

Simon Bunn
Sustainable Drainage Engineer

What are SuDs?

Why control runoff? EU Water framework directive

- Biological
- Hydromorphological
- Physical-chemical
- Chemical

Nationally only 27% of water bodies are 'Good' status

All water-bodies to achieve 'Good' status by 2015?

Relative importance of reasons for WFD river failures

- Soil erosion:
 - Soil erosion affects 76% of agricultural land
 - The agricultural contribution to total soil erosion is between 75% to 95%
 - Soil erosion leads to a build up of sediments and associated pollutants in rivers
 - Directly impacts on river ecology

- Area of water stress
- Diffuse pollution impacts on the amount of treatment required for potable water

- Climate change:
 - hotter, drier summers
 - warmer, wetter winters
 - greater variability in year-to-year precipitation
 - changes in the number of intensive rainfall events
 - associated changes in soil moisture and the length of the thermal growing season

The Cam Corridor Strategy vision:

A river system and riverside land that supports a flourishing and varied wildlife and provides an attractive environment for residents, visitors and businesses to enjoy."

Sustainable drainage can go a long way to contributing to this.

Guidance.... Rural sustainable drainage systems

Produced by:

Allerton Research and
Educational Trust, Lancaster
University
Macaulay Land Use
Research Institute,
Newcastle University

Planning for SuDS – making it happen (CIRIA C687)

Contents:

- Why sustainable drainage systems?
- What are sustainable drainage systems?
- How to work with the planning and development process
- How to make sustainable drainage happen
- How to specify sustainable drainage
- What SuDS maintenance is required

Components of a system

Component	flow	suspended solids	phosphorous	nitrogen	pesticides	pathogens
Green roofs	Н	n/a	n/a	n/a	n/a	n/a
Permeable paving	Н	М	М	L	М	М
Sediment trap	М	Н	М	L	М	М
Swale	М	Н	М	М	М	М
Infiltration trench	Н	Н	М	М	М	Н
Filter/French drain	Н	Н	М	L	М	М
Barriers/traps in ditches/swales	Н	М	М	L	L	L
Dry detention pond	Н	Н	М	М	М	М
Infiltration basin	Н	Н	М	М	Н	Н
Retention pond	Н	Н	М	М	Н	Н
Woodland belt	М	Н	М	М	Н	М
Filter strip	М	М	М	L	М	М
Dry buffer strip	М	Н	Н	М	Н	Н
Wet buffer strip	М	М	М	Н	L	L
Constructed wetlands	Н	Н	М	М	М	Н

Urban SuDs

Green roofs

Swales and Rills

Wetlands and basins

Conclusions

SuDs:

- Replicate natural processes
- Use natural features
- Manage runoff, slowing the flow, providing treatment and increasing biodiversity potential and amenity

