Mechanics Lecture Notes

1 Lecture 8: Momentum and Impulse

1.1 Introduction

This lecture covers another fundamental concept: momentum. The momentum of a body is the
quantity that changes directly as a result of applying a force: the greater the force, the faster
the momentum changes. This is a consequence — in fact, a statement of — Newton’s second law
of motion. The reason that momentum is so important is that in closed systems! not subject to
external forces, the total momentum is conserved. This result follows from Newton’s equations and
will be proved in the Dynamics and Relativity course. Momentum is conserved in quite surprising
situations, even when kinetic energy is not conserved, such as during explosions.

As with conservation of energy, the equations of conservation of momentum can be used very
conveniently as a substitute for one or more of the equations of motion.

When one particle collides with another, they each experience a force of large magnitude for a
very short duration. This is normally idealised as an infinite force for an infinitesimal time?. There
are various ways of describing this idealisation mathematically® but for our purposes it is easier
to deal not with the (infinite) force with a quantity called impulse which is, roughly speaking, the
product of the very large force and the very small time during which it acts.

1.2 Key concepts

e Momentum.

e Conservation of momentum in closed systems with no external forces.

Impulse.

Relation between impulse and change of momentum during particle collisions.

e Newton’s experimental law and coefficient of restitution.

1.3 Momentum

The momentum of a particle of mass m moving with velocity v is defined to be mv. It is, of course,
a vector quantity. The total momentum of a system of particles is just the sum of the individual
momenta.

For a particle with momentum p, Newton’s second law gives
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so if there is no force on the particle, p is constant: momentum is conserved. Similarly, as will be
proved in the Dynamics and Relativity course, the momentum of a system of particles on which no
external forces act is conserved.*

Thus for two colliding particles, in obvious notation (with initial velocities denoted by u and
final velocities denoted by v), conservation of momentum requires

miuy + maolg = M1Vy +MaoVa. (].)

INo particles join or leave the system.

2In a less idealised situation, if (say) two snooker balls collide, there would be a small compression of each ball at
the contact point, during which the balls instantaneously move together; then the elastic forces in the ball cause the
compression to spring back to the original shape and the balls rebound. This process would take a short time and
could be analysed using Newton’s laws if the internal structure of the billiard balls were properly understood.

3For example, by means of the Dirac delta function, which you will come across in the Differential Equations course
and later in the Part IB Methods course; and more rigorously later still if you study the theory of distributions.

4This is not quite ‘similarly’: it requires the use of Newton’s 3rd law to show that the effects of the internal forces
cancel out.



1.4 Newton’s experimental law: coefficient of restitution

Assuming that the initial velocities are given, equation (1) gives three equations (because it is a
vector equation) for six unknowns (the three components of each of the two final velocities): not
enough equations!

In general the kinetic energy of the colliding bodies (for example, snooker balls) will not be
conserved in a realistic collision: the fact that a collision can be heard tells us this immediately
(some kinetic energy is converted into sound energy); and generally the internal effects will heat
up the balls slightly (some kinetic energy is converted into heat energy). Therefore, conservation
of kinetic energy cannot be used as an additional equation to determine the outcome of a collision.

However, we have one more tool in the bag. Newton’s experimental law furnishes us with one
further equation, which is sufficient in the case of head-on collisions in one dimension or in the
case of a particle bouncing on a plane, which are the only two situations we will cover here. By
experiment, Newton discovered that

relative velocity after collision = —e x relative velocity before collision (2)

where e is a constant, called the coefficient of restitution, that depends on the two colliding particles
(or bodies) and not, for example, on their velocities. The term relative velocity just means the
velocity of one particle with respect to the other; i.e. in moving axes chosen so that the velocity of
the second particle is zero.

If the two bodies coalesce, like putty, the relative velocity after the collision is zero, which
corresponds to e = 0; this is called an inelastic collision. If the relative speed before is equal in
magnitude to the relative speed after, which corresponds to e = 1, the collision is called perfectly
elastic. In this case, no energy is lost in the collision: the total kinetic energy is the same as before
(and you can’t hear the collision!).

Omne has to be quite careful with the signs when applying (2), but normally common sense
prevails.

1.5 Worked examples

(i) Two particles of masses my and my collide head-on. Their initial velocities are u; and —us and
their final velocities are —vy and ve. The coefficient of restitution between the two particles is e.
Find the final speeds in terms of the initial speeds, the masses and e.
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In the picture, we are assuming that that u; and us are positive — but it doesn’t matter provided
the velocities are such that the particles do in fact collide. We are also assuming, in the picture,
that v; and vy are positive though they may not be: if ms is much larger than my, one could easily
imagine both particles moving to the left after the collision.

Conservation of momentum in the positive = direction (to the right in the picture) gives

miU] — Moy = —M1V1 + MaVs.

Newton’s experimental law, taking the velocity of the second particle relative to the first and again
taking positive velocity to mean motion to the right, gives

vy — (—v1) = —e[—ug — uq]
Solving these two equations simultaneously gives

— 1
v = (ems = mi)uy + (e & Dmauz and wvg = Something similar - it really doesn’t matter.
my + My my + My

Note that in the case e = 1 a direct calculation would show® that %ml u?+ %mgug = %ml v+ %mgvg;
i.e. kinetic energy is conserved, as claimed above.

51 didn’t do it, but I know it must: please don’t spend your time on this unrewarding calculation.



(ii) A particle is projected at velocity u on a horizontal smooth table. It hits a smooth vertical
barrier, its trajectory making an angle of 0 with the barrier. It rebounds with velocity v at an angle
¢ to the barrier. The coefficient of restitution between the particle and the barrier is e. Find v in
terms of u and e.

The first step, as so often in dynamics, is to choose sensible axes.® Let us take u =
(ucosf,usinf) and v = (v cos ¢, v sin ¢) which corresponds to taking the unit normal to the barrier
to be (0,1), as shown in the diagram (which is a bird’s eye view of the table).
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Now we consider components of velocity and momentum parallel and perpendicular to the barrier.
The important thing to realise is that parallel to the barrier nothing happens: it is as if the barrier
were not there. The barrier exerts no force parallel to itself, so momentum is conserved.

ucosf = v cos ¢.
The perpendicular components of velocity satisfy Newton’s experimental law:
vsin ¢ = eusin @

and these two equations are sufficient to determine ¢ and v in terms of 6 and wu.

1.6 Impulse

In the example above of a bouncing particle, the momentum of the particle is not conserved: indeed,
the normal component changes direction as well as magnitude. Why not?

The answer can only be that external forces act on the system and a moment’s thought reveals
that this is the case: there must be a force holding the barrier in place on the table. The force acts
for a very short time and must be very large to turn the particle round.

In this situation, and other similar situations which involve very large forces acting for very
short time, it is convenient work with the time-integrated force, which is called the impulse:

/th =1

The impulse can be thought of as a measure of the amount by which momentum fails to be
conserved. Using Newton’s second law, we have:

I= /m%dt = A(mv)

i.e. impulse equals change of momentum. Thus in the above example, the barrier feels an impulse
equal to m(vsin¢ + usinf), where m is the mass of the particle, in the direction normal to the
barrier, and the particle feels an impulse equal in magnitude but in the opposite direction. There
must be some external impulse of magnitude m(vsin ¢ + usin @) acting on the system to prevent
the barrier from moving.

6We could, if we were feeling masochistic, stick with vectors (no components), giving the normal to the barrier
the direction n, and usin @ = u.n, etc. However, we can easily go back into vectors after we have solved the problem.



