 0

There is a single non-hyperbolic fixed point on the parabola µ2
2 + 4µ1 = 0, and no fixed

point if µ2
2 + 4µ1 < 0.

Clearly passing through any point of the parabola yields a saddle-node bifurcation. To see
a transcritical bifurcation, it is necessary for the path in parameter space to be tangential
to the parabola. e.g. if we vary µ2 at fixed µ1 then in general the only bifurcations are
saddle-nodes, except when µ1 = 0.

We say that the saddle-node bifurcation is codimension 1 (i.e. in µ-space bifurcation set
has a dimension one less than that of the entire parameter space). The o.d.e. ẋ = µ− x2

is a universal unfolding of the saddle node ẋ = −x2 (i.e. it captures the structure in
µ-space around the bifurcation point). We can also say that ẋ = µ − x2 is the normal
form for the saddle-node bifurcation, in the sense that generic vector fields near the
saddle-node can be reduced to this form by a near-identity diffeomorphism.
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Example 29 (Reduction to standard form.) Consider the two-parameter family

ẋ = µ1 + µ2x− x2

and try a change of variable y = x− α, so that

ẏ = (µ1 + µ2α− α2) + y(µ2 − 2α)− y2

Choosing α = µ2/2 gives ẏ = (µ1 + µ2
2/4)− y2, which is in the standard form. The more

general two-parameter system
ẋ = µ1 + µ2x− Cx2

can be reduced scaling time so that T = Ct to

dx

dT
=
µ1

C
+
µ2

C
x− x2

and so to the standard form.

We can now treat the case of general f(x, µ) provided that (as we assume) f can be
expanded in a Taylor series in both x and µ near the non-hyperbolic (bifurcation) point
(0, 0). At this point we already have f(0, 0) = 0 = fx(0, 0). Now suppose, what is
generally true, that fxx 6= 0, fµ 6= 0 at this point. Now we expand f in a double Taylor
series about (0, 0):

f(x, µ) = f(0, 0) + xfx(0, 0) + µfµ(0, 0)

+
x2

2
fxx(0, 0) + xµfxµ(0, 0) +

µ2

2
fµµ(0, 0) +O(x3, x2µ, xµx2, µ3) .

Rearranging, we have

f(x, µ) = (µfµ +O(µ2)) + x(µfxµ) +
x2

2
fxx +O(x3, x2µ, µx2, µ3)

= µ1 + µ2x+
x2

2
fxx +O(x3, x2µ, µx2, µ3)

and this is in the correct form to be reduced to the standard saddle-node equation. Note
that in the second form the µi denote parameters that can be freely varied. The coefficient
of the x2 term is not regarded as freely varying since we have made the assumption that
this is non-zero.

Following this approach allows us to identify the two special cases mentioned previously,
non-generic in the space of all problems, but nonetheless of considerable importance.

• Transcritical bifurcation. If the system is such that f(0, µ) = 0 for all µ (or
can be put into this form by a change of variable), then fµ(0, 0) = 0, and we have
instead of the above

f(x, µ) = µ2x+
x2

2
fxx +O(x3, x2µ, µx2)

with all the higher order terms vanishing when x = 0. This is in the standard form
for a transcritical bifurcation.
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• Pitchfork bifurcation. If the system has a symmetry; that is if the equation is
unchanged under an operation on the space variables whose square is the identity,
then simple bifurcations are pitchforks. In R the only such operation is x→ −x; for
the equations to be invariant f must be odd in x. Then expanding in the same way
we get f(x, µ) = µ2x+

1
3
fxxxx

3+O(x5, µx3, . . . ). (In higher dimensions symmetries
can take more complicated form. For example, the system ẋ = µx−xy , ẏ = −y+x2
has symmetry under x→ −x, y → y).

The saddle-node bifurcation is robust under small changes of parameters as shown above.
But transcritical and pitchfork bifurcations depend on the vanishing of terms, and there-
fore change under small perturbations.

ẋ = ǫ+ µx− x2

ẋ = ǫ+ µx− x3

ẋ = µx+ ǫx2 − x3

The most general ’unfolding’ of the pitchfork bifurcation takes two parameters:

ẋ = ǫ1 + µx+ ǫ2x
2 − x3

(Diagram: exercise)
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5.2.2 Bifurcations in R
2

A fixed point for a 2-D dynamical system is non-hyperbolic if there is at least one purely
imaginary (or zero) eigenvalue.

Consider the situation where ẋ = f(x, µ) has a non-hyperbolic fixed point at the origin,
for some value µ0 of µ. There are four cases:

• (i) λ1 = 0,Re(λ2) 6= 0. This is a simple, or steady-state bifurcation, and is
essentially the same as the 1D examples shown above. We show this below when
we discuss the centre manifold.

• (ii) λ1,2 = ±iω,Re(λj 6= 0, j 6= 1, 2. This is an oscillatory or Hopf bifurcation,
and leads to the growth of oscillations.

• (iii) and (iv) There are two zero eigenvalues. Canonical form of matrix A is either
(

0 0
0 0

)

(double-zero bifurcation), or

(

0 1
0 0

)

(Takens-Bogdanov bifur-

cation). They have quite different properties and are not seen generically as they
need two separate conditions on the parameters to be satisfied.

Note that there are extra technical requirements on the way the eigenvalues change with
µ (e.g. for (i) we must have dλ1/dµ 6= 0 at µ = µ0). We shall look at only (i) and (ii) in
detail.

5.3 The Centre Manifold

Consider first the simple bifurcation. By analogy with the hyperbolic case, when µ = µ0

the linear system has a subspace on which the solutions decay (or grow) exponentially,
and another in which the dynamics is non-hyperbolic (the centre eigenspace as defined
below). For example, for a saddle node we have ẋ = x2, ẏ = −y, so solutions decay on
the y-axis and the dynamics is non-hyperbolic on the x-axis. By analogy with the stable
and unstable manifolds and their relation to the stable and unstable subspaces in the
hyperbolic case, we might expect a manifold to exist (the centre manifold), which is
tangent to the centre eigenspace at the origin, and on which the dynamics correspond to
that in the centre eigenspace.

Example 30 Consider the non-hyperbolic system

(

ẋ
ẏ

)

=

(

x2 + xy + y2

−y + x2 + xy

)

.

The linear system has ẏ = −y and so trajectories approach y = 0, which is the centre
eigenspace. In this space ẋ = x2. It turns out that there is an invariant manifold tangent
to y = 0 at the origin on which ẋ ∼ x2, (the Centre Manifold or CM).

This is formalised in the Centre Manifold Theorem below, but note that CM’s are not like
stable and unstable manifolds in that they are not unique (see example sheet 2).
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We can find the CM in this example, assuming existence, by expansion. Suppose it is
of form y = p(x) ≡ a2x

2 + a3x
3 + a4x

4 + . . .. Then ẏ = −p + x2 + xp = ẋpx =
(x2 + xp + p2)px. This o.d.e. for p(x) cannot be solved in general, but substitute the
expansion for p, equate coefficients and get a2 = 1, a3 = −1, a4 = 0. Thus the CM is
given by p(x) = x2 − x3 +O(5)∗. The dynamics on the CM is then given by replacing y
by p in the equation for ẋ:

ẋ = x2 + xp+ p2 = x2 + x3 − x4 +O(6)∗ + x4 − 2x5 +O(6) = x2 + x3 − 2x5 +O(6)∗,

and so close to the origin we have ẋ ∼ x2 as expected so that we have a saddle-node for
the nonlinear system.

∗Notation: The notation O(m) is used to mean terms that are of total power m in the
relevant variables, e.g. if the variables are a and b then then terms a3, a2b, ab2 and b3 are
all O(3).

The existence of a centre manifold is guaranteed under appropriate conditions by the
Centre Manifold Theorem:

Theorem 13 (Centre Manifold Theorem). Given a dynamical system ẋ = f(x) in
R

n with a non-hyperbolic fixed point at the origin O, let Ec be the (generalised) linear
eigenspace corresponding to eigenvalues of A = Df |0 with zero real part (the centre sub-
space), and Eh the complement of Ec (the hyperbolic subspace). Choose a coordinate
system (c,h), c ∈ Ec, h ∈ Eh and write the o.d.e. in the form

(

ċ

ḣ

)

=

(

C(c,h)
H(c,h)

)

.

Then ∃ a function p : Ec → Eh with graph h = p(c), called the centre manifold which
has properties:

• (i) is tangent to Ec at 0;

• (ii) is locally invariant under f ;

• (iii) dynamics is topologically equivalent to

(

ċ

ḣ

)

=





C(c,p(c))
∂H

∂h

∣

∣

∣

∣

0

h





• (iv) p(c) can be approximated by a polynomial in c in some neighbourhood of O.

Thus in Example 29, c = x, h = y and p(x) = x2 − x3 + . . .; local dynamics is equivalent
to ẋ = x2 + xp(x) + p(x)2, ẏ = −y
This is very helpful for non-hyperbolic systems, but we believe that such reductions ought
to be possible near, and not just at, bifurcation points. We can use the centre manifold
theorem by means of a trick.
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To our original system ẋ = f(x,µ), which now has a hyperbolic fixed point at 0, adjoin the
equations µ̇ = 0. We now have a system in R

(n+m), where m is the number of parameters.
In this new system the terms giving the linearized growth rates as functions µ will be
nonlinear, and so we are at a non-hyperbolic fixed point of the extended system, and can
use the CM theorem to reduce the system.

Example 31 Consider the system

(

ẋ
ẏ

)

=

(

µ+ x2 + xy + y2

2µ− y + x2 + xy

)

.

Regarding µ as a variable we have





ẋ
µ̇
ẏ



 =





0 1 0
0 0 0
0 2 −1









x
µ
y



 + nonlinear terms.

The centre (generalised) eigenspace is y = 2µ, which is a plane in R
3 (note that in the

linearised system all initial conditions tend to this plane), and the CM is of the form

y = p(x, µ) = 2µ+ a20x
2 + a11xµ+ a02µ

2 + . . . ,

we have

ẏ = 2µ− p+ x2 + xp = −∂p
∂x

(µ+ x2 + xy + y2) +
∂p

∂µ
· 0 , or

2µ+ (2µ+ a20x
2 + a11xµ+ a02µ

2+ . . .)(x− 1) + x2

=
(

µ+ x2 + x(2µ+ a20x
2 + a11xµ+ a02µ

2 + . . .)+

+ (2µ+ a20x
2 + a11xµ+ a02µ

2 + . . .)2
)

(2a20x+ a1µ+ . . .)

.

Equating coefficients, we find [x2] : a20 = 1, [xµ] : a11 = 0, [µ2] : a02 = 0. Thus the CM
is given by y = p(x, µ) = 2µ+ x2 +O(3), and the dynamics on the extended CM is given
by

ẋ =µ+ x2 + x(2µ+ . . .) + 4µ2 + . . .

µ̇ =0

This is clearly (cf. the one-parameter families above) a saddle-node bifurcation when µ =
0.

The corresponding general (and important) result is that for a dynamical system in R
n,

with a simple bifurcation at µ0 (i.e. the system has a single zero eigenvalue at µ = µ0,
and (wlog) all eigenvalues are in the left-hand half plane for µ = µ−

0 , and there is just
one eigenvalue in the right-hand half-plane for µ = µ+

0 ), there is a centre manifold, the
dynamics is essentially one-dimensional and the bifurcation is generically a saddle-node.
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5.4 Oscillatory/Hopf Bifurcations in R
2

The simplest model of a Hopf (oscillatory) bifurcation is given by the system (in polar
coordinates) ṙ = µr − r3, θ̇ = 1. For µ < 0 we have a stable focus, and for µ > 0 an
unstable focus and a stable periodic orbit r =

√
µ. This is a supercritical Hopf. If

instead we have ṙ = µr + r3 then the periodic orbit exists when µ < 0, and is unstable
(subcritical Hopf).

It turns out that generically all dynamical systems can be put into this form in the
neighbourhood of a Hopf bifurcation. We need a technical definition of this bifurcation.

Definition 26 (Hopf bifurcation). Suppose we have a dynamical system ẋ = f(x, µ) =
(f(x, µ), g(x, µ)) which at µ = 0 has a fixed point at 0, and has linearization A satisfying
detA > 0, TrA = 0 [so that the linearization has eigenvalues λ1,2(0) = ±iω], and that
d(Re(λ1,2)/dµ > 0 at µ = 0. Then provided a constant γ, defined as the value at µ = 0 of

1

16

(

fxxx + gyyy + fxyy + gxxy + ω−1(fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy)
)

is not equal to zero, then there is a Hopf bifurcation at µ = 0 and there is a stable limit
cycle for µ = 0+ if γ < 0 (supercritical Hopf bifurcation) and an unstable limit cycle
for µ = 0− if γ > 0 (subcritical Hopf bifurcation).

Remark: because A is not singular at µ = 0, there is no change in the number of fixed
points for small |µ|. The exact form of γ above is complicated, but you will not be
required to remember it or derive it and examples will typically consider equations that
are in an easily recognizable form. Rather than derive the formula (see §8.9 of Glendinning
if interested) we show how the equation can be brought into standard, i.e. normal form
at µ = 0 by a near identity diffeomorphism.

Take µ = 0 and choose canonical coordinates so that A =

(

0 −ω
ω 0

)

. Then writing (in

these coordinates) z = x + iy, the linear part of the problem is ż = iωz. Then the full
equation must take the form

ż = iωz + α1z
2 + α2zz

∗ + α3z
∗2 +O(3) .

Define a new complex variable ξ by ξ = z + a1z
2 + a2zz

∗ + a3z
∗2. We try to choose a1,2,3

so that ξ̇ = iωξ +O(3). In fact

ξ̇ = ż(1 + 2a1z + a2z
∗) + ż∗(a2z + 2a3z

∗) so correct to O(3),

iω(z + a1z
2 + a2zz

∗ + a3z
∗2) = (iωz + α1z

2 + α2zz
∗ + α3z

∗2)(1 + 2a1z + a2z
∗)

+ (−iωz∗ + α∗
1z

∗2 + α∗
2zz

∗ + α∗
3z

2)(a2z + 2a3z
∗)
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Equating coefficients of the quadratic terms we get

iωa1 = α1 + 2iωa1; iωa2 = α2 + iωa2 − iωa2; iωa3 = α3 − 2iωa3

and clearly these equations can be solved. Thus in the transformed system there are
no quadratic terms. Attempting the same procedure at cubic order, we find that all
the cubic terms can be removed except the term ∝ z2z∗ [Exercise]. Thus after all the
transformations have been completed we are left with the equation

ż = iωz + νz2z∗ + h.o.t., or ṙ = Re(ν)r3, θ̇ = ω + Im(ν)r2

and γ ∝ Re(ν).

To find the canonical equation when µ 6= 0 we can either use the same ideas on the
extended CM that we used for the simple bifurcation, or just add the relevant linear
terms; which can be shown to yield the same result in non-degenerate cases.

Note that the normal form is appropriate only when r is sufficiently small. But note that
since the constant part of θ̇ is of order unity there is a neighbourhood of the origin in
which there are no fixed points.

Example 32 Find the nature of the Hopf bifurcation for the system ż = (µ + iω)z +
αz2 + β|z|2.
Clearly bifurcation point is at µ = 0, so choose this value and, guided by above analysis,
choose ξ = z + az2 + b|z|2. Then

ξ̇ = (iωz + αz2 + β|z|2)(1 + 2az + bz∗) + (−iωz∗ + α∗z∗2 + β∗|z|2)bz
= iωz + (α + 2ia)z2 + β|z|2 + |z|2z(2aβ + αb+ bβ∗) + other cubic

= iω(ξ − az2 − b|z|2) + (α + 2ia)z2 + β|z|2 + |z|2z(2aβ + αb+ bβ∗) + other cubic

Now choose iωa = −α : iωb = β. Then quadratic terms vanish, and

= iωξ + (iω)−1(|β|2 − αβ)|ξ|2ξ + other cubic +O(4)

so that Re(ν) = −Im(αβ)/ω.

In fact it can be shown by successive transformations that the canonical form for the
dynamics on the CM for a Hopf bifurcation is ż = zF (|z|2), where F is a complex valued
function with F (0) = iω. This allows the treatment of degenerate situations for which
Re(ν) = 0.

For higher dimensional systems the CM theorem can be invoked to show that in the
neighbourhood of a Hopf bifurcation there is a 2-dimensional (extended) CM on which
the dynamics can be put into the above form.
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5.5 *Bifurcations of periodic orbits*

(a) Homoclinic bifurcation

This is the simplest ‘global’ bifurcation and occurs when the stable and unstable manifolds
of a saddle point intersect at a critical value µ0 of the parameter. There are two ‘flavours’
possible:

(b) ’Andronov bifurcation’

A very similar type of bifurcation arises when a saddle-node develops on a periodic orbit
(“Andronov bifurcation”).] In each case, periodic orbits are produced as a result of

the bifurcation, and we would like to know the stability of these orbits.
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6 Bifurcations in Maps

6.1 Examples of maps

We have seen that the study of the dynamics of flows near periodic orbits can be naturally
expressed in terms of a map (the Poincaré map). This helps to motivate the study of
maps in their own right. There are other motivations too.

• Maps of the interval. These originally arose as discrete versions of 1D flows, but
potentially have much richer structure. Suppose we have the ordinary differential
equation ẋ = f ; if we have discrete time intervals t0, t1, . . . , tn ≡ t0 + n∆t, . . ., with
x(tn) = xn then Euler’s method gives xn+1 = xn +∆tf(xn). Alternatively consider
xn as a population at the nth generation. Generalising gives the general nonlinear
map xn+1 = g(xn). Famous example is the Logistic (quadratic) map :

xn+1 = µxn(1− xn) 0 < xn ≤ 1 : 1 ≤ µ ≤ 4.

Another important map (since calculations are easy!) is the

Tent (piecewise linear) map. An example is

xn+1 =

{

µxn 0 ≤ xn ≤ 1
2

µ(1− xn)
1
2
≤ xn ≤ 1

}

0 < xn ≤ 1 : 1 ≤ µ ≤ 2
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• Circle Maps. These are convenient models in which to study a rich variety of be-
haviour demonstrated by more general maps. Use units in which the circumference
of the circle is unity.

Rotation. xn+1 = xn + ω [mod 1]. This is periodic if ω rational, aperiodic if ω
irrational.

Standard Circle Map. xn+1 = xn + µ sin 2πxn [mod 1]. When µ small this is
almost the identity, for larger µ get more interesting behaviour. (Introduced by
Kolmogorov as a very simple model for the driven mechanical rotor.)

Sawtooth Map (Bernoulli Shift). xn+1 = 2xn [mod 1]. We can find the solution
for any x0 by expressing xn in binary form: xn = 0.i1i2i3 . . . in . . . where the ij are
zero or unity. Then xn+1 = 0.i2i3 . . .. So if x0 = 0, xn = 0, if x0 is rational
then binary expansion repeats and so xn = x0 for some n (periodic) while if x0 is
irrational solution is aperiodic. This map is a prototype of chaotic behaviour.

The shift map can be seen as a special case of the logistic map. Put xn = sin2 πθn,
with θn satisfying the shift map. Then xn+1 = sin2 2πθn = 4xn(1 − xn) so that xn
satisfies the logistic map with n = 4. In fact the these maps are topologically
conjugate:

Definition 27 (Topological conjugacy for maps.) Two maps F and G are topolog-
ically conjugate if there exists a smooth invertible map H such that F = H−1·G·H.
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• Maps of the Plane. These are naturally motivated as Poincaré maps of flows
in R

3. As such they should be invertible, or at least have unique inverse when an
inverse exists.

Hénon Map
(

xn+1

yn+1

)

=

(

1 + yn − ax2n
bxn

)

For appropriate choice of a, b this has ‘strange’ behaviour with fractal structure.

Baker Map. Composed of two maps:

(

xn+1

yn+1

)

=























(

2xn
1
2
yn

)

0 < xn <
1
2
, 0 < yn < 1

(

2− 2xn
1− 1

2
yn

)

1
2
< xn < 1, 0 < yn < 1

So this is a map of [0 < x < 1, 0 < y < 1] into itself.

Horseshoe Map (Smale). Best seen in terms of diagram:

Set of points that do not leave box form a fractal Cantor-type set.
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6.2 Fixed points, cycles and stability

We can define, in a manner analogous to that for flows, fixed points and periodic
points (cycles) of a map:

Definition 28 Given a map xn+1 = f(xn), a fixed point x0 satisfies x0 = f(x0).
x0 is a periodic point with period n if x0 = fn(x0), x0 6= fm(x0), 0 < m < n.
Here f2 ≡ f ◦ f (composition), fn = f ◦ fn−1. A set of periodic points {x0,x1 =
f(x0), . . . ,xn = fn(x0) = x0} is called a cycle.

We can define ω-points (and α-points for invertible maps with inverses) as points
of accumulation of iterates of xn as n→ ∞ (−∞ for α-points).

We can define notions of Lyapunov stability and quasi-asymptotic stability just as
for flows. The notions can be combined into the notion of an attractor.

Definition 29 Suppose A is a closed set mapped into itself by f . This could be a
fixed point, cycle or some more exotic set. We suppose that f is continuous at points
of A. Then A is an attractor if

(i) For any neighbourhood U of A ∃ a neighbourhood V of A such that for any x ∈ V,
fn(x) ∈ U ∀n ≥ 0 (Lyapunov stability);

(ii) ∃ an nbd W of A such that for any x ∈ W and any neighbourhood A′ of A ∃n0

such that fn(x) ∈ A′ ∀n > n0 (quasi-asymptotic stability).

Consider a fixed point (chosen to be at the origin) of xn+1 = f(xn), where f has
continuous first derivative at and near the origin. Then we can form the Jacobian
matrix A = Df0. If we suppose that eigenvalues of A are distinct or there is a
complete set of eigenvectors, then we can show that if all the eigenvalues λ of A
satisfy |λ| < 1, then the origin is an attractor.

Proof: Let zj be the left eigenvectors of A (possibly complex). Then let Vn =
∑

vi|zi·
xn|2, for some positive set of numbers vi. Then Vn+1 =

∑

vi|zi · Axn|2 + O(|xn|3).
The first term on the rhs is

∑

vi|λi|2|zi · xn|2 < a2Vn, where a2 = max |λi|2 <
(1 − ǫ), ǫ > 0. We can choose Vn sufficiently small that the cubic remainder term
is less than ǫVn/2, say, and so Vn → 0, n→ ∞. Conversely if any eigenvalue λ has
|λ| > 1 the fixed point is a repellor (neither QAS nor Lyapunov stable). Proof:
exercise.

For a cycle of least period r each point of the cycle is a fixed point of the map
f r, so stability is determined by the eigenvalues of the Jacobian of this map. If we
write for each point x(j) of the cycle A

(j) ≡ Df(x(j)) the linearization of the map
about the cycle can be written ξn+1 = A

(n)ξn and so the linearization of f r is just
A
(r)
A
(r−1) . . .A(1) (can also see this from the chain rule).

6.3 Local bifurcations in 1-dimensional maps

Bifurcations must occur when the eigenvalues of a map pass through the unit circle.
For 1-dimensional maps Jacobians are just real numbers which must pass through
±1. We can classify these bifurcations just as for 1-dimensional flows.
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• Saddle-Node. If we suppose as before that f = f(x, µ) and that f(0, 0) =
0, fx(0, 0) = 1 then expanding in x, µ as before get

xn+1 = xn + µfµ +
1

2
x2nfxx + xnµfxµ + . . .

and truncating, shifting the origin and rescaling we get the canonical form

xn+1 = xn + µ− x2n

which has no fixed points when µ < 0 and two fixed points when µ > 0, for which
x = ±√

µ and the Jacobian is 1 − 2x. So for 0 < µ < 1 one of the fixed points is
stable and the other unstable. (Something new happens for µ > 1, but the normal
form is understood to apply for sufficiently small µ).

• Transcritical bifurcation. Now suppose in addition that fµ(0, 0) = 0; then we
have

xn+1 = xn +
1

2
(x2nfxx + µ2fµµ) + xnµfxµ + . . .

Truncating and seeking fixed points, we need (x2fxx + µ2fµµ + 2xµfxµ) = 0 and
this is only possible if f 2

xµ > fxxfµµ. Otherwise there are no fixed points and so no
bifurcation. If satisfied can write truncated system in canonical form

xn+1 = xn − (xn − aµ)(xn − bµ)

for some a, b. There are two lines of fixed points x = aµ, x = bµ crossing at
origin when µ = 0, each exchanges stability as µ passes through zero. If we write
yn = xn − aµ, say get even simpler form yn+1 = yn − yn(yn − cµ).

• Pitchfork bifurcation. This is achieved as before when the eigenvalue is unity,
and if there is a symmetry (equivariance) under x → −x, in which case only odd
terms occur in the expansion of f . Then we have

xn+1 = xn + µxn ± x3n +O(5)
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More generally we get a pitchfork when fµ = fxx = 0, fµx, fxxx 6= 0, in which case
the correction is (in general) O(4).

• Period-doubling bifurcation. The remaining case has eigenvalue −1 at the bi-
furcation point. Thus in the general case

xn+1 = −xn + aµ+ bµxn + cx2n + dx3n +O(µ2, µx2n, x
4
n)

where a = fµ, b = fxµ, c = 1
2
fxx and d = 1

6
fxxx. Consider the map f 2. xn+2 =

−xn+1 + aµ+ bµxn+1 + cx2n+1 + dx3n+1 +O(µ2, µx2n, x
4
n), so that

xn+2 = −xn + aµ+ bµxn + cx2n + dx3n + aµ+ bµ(−xn + aµ+ bµxn + cx2n)

+ c(−xn + aµ+ bµxn + cx2n)
2 − dx3n +O(µ2, µx2n, x

4
n).

Simplifying and keeping only leading terms we get

xn+2 = (1− 2(b+ ac)µ)xn + (3ad− 2ac2 − bc)µx2n − 2(c2 + d)x3n.

If we make a change of variable of the form zn = xn + αx2n, (i.e. a near-identity
transformation) then we can remove the leading quadratic term to give zn+2 =
(1−2(b+ac)µ)zn−2(c2+d)z3n. (Equivalently one can estimate the side of the various
terms to show that the O(µx2n) term is irrelevant to the form of the bifurcation.)
Thus there is a pitchfork bifurcation of f 2 at µ = 0. The nonzero fixed points of
f 2 correspond to a 2-cycle of f . It can be shown that if the origin is unstable the
2-cycle is stable and vice versa.
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7 Chaos

7.1 Introduction

What do we mean by chaos? Two main concepts (a) in a chaotic system, initially
nearby orbits separate, and (b) by iterating the map we have some sort of mixing of
even the smallest sets, i.e. the iterated image of the set spreads across the domain.

Consider a continuous map f : I → I of a bounded interval I ⊂ R into itself, and
with Λ ⊂ I a set invariant under f :

Definition 30 Sensitive dependence on initial conditions. f has sensitive de-
pendence on initial conditions [SDIC] on Λ if ∃ δ > 0 s.t. for any x ∈ Λ and
ǫ > 0 ∃y ∈ Λ and n > 0 s.t. |y − x| < ǫ |fn(x)− fn(y)| > δ

Note that not all points in the neighbourhood of the selected point x have to separate
in this way, and nothing said about exponential divergence.

Definition 31 Topological Transitivity. The map f above is topologically tran-
sitive [TT] on Λ if for any pair of open sets K1, K2 s.t. Ki ∩ Λ 6= ∅, i = 1, 2,
∃n > 0 s.t. fn(K1) ∩K2 6= ∅. This means that there are orbits that are dense in Λ
(proof is beyond this course, but the statement should be at least plausible i.e. come
arbitrarily close to every point of Λ, and so Λ cannot be decomposed into disjoint
invariant sets.

Example 33 (TT but not SDIC).The rotation map xn+1 = xn + ω[mod 1] is TT
on [0, 1] if ω is irrational (though not SDIC).

Example 34 (SDIC but not TT). The map xn+1 = 2xn (|xn| < 1
2
), xn+1 =

2(sign(xn) − xn) (1
2
< |xn| < 1) has SDIC on [−1, 1] since |f ′| = 2, but is not

TT on [−1, 1] as x = 0 is invariant, (0, 1) maps into (0, 1) and (−1, 0) maps into
(−1, 0).

There are two apparently quite different definitions of chaos, though they are more
similar than they look.

Definition 32 (Chaos [Devaney]). f : I → I is chaotic on Λ if (i) f is SDIC on
Λ; (ii) f is TT on Λ; (iii) periodic points of f are dense in Λ.

The second definition depends on the Horseshoe property.

Definition 33 (Horseshoe property). f : I → I has a horseshoe if ∃ J ⊆ I, with
J and open interval, and disjoint open subintervals K1, K2 of J s.t. f(Ki) = J for
i = 1, 2.
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If f has a horseshoe it can be shown that (i) fn has at least 2n fixed points; (ii) f
has periodic points of every period; (iii) f has an uncountable number of aperiodic
orbits.

Definition 34 (Chaos[Glendinning]) A continous map f : I → I is chaotic if fn

has a horseshoe for some n ≥ 1.

This last definition allows for maps with stable fixed points, but demands exponen-
tial divergence of nearby trajectories. It will be shown that Chaos[G]⇒Chaos[D].

7.2 The Sawtooth Map (Bernoulli shift)

As an example consider the sawtooth map f(x) = 2x[mod 1].

(a) f clearly has a horseshoe with K1 = (0, 1
2
), K2 = (1

2
, 1). (Note, open sets). So f

is chaotic[G].

(b) (i) As before use binary expansion so if xn = 0.a1a2a3 . . . then xn+1 = 0.a2a3 . . ..

If x 6= y then suppose x and y differ first in the (n + 1)th place; then for r ≤ n
|f r(x)− f r(y)| = 2r|x− y|.
Choose δ < 1

2
. Then given any x ∈ [0, 1) and ǫ > 0 choose n so that 2−n−1 < ǫ and

choose y to differ from x only in the n+1 binary place. Then |fn(y)−fn(x)| = 1
2
> δ,

so f is SDIC.

(ii) Choose any point x = 0.a1a2 . . .; then for another point z = 0.b1b2 . . . choose
yN = 0.b1b2 . . . bNa1a2 . . .. Then fN(yN) = x and we can make yN arbitrarily close
to z, by taking N sufficiently large, so map is TT.

(iii) Now define xN = 0.a1a2 . . . aNa1a2 . . . aNa1 . . . i.e. expansion repeats after N
terms. Repeated application of f gives a cycle of period N . (There are 2N such
cycles.) Furthermore we can make xN arbitrarily close to x. So periodic points are
dense in [0, 1).



P.H.Haynes Part II Dynamical Systems Michaelmas Term 2012 55

Thus f is chaotic[D].

In fact f is a very effective mixer. Define f(1
2
) = 1 and suppose x is not a preimage

of 1/2, i.e. that there is no n s.t. fn(x) = 1
2
. Thus x does not end with a

infinite sequence of 0’s (or 1’s). Choose m s.t. am+1 = 0 Then it is easy to see
that y = 0.a1 . . . am 0 0 0 . . . < x < z = 0.a1 . . . am 1 0 0 . . ., and that fm(y) = 0,
fm(z) = 1

2
. Thus fm+1((y, z)) = (0, 1), and so any arbitrarily small neighbourhood

of x can be mapped into the whole interval. (This is because the map is 1-1 on each
half range and by construction y, z lie in the same half range and so do f(y), f(z).)

7.3 Horseshoes, symbolic dynamics and the shift map

Aim to show that a map with the horseshoe property acts on a certain invariant set
Λ in the same way that as the shift map.

Suppose a continous map f has a horseshoe on an interval J ⊂ R and define the
closed intervals I = J , Ii = Ki, i = 1, 2.

For simplicity assume that f is monotonic on Ii, I1∩I2 = ∅ and that f(x) ∈ I ⇒ x ∈
I1 or I2. (Variations from these conditions do not change the conclusions below, but
require more complicated arguments.) Define Λ = {x : fn(x) ∈ I, ∀n ≥ 0}. Clearly
x ∈ Λ ⇒ f(x) ∈ Λ, and x ∈ Λ ⇒ x = f(y) for some y ∈ I (Intermediate value
theorem). Since fn(y) ∈ I ∀n ≥ 0 it follows that y ∈ Λ. Thus f(Λ) = Λ so Λ is
invariant.

For each x ∈ Λ fn(x) ∈ I ⇒ fn−1(x) ∈ I1 or I2. Define an = 0 if fn−1(x) ∈ I1,
an = 1 if fn−1(x) ∈ I2. Thus x corresponds to the sequence a1a2 . . . while f(x)
corresponds to a2a3 . . .. This is essentially the same as the action of the shift map
on binary expansions of numbers in [0, 1]. There are small differences as 0.111 . . .
and 1.000 . . . are the same number but different symbol sequences; however this
does not affect the proofs of TT and SDIC, nor the deduction that periodic points
are dense in Λ. Thus chaos[G]⇒horseshoe⇒chaos[D].

What does Λ look like? The set f−1(I) ≡ {x ∈ I : f(x) ∈ I} comprises two disjoint
closed intervals. So f−n(I) has 2n closed intervals and Λ =

⋂∞
n=1 f

−n(I). Limit
gives a closed set with an uncountable number of points but length zero, cf. the
middle third Cantor set.
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7.4 Period 3 implies chaos

Recall the Intermediate Value Theorem: If f : [a, b] → r is continuous, and f(a) =
c, f(b) = d, then ∀y ∈ [c, d]∃x ∈ [a, b] s.t. f(x) = y. In particular if f(x) − x
changes sign on [a, b] then ∃x0 ∈ [a, b] then ∃x0 ∈ [a, b] s.t. f(x0) = x0. We can now
prove the remarkable theorem:

Theorem 14 (Period 3 implies chaos). If a continuous map f on I ⊆ R has a
3-cycle then f 2 has a horseshoe and so f is chaotic.

Proof: let x1 < x2 < x3 be the elements of the 3-cycle. wlog suppose f(x1) =
x2, f(x2) = x3, f(x3) = x1 (otherwise consider instead −f(−x)).

f(x2) = x3 > x2, f(x3) = x1 < x3 ⇒ ∃z ∈ (x2, x3) s.t. f(z) = z

f(x1) = x2 < z, f(x2) = x3 > z ⇒ ∃y ∈ (x1, x2) s.t. f(y) = z

Thus f 2(y) = f(z) = z > y and f 2(x2) = x1 < y, so ∃ a smallest r ∈ (y, x2) s.t. f
2(r) =

y, and ∃ largest s ∈ (x2, z) s.t. f
2(s) = y. Thus f 2 has a horseshoe with K1 = (y, r),

K2 = (s, z) and J = (y, z).

7.5 Existence of N-cycles

Have shown that f 2 has a horseshoe if there is a 3-cycle, which implies existence of
cycles for f 2 of all periods. In fact can show that f has cycles of all periods.

Lemma. Recall that if f is continuous and V ⊆ f(U), where U, V are closed
intervals, the ∃ a closed interval K ⊆ U s.t. f(K) = V .

Theorem 15 If a continuous map f on ⊆ R has a 3-cycle the it has an N -cycle
∀N ≥ 1.

Assume x1 = f(x3) < x2 = f(x1) < x3 = f(x2) as before.

N = 1: f(x3) < x2 < x3 = f(x2) ⇒ there is a fixed point of the map.

N > 1: let IL = [x1, x2], IR = [x2, x3]. Then f(IL) ⊇ IR, f(IR) ⊇ IL ∪ IR, so
f(IR) ⊇ IL and f(IR) ⊇ IR.

Choose JN = IR. Then define F (JN−1) = JN , noting JN ⊆ f(IL) and hence
∃JN−1 ⊆ IL by the Lemma. Similarly, define JN−2, . . . , J0 ⊆ IR by f(Ji) = Ji+1,
noting that each Ji+1 ⊆ f(IR) and hence each Ji ⊆ IR.



P.H.Haynes Part II Dynamical Systems Michaelmas Term 2012 57

fN(J0) = IR ⇒ ∃a, b ∈ J0 s.t. fN(a) = x2, f
N(b) = x3. But J0 ⊆ IR so a ≥

fN(a), b ≤ fN(b) Thus by IVT there is a fixed point z ∈ [a, b] of fN .

Now consider whether z, f(z), f 2(z), . . . , fN−1(z) are distinct points in an N -cycle.
Certainly z, f(z), . . . , fN−2(z) ∈ IR and fN−1(z) ∈ IL, so for this not to be the case
must have fN−1(z) = x2 ⇒ fN(z) = x3 = z.

But then f(z) = f(x3) = x1 6∈ IR so violating construction. Thus fN−1(z) 6= x2 so
must not be in IR. This shows that one iterate is definitely different from all others
so we have an N -cycle.

The statements f(Il) ⊇ IR, f(IR) ⊇ IL ∪ IR can be shown as a directed graph:

IL RI
f(I )L RI

f(I )R

f(I )R RI

IL

Cycles exist when there are closed paths in the diagram.

Example 35 Suppose there is a 4-cycle x1 = f(x4) < x3 = f(x2) < x2 = f(x1) <
x4 = f(x3). Let IA = [x1, x3], IB = [x3, x2], IC = [x2, x4]. Only fixed points in IB
and 2-cycles between IA, IB possible.

f(I )A IC

f(I )C IA

IBf(I )B IC

ICIBIA

A remarkable result due to Sharkovsky can be proved (proof not in course) by similar
methods to the above.

Theorem 16 (Sharkovsky.) If f : R → R is continous, f has a k-cycle and l ⊳ k
in the following ordering, then f also has an l-cycle:

1⊳ 2⊳ 22 ⊳ 23 ⊳ 24 ⊳ . . .

. . .

. . .⊳ 23 · 9⊳ 23 · 7⊳ 23 · 5⊳ 23 · 3

. . .⊳ 22 · 9⊳ 22 · 7⊳ 22 · 5⊳ 22 · 3

. . .⊳ 2 · 9⊳ 2 · 7⊳ 2 · 5⊳ 2 · 3

. . .⊳ 9⊳ 7⊳ 5⊳ 3
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This has many implications, not least that if f has a cycle of period 3 then it has
cycles of all periods, as proved separately above.

Note that the theorem says nothing about the stability of the cycles. However for the
logistic equation at least we know that all cycles either arise from a period-doubling
bifurcation, or in the case of the odd-period cycles as a saddle-node bifurcation so
they are all stable in some range.
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The period-three orbit for the logistic map. Shown is the map f 3 where f(x) =
µx(1− x): top picture; µ = 3.81, bottom picture; µ = 3.84.
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7.6 The Tent Map

A more interesting map, because it depends on a parameter, is the tent map
f(x) = µ[1

2
− |x − 1

2
|] Fixed point at 0 stable for µ < 1. Choose µ ∈ (1, 2]. In this

range the origin is unstable and the interval [0, 1] is mapped into itself. There is a
fixed point x0 = µ/(1 + µ), which is always unstable (exercise).

We show that the map is chaotic[G] when 1 < µ ≤ 2.

Step 1. All non-zero orbits eventually enter and stay in the intervalA = [f 2(1
2
), f(1

2
)] =

[µ(1 − µ/2), µ/2]. Note that if the preimage of x0, [x−1 = 1/(1 + µ)] ∈ A; i.e. if
1/(1 + µ) > µ(1− µ/2) then µ >

√
2.

Step 2. Now consider f 2(x):

f 2(x) = µ2x 0 ≤ x ≤ 1/2µ

µ(1− µx) 1/2µ ≤ x ≤ 1
2

µ(1− µ(1− x)) 1
2
≤ x ≤ 1− 1/2µ

µ2(1− x) 1− 1/2µ ≤ x ≤ 1

Let x−2 be the preimage under f of x−1 (Or the preimage under f 2 of the fixed
point x0) in x >

1
2
. Then x−2 = (µ2 + µ− 1)/µ(µ+ 1).

Step 3. By a change of coordinates we can see that f 2 acts like a tent map with
parameter µ2 on the two intervals JL = [x−1, x0] and JR = [x0, x−2].
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Two different cases:

For µ <
√
2, (see picture for µ = 1.3), f 2 gives tent maps with parameter µ2 on the

intervals [x−1, x0] and [x0, x−2], and the attracting set (shaded) has two components
defined by f i(1

2
), i = 1, . . . , 4 (circles).
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For µ >
√
2, (see picture for µ = 1.5), f 2 has horseshoes on the intervals [x−1, x0] and

[x0, x−2], and the attracting set (shaded) has one component since f 4(1
2
) > f 3(1

2
).
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Step 4. Now suppose that
√
2 ≤ µ2n < 2. Then f 2n+1

has a horseshoe on 2n intervals
that are permuted by f . Proof: apply above arguments inductively.

The union of all the intervals [21/2
n+1

, 21/2
n

) is the complete range 1 < µ < 2.

The following images of the (µ, x) plane were produced by interating the tent map
for O(1000) iterations to allow the orbit to settle towards the chaotic attractor, and
then plotting successive iterations whilst slowly varying the parameter µ.

The attracting set contains 2n intervals in 21/2
n+1 ≤ µ < 21/2

n

, i.e. 1 interval in
1.414 · · · ≤ µ < 2, 2 intervals in 1.189 · · · ≤ µ < 1.414 . . . , 4 intervals in 1.091 · · · ≤
µ < 1.189 . . . .
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7.7 Unimodal Maps

7.7.1 The Logistic Map

The Logistic Map is defined by xn+1 = µxn(1− xn), 0 < µ ≤ 4. For pictures of the
bifurcation structure of the map see:
http://www.damtp.cam.ac.uk/user/phh/dynsys/logisticmappictures.pdf or look
for better quality pictures elsewhere, e.g.,
http://en.wikipedia.org/wiki/File:LogisticMap BifurcationDiagram.png.

There is one non-trivial fixed point at x̄ = (µ−1)/µ. Jacobian is µ(1−2x̄) = 2−µ,
so there is a period-doubling bifurcation at µ = 3. By looking at iterates of the map
we find a further bifurcation (to period 4) at µ = 1+

√
6; to period 8 at µ ≈ 3.544.

Call µk point of bifurcation to cycle of period 2k; then it was shown by Feigenbaum
(1978) that

δ = lim
k→∞

(

µk − µk−1

µk+1 − µk

)

= 4.6692 . . .Feigenbaum’s constant; µk → µ∞ = 3.5699 . . .

This ratio turns out to be a universal constant for all one-humped (unimodal) maps
with a quadratic maximum (at x = 1

2
for the logistic map). First we give some

general results about such maps.

7.7.2 General Properties of Unimodal Maps

Definition 35 A unimodal map on the interval [a, b] is a continuous map F :
[a, b] into [a, b] such that (i) F (a) = F (b) = a and (ii) ∃c ∈ (a, b) such that F is
strictly increasing on [a, c] and strictly decreasing on [c, b]. i.e.

Note: a map of the form

is effectively unimodal under x 7→ −x and F 7→ −F .

Definition 36 An orientation reversing fixed point (ORFP) of a unimodal
map F is a fixed point in the interval (c, b) where F is decreasing.

Lemmas

(1) If F (c) ≤ c then all solutions tend to fixed points, which lie in [a, F (c)].

(2) If F (c) > c then there is a unique ORFP x0 ∈ (c, F (c)).

(3) If F (c) > c then either [F 2(c), F (c)] maps into itself (and therefore contains an
attractor, in which case we refer to [F 2(c), F (c)] as an attracting set) or if it does not
then F has a horseshoe. (There may also be attracting fixed points in [a, F 2(c)].)
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Proof

(1) F ([a, c]) = F ([c, b]) = [a, F (c)] ⊆ [a, c]. So after one iteration x1 ∈ [a, c], where
x < y ⇐⇒ F (x) < F (y).

If x1 < F (x1) then xi increases monotonically to the nearest fixed point.

If x1 > F (x1) then xi decreases monotonically to the nearest fixed point.

(2) Apply the IVT to F (x) − x on [c, F (c)] noting that F (c) > c ⇒ F 2(c) < F (c).
Note that x0 ∈ [c, F (c)] where F is decreasing, implies that F 2(c) < x0 < F (c).

(3) Consider whether F 3(c) < F 2(c) or vice versa. If F 2(c) < F 3(c) then [F 2(c), F (c)]
maps into itself. (Exercise). If F 2(c) > F 3(c) then first note F (c) < c since
F (x) ≥ x for x ∈ [c, x0]. Further by IVT there is a fixed point y0 of F with
F 2(c) < y0 < c and hence F (y0) < F (c). By IVT define z0 ∈ [c, F (c)] (uniquely)
such F (z0) = F (y0) < F (c). The interval (y0, z0) then has a horseshoe.

Theorem 17 If F has an ORFP x0 then ∃ x−1 ∈ (a, c) and x−2 ∈ (c, b) such that
F (x−2) = x−1 and F (x−1) = x0. Moreover,

– either (i) F 2 has a horseshoe on JL ≡ [x−1, x0] and JR ≡ [x0, x−2]

– or (ii) all solutions tend to fixed points of F 2

– or (iii) F 2 is a unimodal map with an ORFP on both JL and JR.
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Proof

x0 ∈ (c, b) ⇒ F (c) > F (x0) = x0 > F (b) = F (a)
IV T
=⇒ ∃ x−1 ∈ (a, c) such that

F (x−1) = x0.

x−1 ∈ (a, c) ⇒ F (b) = a < x−1 < x0 = F (x0)
IV T
=⇒ ∃ x−2 ∈ (x0, b) such that

F (x−2) = x−1.

Thus F 2(x−2) = F 2(x−1) = F 2(x0) = x0. Also x ∈ [x−1, x0] ⇒ F 2(x) ∈ [F 2(c), x0]
and x ∈ [x0, x−2] ⇒ F 2(x) ∈ [x0, F (c)] i.e. F

2 has the graph

(i) If F 2(c) < x−1 (equivalent to F (c) > x−2) then F
2 has horseshoes.

(ii) If F 2(c) > c then F 2 is a unimodal map without an ORFP on each of JL and
JR. Hence (by previous lemma) all solutions on JL ∪ JR tend to fixed points of F 2.
All solutions on [a, x−1] ∪ [x−2, b] either tend to fixed points of F or are attracted
into [F 2(c), F (c)] ⊂ JL ∪ JR.
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(iii) If x−1 < F 2(c) < c then F 2 is a unimodal map with an ORFP on each of JL
and JR. Each unimodal map has an attracting subinterval or if not has a horseshoe.
The ORFPs correspond to a 2-cycle of F , and the attracting set consists of two
disjoint subintervals.

Applying Theorem 17 successively to F 2, F 4, F 8, . . . we deduce that

Theorem 18 If F has an ORFP then

– either (i) ∃N such that F 2N has a horseshoe and F is chaotic

– or (ii) ∃N such that all solutions tend to fixed points of F 2N and F has 2m-
cycles for 0 ≤ m ≤ N − 1

– or (iii) there are (mostly unstable) 2m-cycles ∀m, and the attracting set is a
Cantor set formed by the infinite intersection of the attracting subintervals of
F 2m.

Proof Induction on previous results (except for the comment on stability which
depends on the following).

7.7.3 Scaling Invariance and Feigenbaum’s Constant

If we write Gk = F 2k then in situation (iii) of Theorem 18 the successive subgraphs
of Gk+1, Gk+2, . . . all seem to look the same after renormalisation and all seem to
have the same properties. This suggests that we look for a graph that is invariant
under iteration and renormalisation:

Suppose w.l.o.g that c = 0 and after renormalisation Gk(0) = 1 ∀k. (This is easier
than scaling the sub-interval so that the end x0 is always at 1.) Let λ be the value
of G2

k(0) = Gk(1).

See the Figure for typical graphs of Gk and G2
k.

Renormalise G2
k so that Gk+1(0) = 1 by defining

Gk+1(y) =
G2

k(λy)

λ
≡ T [Gk]

Now seek a functionG such thatG = T [G], i.e. G is invariant under renormalisation.
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Suppose that G(x) = G(−x) = 1 + ax2 + bx4 + . . . .

To get an approximation to G try a truncated series expansion:

e.g. Gk = 1 + akx
2 + o(x2) with Gk(1) = 1 + ak = λk

⇒ Gk+1 = T [Gk] =
1 + ak{1 + ak[(1 + ak)x]

2}2
1 + ak

= 1 + 2a2k(1 + ak)x
2 + o(x2)

i.e. ak+1 = 2a2k(1+ak), which has an unstable fixed point a = −1
2
(1 +

√
3) = −1.37 ⇒

λ = −0.37, where the Jacobian of T evaluated at the fixed point is 4 +
√
3 = 5.73

e.g. Gk = 1 + akx
2 + bkx

4 + o(x4) with Gk(1) = 1 + ak + bk = λk gives the 2D map

ak+1 = 2ak(ak + 2bk)λk bk+1 = (2akbk + a3k + 4b2k + 6a2kbk)λ
3
k

which has a fixed point a = −1.5222, b = 0.1276, λ = −0.3946, where the Jacobian
has eigenvalues 4.844 and −0.49.

In fact, numerical solution shows that the functional map T has a fixed point G =
T [G], where

G = 1− 1.52736x2 + 0.10482x4 − 0.02671x6 + . . . , .λ = G(1) = −0.3995

The function G has a single unstable fixed point and linearisation about T [G] = G
to give the Jacobian gives a single eigenvalue δ = 4.6692016 . . . outside the unit
circle, and an infinite spectrum of eigenvalues inside the unit circle. Hence situation
(iii) of Theorem 18 (renormalisation possible infinitely often) is unstable in one
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direction; the stable manifold occupies ‘all but one dimension’ of the possible space
of functions.

The function G0 = µ∞x(1−x), µ∞ = 3.5700 . . . , where µ∞ is the value to which the
period-doubling sequence of the logistic map converges is on the stable manifold of G
(under the dynamical system defined by repeated application of T . But, considering
repeated application of T to the function µx(1− x) where µ 6= µ∞ implies a small
perturbation away from G0 which grows to give situation (i) if µ > µ∞ (GN has a
horseshoe for some N) or situation (ii) if µ < µ∞ (GN has no ORFP for some N
and cycle lengths divide 2N).

If µ∞ − µ = O(δ−N) then it takes O(N) renormalisations for the perturbation to
grow to O(1) and eliminate the ORFP, thus explaining why µ∞ − µK ∼ Aδ−K as
K → ∞, where µK is the value of µ at which the period doubles to 2K . This is the
behaviour explained by Feigenbaum.


