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The Lagrangian approach has yielded many useful insights to transport over the last 
25 years or so, both in idealised flows and in realistic atmospheric and oceanic flows. 
One flavour of the Lagrangian approach is essentially diagnostic -- a flow field is 
described in an Eulerian framework either by solution of dynamical evolution 
equations or by processing observational data using an analysis or assimilation 
procedure based on an underlying predictive numerical model. The properties of this 
(Eulerian) flow may then be explored by calculating Lagrangian quantities. These 
might involve following ensembles of advected particles in forward or backward time 
or by calculating stretching rates following such particles. Dynamical systems theory 
provides more sophisticated diagnostics that may, for example, identify contours or 
surfaces across which there is minimal transport. A second flavour is focused on the 
prediction of the transport and stirring of particular advected species, e.g. chemical 
species or biological species, where a Lagrangian formulation may have advantages 
over an Eulerian formulation that solves the advection equation as a partial 
differential equation. A third flavour is using Lagrangian methods to solve the 
dynamical equations. This is relatively undeveloped in its application to atmospheric 
and oceanic flows, except for highly idealised systems, not least because the 
complexity and computational demands of the dynamical equations. The papers in 
this Chapter cover these three different flavours of the Lagrangian approach. 
 
Key aspects of the development of the Lagrangian approach to the study of transport 
and stirring in geophysical flows have been, on the one hand, the recognition of the 
phenomenon of chaotic advection and the development of mathematical tools to 
quantify transport in dynamical systems and, on the other, the increasing availability 
of comprehensive data on velocity fields in the atmosphere and, to a lesser extent, the 
ocean. (‘Stirring’, sometimes called ‘mixing’, is the process of deformation through 
differential advection that leads to complex geometric structure in advected, e.g. 
chemical, fields and eventually leads to real physical mixing under the effect of 
molecular diffusion.) The paper by Aref (1984) is regarded as a key publication in the 
recognition of chaotic advection as a phenomenon and in the development of relevant 
quantitative technique. Aref (2002) provides a nice commentary on this paper and 
how it was received. For example, from the point of view of one referee, Aref (1984) 
was simply repeating work (albeit important work), that had recently been carried out 
in dynamical systems. But the value of Aref (1984) and related work was the 
recognition that the mathematical machinery then being developed in dynamical 
systems theory was directly relevant to interesting problems in fluid dynamics. Much 
of the detailed theoretical work in fluid dynamics that followed Aref's paper was 
focused on time-periodic flows, since time periodicity adds the essential ingredient 
that allows non-trivial transport and stirring behaviour. (In steady flows transport is 
along streamlines, so streamlines are perfect barriers to transport, and there are strong 
resulting constraints on stirring.) But the notion of chaotic advection extends beyond 



time-periodic flows and indeed it must do so to have any relevance to the real 
atmosphere or ocean. From one viewpoint, the important insight of chaotic advection 
is that complex structures in advected tracer fields and complex patterns of tracer 
transport can arise in flows with relative simple space-time structure (e.g. 
Pierrehumbert and Yang 1993);  these patterns do not depend on a highly complex 
space-time structure of the underlying (Eulerian) flow, e.g. that envisaged in three-
dimensional turbulence. The Pierrehumbert and Yang (1993) study of the upper 
troposphere and the Bowman (1993) study of the Antarctic winter stratosphere are 
early examples of studies that apply some of the ideas and tools of chaotic advection 
to realistic atmospheric velocity fields. The many other studies over the last 20 years 
that have used relatively coarse resolution data from atmospheric models or from 
analysed datasets to calculate patterns of transport and stirring have relied on the 
notion of chaotic advection, whether or not those carrying out these studies have 
realised this. 
 
A continuing challenge for dynamical systems techniques applied to chaotic 
advection has been to find robust methods of identifying 'coherent structures', i.e. 
bodies of fluid that remain to some approximation isolated or, correspondingly to 
identify the partial transport barriers that bound such structures. It is helpful to 
contrast two extreme cases, e.g. in consideration of a relatively isolated atmospheric 
or oceanic vortex. The vortex is a quasi-Lagrangian entity and an Eulerian view, 
defining the boundary of the vortex as a surface that is fixed in space, will measure 
large instantaneous fluxes across the boundary. Those instantaneous fluxes may 
largely cancel in a time-average, but a reliable estimate of the time-average flux will 
rely on accurate calculation of those cancellations. The opposite extreme is a purely 
Lagrangian view, where the boundary is defined by a material contour that is initially 
co-located with the dynamical boundary of the vortex. Since the boundary is a 
material contour then there will be no transport across it, but if the vortex is not a 
'perfect' Lagrangian entity then the contour will typically be strongly deformed by 
deformation events and will be drawn into the region outside (or inside) the vortex 
and become highly distorted. The 'best' definition of the vortex boundary, e.g. in 
providing the most useful estimate of exchange between the vortex and its exterior, is 
some kind of compromise between the pure Eulerian view and the pure Lagrangian 
view. Dynamical systems theory has offered several such definitions, e.g. see the 
review by Wiggins (2005), and others have been motivated more by fluid-dynamical 
considerations, e.g. the hybrid Eulerian-Lagrangian effective diffusivity diagnostic 
(Nakamura 1996, Shuckburgh and Haynes 2003).  
 
One approach to the objective identification of Lagrangian coherent structures has 
been proposed by Haller (2001 and references therein) and is based on calculation of 
Lagrangian stretching rates ('finite-time Lyapunov exponents') with the spatial 
variation of these stretching rates being used to characterise the boundaries of the 
coherent structures. This approach has been further developed and analysed, with 
comparison against other approaches, by Shadden et al (2005) and Branicki and 
Wiggins (2010). The paper by Sulman et al in this volume analyses the calculation of 
Lagrangian stretching rates in geophysical flows, considering in particular the 
implications of three-dimensionality in the flow. (Most calculations of stretching rates 
in geophysical flows assume the flow is quasi-horizontal and consider only the 
stretching due to the two-dimensional flow on each quasi-horizontal, e.g. density, 
surface.) Sulman et al emphasise the role of vertical shear in stretching. This has 



previously been investigated by Haynes and Anglade (1997), Haynes and Vanneste 
(2004) and Smith and Ferrari (2009), amongst others, in considering the interaction 
between large-scale stirring and small-scale mixing processes in the atmosphere and 
ocean, but the implications for identification of coherent structures has not previously 
been considered. Another distinct aspect of three-dimensionality not considered by 
Sulman et al but of potential interest in certain geophysical flows is the 'resonance-
induced dispersion discussed by Cartwright et al (1996). 
 
Two further papers in this Chapter, Liberato et al and Orza et al use Lagrangian 
descriptions in meteorological studies. The first, Liberato et al, considers the transport 
of water vapour as a precursor to an extreme precipitation event in Portugal. This 
study, and several like it that have appeared recently, reflect a significant change over 
recent years in the description of water vapour transport from tropics and subtropics 
to the extratropics. A traditional approach might have been to express this transport in 
terms of Eulerian eddy fluxes. But, beginning in the early 1990s improvements in 
global atmospheric datasets began to show that the transport was dominated by thin 
longitudinally confined regions, indicating the extension of thin filaments of high 
water vapour concentrations into the extratropics. Newell and colleagues, e.g. Newell 
et al (1992), termed these features 'atmospheric rivers', though this terminology has 
been criticized as implying transport along a fixed horizontal path (e.g. Bao et al, 
2006). Synoptic meteorologists tend to describe these features in terms of the 'warm 
conveyor belts' of extratropical cyclones, but it seems fair to say that the importance 
of these features in large-scale, as distinct from synoptic-scale, water vapour transport 
was recognised only relatively recently. It is natural to use Lagrangian techniques to 
quantify and analyse this sort of transport-- a recent comprehensive climatological 
description is given by Knippertz and Wernli (2010). The Liberato et al study (this 
volume) shows how long-range transport of water vapour from the subtropics was 
important in setting up the large-scale conditions required for the extreme 
precipitation event. One difference between the transport of water vapour identified in 
this and similar studies and the transport of chemical pollutants (see Brunner, this 
volume) is that the 'source region' for the water vapour is typically large-scale, a large 
section of the subtropical North Atlantic in the Liberato et al case. Thus the (relative) 
localisation of large concentrations of water vapour in a certain region of the 
extratropics results from the nature of the transport rather than any localisation of the 
source region. The Orza et al study uses a Lagrangian description as a basis for 
characterising the interannual variability of transport pathways and relation of this 
variability to the North Atlantic Oscillation, thereby combining the Lagrangian 
approach with a more traditional description of long-term atmospheric variability. 
 
The second theme addressed in this Chapter, by the article of Konopka et al, is the use 
of Lagrangian methods in a systematic way to predict chemical fields over some finite 
region (possible global). Development of this approach was stimulated by the success 
in the 1990s of Lagrangian methods in providing, given estimates of large-scale wind 
fields, high-resolution reconstructions of chemical fields, e.g. in the stratosphere 
(Sutton et al 1994) and in the upper troposphere lower stratosphere region (Newman 
and Schoeberl 1995). The practical advantage of the Lagrangian approach over the 
Eulerian approach is that it straightforwardly offers solution of the advection 
equations, without any artificial mixing effect associated with representing advection 
on a Eulerian grid. However, eventually this practical advantage becomes a problem. 
Firstly in the real atmosphere (or ocean) there is mixing associated with molecular 



diffusion, perhaps augmented by the small-scale stirring effects of three dimensional 
turbulence. So there is a significant problem in that a real physical effect is missing in 
a purely Lagrangian model. Additionally, there is a practical problem that solution of 
the forward-in-time advection equation by Lagrangian methods, i.e. by carrying along 
a number of advected particles, almost inevitably requires generation of new particles 
(and correspondingly removal of existing particles) to maintain a roughly uniform 
spatial coverage. In fact, any attempt to resolve one of these problems naturally 
provides a potential resolution of the other, for example the process of removing 
nearby particles implies a sort of mixing, since it limits the minimum spatial scales in 
chemical concentration fields. However, the implied mixing does not necessarily 
correspond to any physically realistic mixing process. The CLAMS model developed 
at Germany’s Forschungszentrum Jülich (e.g. Konopka et al 2004) has been 
formulated with the aim that the implied mixing does have a physical basis, by basing 
the criterion for particle removal on local stretching rates. The Konopka et al paper in 
this volume considers this physical representation further in a three-dimensional 
context, emphasising that formation of small vertical scales in chemical fields (with 
implications for vertical mixing) is expected to depend strongly on static stability and 
arguing that a vertical distribution of particles based on consideration of an entropy 
coordinate results in mixing that is a good match to physical reality.   
 
The final topic touched by this Chapter is the Lagrangian approach to the solution of 
the dynamical equations. It is certainly the case that in some areas of computational 
fluid dynamics Lagrangian methods are highly developed, see e.g. the review by 
Koumoutsakos (2005). These methods have yet to be extensively used in atmospheric 
modelling, though see Alam and Lin (2008) for implementation of one possible 
scheme and analysis of some test cases. There has been some use of Lagrangian 
methods for certain restricted classes of flows that arise in geophysical fluid 
dynamics, where the structure of the equations naturally leads itself to a Lagrangian 
description. One example is contour dynamics for two-dimensional and quasi-
geostropic vortex dynamics (e.g. Dritschel and Ambaum 1997) and extensions to 
more general sets of equations such as the primitive equations (Mohebalhojeh and 
Dritschel 2004) where the Lagrangian description for certain dynamical variables can 
be combined with an Eulerian description for others. There has also been use of what 
are essentially hybrid Lagrangian-Eulerian methods, where, for example, the vertical 
coordinate is quasi-Lagrangian and the horizontal coordinate is Eulerian (Lin 2004, 
Shin et al 2012). The Haertel paper in this issue presents a fully Lagrangian model 
whose formulation is motivated by the particular structure of stably stratified flows in 
hydrostatic balance. The model demonstrates some significant successes, e.g. in the 
simulation of Madden-Julian oscillations, perhaps as a result of beneficial effects of a 
Lagrangian representation of convective overturning. It might be that the next key 
stage in the development of this model (or other models with a new and 
‘unconventional’ structure) is to encourage use by a wider community so that that the 
advantages and disadvantages can be thoroughly explored. 
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