
Mechanics Lecture Notes

1 Lectures 10 and 11: Motion in a circle

1.1 Introduction

The important result in this lecture concerns the force required to keep a particle moving on a
circular path: if the radius of the circle is l, the speed of the particle is v and the mass of the
particle is m, this force is mv2/l, directed towards the centre of the circle.

This force is sometimes misleadingly described as ‘centrifugal’ or ‘centripetal’ and there is
much confusion about whether it is directed towards the centre or away from it. But, clearly, a
force is needed to prevent the particle moving in a straight line (according to Newton’s first law),
and this force must be in the direction of deviation from a straight line path; i.e. towards the centre.
The force may be provided by the tension in a string, or by the normal reaction if the particle is
constrained to move on a circular hoop, or by gravity in the case of a planet orbiting the Sun, or
by magnetic fields in the case of the Large Hadron Collider.

The confusion in the direction of the force arises because if you imagine yourself moving freely
in the rotating frame1 (in a car, say) you would feel yourself being pushed outwards relative to the
rotating frame; but this is just because you want to move in a straight line, and the car isn’t moving
in a straight line. Thus the ‘force’ you feel in a car as it goes round a bend is merely due to the
tendency you have to move in a straight line: it is a fictitious force. It is this fictitious force,
measured only in the rotating frame, that is the centrifugal (‘fleeing from the centre’) force. Such
fictitious forces are artifacts of working in rotating or other accelerating frames and will not concern
us at all here.

1.2 Key concepts

• Use of Cartesian coordinates and angular coordinates to describe motion in a circle.

• The force towards the centre required for circular motion.

1.3 Motion in a circle

For a particle moving on the surface of a sphere centred on the origin and of radius l, we have

r.r = l2

and differentiating2 gives
2r.ṙ = 0, (∗)

which shows, not very surprisingly, that the velocity is perpendicular to the radius — i.e., it is
tangent to the sphere. Similarly, if the speed v is constant (where ṙ.ṙ = v2), we find that the
acceleration is perpendicular to the velocity (ṙ.̈r = 0), which is an important (but not again not
surprising, if you think about it) result. In particular, for a particle moving at constant speed in a
circle, the acceleration is radial. That doesn’t of course mean that the particle is moving towards
the centre: only that the change in the velocity vector is radial.

We can go further. Differentiating equation (∗) we find

r.̈r+ ṙ.ṙ = 0, i.e. r̂.̈r = −v2/r

where r̂ is the unit vector in the radial, r, direction. This is the result we are looking for: it gives
the formula for the component of acceleration in the radial direction (‘towards the centre’) and
hence the radial force required to maintain the motion.

1The rotating frame is accelerating (non-inertial), so Newton’s laws do not apply. This point is discussed at length
in the Dynamics and Relativity course.

2Using the Leibniz rule for vectors:
d

dt
(a.b) = a.

db

dt
+

da

dt
.b

which can easily be demonstrated using the definition of the dot product in components.
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The diagram shows a particle moving on a smooth horizontal ring of radius l. Although the
motion is most conveniently described by the angular coordinate θ, it is often easier to work in
Cartesian coordinates. Choosing the obvious axes, we have for the coordinates of the particle

x = l cos θ, y = l sin θ .

We can find the velocity (ẋ, ẏ) by differentiation:

v = (−lθ̇ sin θ, lθ̇ cos θ)

which satisfies r.v = 0 as expected. The speed of the particle is given by

v = |v| =
√
(−lθ̇ sin θ)2 + (lθ̇ cos θ))2 = l|θ̇|.

Differentiating v gives the acceleration:

a = (−lθ̈ sin θ − lθ̇2 cos θ , lθ̈ cos θ − aθ̇2 sin θ)

which we can write in the form

lθ̈ (− sin θ, cos θ)︸ ︷︷ ︸−lθ̇2 (cos θ, sin θ)︸ ︷︷ ︸ .
The two vectors with underbraces are unit vectors pointing tangentially to the circle and radially
outwards, respectively. The magnitude of the acceleration is

|a| =
√
l2(θ̇2)2 + l2θ̈2 .

Thus, in order to move in a circle, the particle must experience a force directed towards the centre
of the circle, of magnitude

F = mlθ̇2 ≡ mv2

l
.

This force is provided by, for example, the normal reaction of the ring on the particle, the tension
in a string, or external forces such as gravity (under which an otherwise free particle moves not in
a circle but in a parabola), or combinations of these forces.

If θ̈ = 0, the particle moves with constant speed and no net force other than the central force
acts on the particle.
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1.4 Examples

(i) The simple pendulum
A particle of mass m is attached to one end of a light inextensible rod of length ℓ which is

smoothly pivoted at the other end so that it can swing freely in a fixed vertical plane. Find the
motion.

θ

T

mg

vertical

Let θ be the angle that the rod makes with the vertical. The easiest way of finding the motion
is to use the energy integral: the reason that it is easier than writing down the (second order)
equations of motion is that the tension T never needs to be considered.3 The speed of the mass is
ℓθ̇ and its potential energy, relative to its lowest point, is mgℓ(1− cos θ). Thus

1
2m(ℓθ̇)2 +mgℓ(1− cos θ) = E.

Here E is a constant that would be determined by the initial conditions. One way forward would be
to solve this to obtain θ̇ then integrate4 but the solution cannot be expressed in terms of elementary
functions. However, if the oscillations are small (|θ| << 1), the motion turns out to be SHM. Setting
cos θ ≈ 1− 1

2θ
2 gives

1
2m(ℓθ̇)2 + 1

2mgℓθ2 = E.

We could solve this directly, but differentiating with respect to time and cancelling an overall factor
of mℓθ̇ gives immediately

ℓθ̈ + gθ = 0,

which is SHM with period 2π
√

ℓ/g

We can also, as mentioned above, derive the above second order equation of motion directly.
Newton’s laws of motion are:

mℓθ̈ = −mg sin θ (component perpendicular to the rod)

mℓθ̇2 = T −mg cos θ (component parallel to the rod)

3The tension never needs to be considered because it never contributes to the energy; it never contributes to
the energy because the rod has fixed length so no work is done by the tension force. This is a common situation:
whenever there is a constraint, there must be a force that ensures the constraint holds; but no work is done against
this force. Another example is a particle constrained to move on a surface or a wire, for which the relevant force is
the normal reaction which does no work but stops the body falling through the surface.

4We can obtain θ as a function of t by doing the following integral and inverting the result:

t =

√
mℓ2

2

∫
dθ√

E −mgℓ(1− cos θ)

This is an elliptic integral and can be evaluated in terms of rather unfriendly functions called elliptic functions —
elliptic because one way such integrals arise is in calculating the length of an arc of an ellipse.
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where, in the second equation, we have used the standard motion in a circle formula for the central
acceleration. The first equation is exactly the one we derived previously by differentiating the total
energy and once this is solved we can substitute for θ in the second equation to find the tension.

In these equations, we were lucky in that the tension plays no role in obtaining the motion,
which was determined by the first equation alone, so it need not have been considered at all. Of
course, had we resolved horizontally and vertically instead of perpendicular and parallel to the rod,
the tension would have played a bigger part.

(ii) A particle of mass m slides on the surface of a smooth cylinder under the action of gravity. The
axis of the cylinder is horizontal and the motion is in a vertical plane. The particle was released
from rest from a point very close to the top of the cylinder. Find the position of the particle when
it leaves the surface of cylinder.

How can we determine the point at which the particle leaves the cylinder? While in contact with the
cylinder, the particle experiences a normal reaction from the surface and the cylinder experiences
an equal and opposite normal reaction, by Newton’s third law. When this force is zero, contact is
broken and the particle then falls freely under gravity in a parabola.5

θ

mg

R

We can use conservation of energy to obtain the speed of the particle directly in terms of its
angular position (comparing KE+PE with initial KE+PE):

1
2mv2 −mga(1− cos θ) = 0 + 0. i.e. v2 = 2ga(1− cos θ).

To find the normal reaction of the cylinder on the particle, we use the radial component of
the equation of motion:

mg cos θ −R = mv2/a

so
R/m = g cos θ − v2/a = g(3 cos θ − 2).

This is positive until cos θ = 2/3 at which point the particle leaves the surface of the cylinder.

5We can think of it another way. If the cylinder were taken away, the particle would fall in a parabola under
gravity. If the radius of curvature of this parabola were less than a (i.e. of the path were more curved than the
surface of the cylinder) , the trajectory would bend into the region previously occupied by the cylinder. In this case,
if the cylinder were replaced, the particle would have to move on its surface. The condition that the particle loses
contact with the cylinder is therefore that the radius of curvature of the parabolic trajectory exceeds a. For more
details about radius of curvature, wait for the Vector Calculus course.
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(iii) A particle of mass m is riding a massless bicycle at constant speed v round a rough circular
path of radius a at speed v. At what angle to the vertical must it lean?

θ
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The diagram shows a bicycle AB, the point A representing the point of contact between a
tyre and the path. The particle is sitting at O. To keep it simple, we assume that the particle is
going round a circle of radius a (rather than the more natural assumption that the point A is going
round a circle of given radius). The point O is a distance d from A.

The forces on the bicycle are: the normal reaction R of the path on the tyre; gravity, acting
through O; and the friction between the tyre and the path which prevents slipping. Since there
must be a horizontal force on the bicycle making it go round the corner, and the only horizontal
force is friction, it is clear that the direction of the frictional force must be as shown in the diagram
(inwards).

There is also an internal force of stress, S, in the frame of the bicycle. If we take this into
account, we can use Newton’s second law for any point of the bicycle. For the particle at O, we
have (taking vertical and horizontal components)

0 = mg − S cos θ and
mv2

a
= S sin θ.

Dividing gives

tan θ =
v2

ag
.

For example, if v = 5 metres/sec (which is about 12mph) and a = 10 metres, and taking g = 10
metres per second per second results in tan θ = 1/4, i.e. θ ≈ 15◦, which is not absurd despite the
simplicity of the model.

Note that we could find R and F in terms of S and θ, and hence in terms of mg and v, by
using Newton’s second law on the point A instantaneously in contact with the path. We don’t have
to worry about the acceleration of this point, since it is massless by assumption:

0 = S −R cos θ − F sin θ and 0 = R sin θ − F cos θ.

Solving these equations and using F = µR at limiting friction, we would find the maximum speed
that the bicycle could go round the corner without slipping. (It is easy to see that µ = tan θ; setting
µ ≈ 0.6 for dry rubber on asphalt corresponds to 31◦, which is again not completely ridiculous).

The above equations will yield R = mg, which we could also have obtained directly by
considering the vertical forces on the whole bicycle. The reason I didn’t do this is because we have
not discussed the motion of a rigid body (even though we did discuss the equilibrium of a rigid
body). In this case, since no part of the bicycle is accelerating in the vertical direction, we can
simply apply the equilibrium condition that the net force in the vertical direction (i.e. R −mg is
zero).
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