
Mechanics Lecture Notes

1 Lecture 2: Equilibrium of a solid body

1.1 Introduction

This lecture deals with forces acting on a body at rest. The difference between the particle of the
last lecture and the body in this lecture is that all the forces on the particle act through the same
point, which is not the case for forces on an extended body. The important concept, again, is the
resolution of forces to obtain the equations determining equilibrium.

The simplest examples involve essentially one-dimensional bodies such as ladders. Again, it
is essential start with a good diagram showing all the forces.

1.2 Key concepts

• Resolution of forces into a single resultant force or a couple.

• The moment of a force about a fixed point.

• Condition for equilibrium: zero resultant force and zero total couple.

1.3 Resolving forces

The difference between forces acting on a particle and forces acting on an extended body is imme-
diately obvious from the intuitive inequivalence of the two situations below: for an extended body,
it matters through which points the forces act — i.e. on the position of the line of action of the
force.
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In general, each force acting on a body can be thought of as having two effects: a tendency
to translate the body in the direction parallel to the line of action of the force; and a tendency to
rotate the body.1 Clearly, for the body to be in equilibrium these effects must separately balance.

For the translational effects to balance, we need (as in the case of a particle) the vector sum
of the forces to be zero: ∑

i

Fi = 0. (1)

For the rotational effects about a point P to balance, we need the sum of the effects to be
zero, but what does this mean? Intuitively, we expect that a force whose line of action is a long
way from P to have more rotating effect than a force of the same magnitude that is nearer and it
turns out (see below) that the effect is linear in distance. The rotation effect of a force is called the
moment of the force.

1.4 The moment of a force

In two dimensions, or in three dimensions in the case of a planar body and forces acting in the same
plane as the body, any force tends to rotate the body within the plane or, in other words, about an
axis perpendicular to the plane. In this case, we define:

Moment of a force about a point P
=

magnitude of the force
×

the shortest distance between the line of action of the force and P .
1Imagine that one point, not on the line of action of the force, is fixed.
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with account taken of the direction of the effect: either clockwise or anticlockwise.2

In general (in three dimensions when the body and forces are not coplanar), the effect of
different forces will be to tend to rotate the body about different axes. In this case, the ‘force times
distance from line of action to the point’ definition of the moment of a force is not adequate. We
have to represent the moment as a vector. The important thing to understand is that the direction
of vector representing the moment of the force not in the direction in which the body might move;
it is along an axis about which the body might rotate.

We can obtain the required vector expression for the moment of a force from a diagram. In
the diagram below, the magnitude of the moment of the force F about the point P is |F| × d.

F

d

P
As mentioned above, the moment of a force is a vector quantity, the direction of the vector

being parallel to the axis through P about which the body would rotate under the action of the
force. This can be very conveniently expressed using the vector cross product:

moment of F about P = r× F (2)

where r is the position vector from P to any point on the line of action of F.
Why is this cross product the right expression for the moment? Again, we can see from a

diagram. The vector r in the diagram below goes from the point P to an arbitrary point on the line
of action of the force. Clearly, r× F is in the correction direction (into the paper). And we have

|r× F| = |r| |F| sin θ = |F| d

which agrees with the 2-dimensional case.

F

d

P

θr

To summarise: the magnitude of the moment of a force about a given point is given by the
rule ‘magnitude of moment equals magnitude of force times shortest distance between line of action
of force and the point’. The vector moment has direction normal to the plane containing the point
and the line of action of the force.

For the body to be in equilibrium, we require that there is no tendency to turn about any
axis. The condition for equilibrium, in addition to (1), is therefore, (in the obvious notation),∑

(vector moments of the forces about any point) ≡
∑
i

ri × Fi =0 (3)

There will still perhaps be a question mark in your mind about this result: why doesn’t it
matter what point we choose to take moments about? This is easily addressed. Suppose we change
the point from P to P ′, where the position vector of P ′ with respect to P is a fixed vector a.
The position vectors in the condition (3) change from ri to r′i, where r′i = ri − a. If we consider
moments about P ′ instead of moments about P , we have∑

i

r′i × Fi =
∑
i

(ri − a)× Fi =
∑
i

ri × Fi −
∑
i

a× Fi =
∑
i

ri × Fi − a×
∑
i

Fi

the vanishing of which is equivalent to the condition (3) provided the equilibrium condition (1)
holds.

2In section 1.6, I will explain why the moment of the force, defined like this, is the correct measure of the rotational
effect of the force; for the time being (and for ever if you perfectly sensibly don’t want to wade through section 1.6)
you should just accept that it is what we need.

2



1.5 Couple

A couple is a pair of equal and opposite forces.3 We define the moment of a couple about any
point in the obvious way, as the sum of the moments of the two forces about that point. The sum
of the moments of two forces will in general depend on the point about which the moment of the
individual forces is taken; but this is not the case for a couple. Let the two forces be F and −F,
and let r1 and r2 be the position vectors of any fixed points on their respective lines of action, with
respect to a point P . Then

moment about P = r1 × F+ r2 × (−F) = (r1 − r2)× F

and this does not depend on the choice of P .
Choosing P on the line of action of one of the forces shows that the magnitude of the couple

is just |F| × d, where d is the distance between the lines of action of the forces.

F

−F

d

Example

A light rod4 of length a stands on rough ground leaning against a smooth wall, and inclined at an
angle α to the horizontal. A particle of weight W is placed a distance 2

3a up the rod. What is the
magnitude of the normal reaction of the wall on the end of the rod?

First, as always, a good picture showing all the forces:

a

3

2a

3

W

F

R

α

O

The normal reaction of the ground on the foot of the ladder and the frictional force acting on
the foot of the ladder are combined into a single (unknown) force F, acting in an unknown direction.
There is no friction at the upper end of the ladder because the wall is smooth.

Before we go any further, we need to sit back and think. We have only three weapons in
our armoury: resolving forces in each of two directions of our choosing; and taking moments about
a point of our choosing. If we choose the directions and the point well, we can simplify our task
enormously. In this rather straightforward case, we can eliminate the force that we are not interested
in (the force on the foot of the ladder) in one go by taking moments about the foot of the ladder.

Taking moments (‘force times shortest distance from the line of action of the forces to the
point’) anticlockwise gives

	: W × 2

3
a cosα−R× a sinα = 0 ⇒ R =

3

2
cotα.

3Think of turning on an old-fashioned tap.
4In the idealisation of the elementary mechanics, rods are straight, rigid and one-dimensional; this one is massless

(‘light’).
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We could now, by resolving forces horizontally and vertically, find the horizontal and vertical
components of the force on the foot of the ladder, and then the whole problem would be solved.

Sometimes it is possible to solve such problems elegantly by geometry (but not necessarily
more easily; you have to be good at geometry). Let us draw the diagram again, this time paying
attention to the point at which the lines of actions of the forces intersect.

W

F

R

α

A

BC

Note first that the three lines of action must intersect. Otherwise, we could take moments
about the point of intersection of any pair (if not parallel); the two corresponding forces would have
no moment about this point, since their lines of action passes through the point, leaving a non-zero
moment from the third force. The total moment would thus be non-zero and the rod could not be
in equilibrium.

The triangle ABC can be thought of completely geometrically, in which case it is soluble since
we know two sides (horizontal and vertical) and the included angle (a right-angle).

But the the three forces R, F and W are parallel to the sides of the triangle and, since
they sum to zero (equilibrium condition) they can be represented as the sides of a triangle. This
triangle must be similar to ABC, so we can find the relationships between the forces. For example,
AC/CB = |W|/|R| and CB = 2

3a cosα and AC = a sinα so we obtain W in terms of R as before.
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1.6 Moment of a force: justification of definition

NB this section is an optional extra: a gigantic footnote5

To emphasise the point in the heading: you do not need to know the material in this section; in
fact, hardly anyone knows it.6

However, if you ever ask yourself why the moment of a force is defined as above (i.e. why is
this the appropriate tool for investigating equilibrium), you will find this interesting.

We will investigate the resultant of a number of forces acting on a body, which means, as in
the case of a single particle, a reduced system of forces that has exactly the same effect on the body
as the original system of forces. In the case of a single particle the reduced system is just one force;
in the case of a system of forces acting on a body, the reduced system turns out to be a single force
or, in very special cases, a couple.

We consider the case of just two forces, F1 and F2, in two dimensions; the generalisation
to more forces in two dimensions is obvious (you just reduce the forces in pairs) and the three-
dimensional case can be reduced to three two-dimensional cases by looking at the components of
the forces in, for example, the x-y plane.

There are three cases to consider.

Case (i) F1 and F2 are not parallel
In this case, the lines of actions of F1 and F2 intersect, at P , say. The resultant, F, of the

two forces is just F1 + F2 and it acts through P .

F1
F2

F1 + F2

P P
≡

It is a simple exercise to check that the moment of F about any point Q is the same as the
sum of the moments of F1 and F2 about Q.

This means that F has the same translational and rotational effect as F1 and F2 combined,
provided we use the definition of the moment of a force given in section (1.4).

Case (ii) F1 and F2 are parallel, but F1 + F2 ̸= 0.
In this case, the lines of action of the forces do not act through a common point, so we cannot

immediately use the method above. Instead, the method can be used indirectly through a lovely
construction. All we do is to add a pair of equal and opposite forces7 as shown in the diagrams,
to give two new forces that are no longer parallel. The diagrams on the next page illustrate the
construction.

The diagrams show:
(i) Two parallel forces, F1 and F2, with F1+F2 ̸= 0 (i.e. exactly the situation we are considering).
(ii) In this diagram, two equal and opposite forces, F and −F, have been added to the previous
diagram. Adding these forces clearly has no effect: they just cancel each other out.
(iii) But if instead of cancelling them out we add them to F1 and F2, respectively, we obtain two
resultant forces (by Case (i) above) which are the diagonal forces in the diagram.
(iv) The forces in (i) are therefore equivalent to the two forces in this diagram.
(v) Since the forces in (iv) are not parallel, they can be resolved (by Case (i) above) into a single
force of magnitude (unsurprisingly) F1 + F2 as shown in this diagram. But where does the line of
action of this resultant lie?
(vi) A bit of geometry does the trick. In this diagram, the AB and FG represent in direction and
magnitude the original forces F1 and F2. CB and EF represent the equal and opposite forces we
added in, and the two resultants are represented by CA and EG. Now using similar triangles gives

5which I put in because I found it interesting.
6It is not covered in any recent A-level text book that I could find, though it was covered in the book I had at

school, by Humphrey and Topping.
7So simple!
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the magic result DC × |F1| = DE × |F2| — i.e. the resultant acts through the point where the
moments of the original forces balance.

F1

F2

(i)

F1

F2

F −F

(ii)

F1

F2

F −F

F1 + F

F2 − F

(iii)

F1 + F

F2 − F

(iv)

F1 + F

F2 − F

F1 + F2

(v)

A

B
C

D E F

G

H

(vi)

We thus find that the resultant of the two forces is a single force F1 + F2 (unsurprisingly),
the line of action of which — and this is the important result — lies at distances d1 and d2 from
the lines of action of F1 and F2, respectively, such that d1|F1| = d2|F2|; i.e. so that the moments
of the two forces as defined above are equal.

Case (iii) F1 and F2 are parallel, and F1 + F2 = 0.
This is the exceptional case, when the system of forces cannot be reduced to a single force.

No further reduction is possible and we are left with a couple. It is easy to see that the construction
of Case (ii) breaks down: the construction gives another pair of equal and opposite forces.
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