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Books and Lecture Notes

There are lots of good resources available to someone wanting to learn the basics
of string theory. Below is an incomplete sampling. You should certainly not rely
only on these lecture notes - books are there to be read!

Good ‘serious’ books are:

• String Theory Vol 1, J. Polchinski, CUP

• Superstring Theory Vol 1, M.B.Green, J.H. Schwarz & E. Witten, CUP

• Basic Concepts of String Theory, R. Blumenhagen, D. Lust & S. Theisen

• String Theory and M-Theory, K. Becker, M.Becker & J.H. Schwarz

• A Primer on String Theory, V. Schomerus, CUP

There are also many excellent sets of lecture notes available for free:

• David Tong’s (excellent) Lecture notes
http://www.damtp.cam.ac.uk/user/tong/string.html

• What is String Theory, Joe Polchinski
https://arxiv.org/abs/hep-th/9411028

• Introduction to Superstring Theory, Elias Kiritsis
https://arxiv.org/abs/hep-th/9709062

Many, many more can be found at: https://www.stringwiki.org

More popular books that perhaps give you some flavour of the history of the devel-
opment of the theory are

• The Elegant Universe, B. Greene, Vintage

• Why String Theory?, J. Conlon, CRC Press

• Little book of String Theory, S. Gubser, Princeton University Press

• Also see this great article introducing string theory:
https://physicstoday.scitation.org/doi/10.1063/PT.3.2980

Conventions

In these notes we shall adopt the following conventions:

• We will take the metric of spacetime to be ‘mostly plus’, i.e.

ηµν = diag{−1,+1,+1, ...,+1}

• ~ = 1 = c.
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1 Introduction or Expectation Management

The need for a new theory

There are many reasons why a new type of theory, that goes beyond classical
general relativity and quantum field theory is needed.

• What choses the parameters in the Standard Model?

• What choses the cosmological constant to be so small?

• The failure of naive gravitational perturbation theory at loop order.

• Classical GR breaks down at singularities.

• The black hole information paradox

• ...

1.1 Conceptual Obstacles

• The nature of time in quantum gravity

• How do you quantise without a pre-existing causal structure?

• What are the gauge-invariant observables? (There are no local diffeomorphism-
invariant observables).

Let us consider the second issue. Let us consider the example of a scalar field φ(x, t)

with Lagrangian L. Given a natural notion of time we identify the canonically
conjugate momentum Π(x, t) and impose the canonical commutation relations are

[Π(x, t), φ(y, t)] = iδD(x− y)

if x and y are time-like separated (i.e. if they are in causal contact). We ask that
all fields commute at space-like separation.

For gravity, we might take the fundamental field to be the metric gµν(x, t) and
the action to be the Einstein-Hilbert action

S[g] =
1

κD

∫
dDx

√
−gR

Given that the metric itself defines the causal structure, how are we to define the
fundamental canonical commutation relations in a background-independent way?

These are weighty questions and we need clues to make progress. Given the ab-
sence of experimental data, our reliance on clues from theory are even more important
than usual. We can als consider more practical problems
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1.2 Technical or Practical Obstacles

One way to avoid these issues in the first instance is to take a note from interacting
quantum field theory.

Choose a classical background and look at quantum perturbations of this back-
ground. The background metric defines the causal structure with which we can define
a consistent quantum perturbation theory. For instance, we might look at deviations
from flat spacetime and take

gµν(x, t) = ηµν + hµν(x, t).

This also gives an answer to the third question: the observable is the graviton S-
matrix.

The diffeomorphism invariance acts, to first order as

δhµν = ∂µξν + ∂νξµ + ...

Since the Ricci scalar includes dependence on the inverse metric writing the Einstein-
Hilbert action in terms of hµν involves an infinite number of terms (the action for
the graviton is non-polynomial). Fixing a gauge, we find

S[h] =

∫
dDx (hµν2hµν + ...) .

As with most interacting quantum field theories we proceed by using the action to
determine Feynman rules which we use to calculate to a given order in perturbation
theory. The quadratic term determines the propagator.

Divergences at loop order. Not renormalisable! Even this pragmatic approach
seems to fail. It seems we need a different starting point.
Alternatives

Though arguably the most developed and best understood, string theory is ar-
guably not the only game in town.

• QFT in curved spacetime

Whilst not a proposal for a quantum theory of gravity, this does explore some
of the issues outlined above, such as the black hole information paradox.
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• Loop Quantum Gravity

• Causal Set Theory

• ...

What is string theory?

We don’t really know.

What do we know?

In a minimal sense it seems to be the perturbation theory for a specific quan-
tum theory (M-theory) which has a number of ten-dimensional classical vacua. The
perturbation theory around such vacua is described by String Theory. There is evi-
dence that the underlying theory has classical vacua of different kinds which whose
perturbation theory is not described by any string theory. For example, one such
vacuum is four-dimensional spacetime and the perturbation theory is governed by
N = 4 Super Yang-Mills. None of this is very helpful as I haven’t told you what
M-Theory is.

A more accessible, but possibly more misleading starting point is the usual one
taken by popular science books: Imagine the fundamental objects of nature are
tiny vibrating strings where different harmonics correspond to different fundamental
particles. This includes the graviton.

But hang on, isn’t a graviton ‘just’ a perturbation in spacetime? How can we
distinguish the object from the spacetime it lives in? The split is one of convenience
and is, at a fundamental level, arbitrary. In gravitational perturbation theory we
make a split between the background metric (which we presumably know a lot about)
and a perturbation

gµν(x) = ηµν + hµν(x).

The description we have from string theory is fundamentally perturbative.
So, the vibrational modes of the string are fundamental particles in some pertur-

bative sense. And just as particles sweep out world-lines, strings sweep out surfaces,
which we shall call world-sheets. Thus, we might expect pictures like this to have
something to do with Feynman rules.

What makes this start to be interesting is that there is a good understanding for
how these things interact in perturbation theory. There is a set of rules that look
just like Feynman rules. There are propagators and there are interaction vertices
For a given ‘allowed’ classical solution (we shall discuss what equations this is a
solution of later on), there is a set of Feynman rules that allow us to calculate
scattering amplitudes of perturbations of the background. The Feynman diagrams of
this mysterious theory are given by plumbing together such two-dimensional surfaces
(there are strict rules of how to do this in a way that is consistent with the underlying
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Figure 1. The embedding X →M , given by Xµ(σ, τ)

=
Figure 2. A closed string propagator

E
Figure 3. A three closed string vertex

symmetries of the theory). The asymptotic states are given by vibrational harmonics
of the string.

So the picture we have is that given by figure 4.
Thus our starting point is to study the embedding of the two-dimensional surfaces

Σ into an ambient, or target space M .

X : Σ→M
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Figure 4. Where does string theory come from?

If we have coordinates Xµ is some patch of M , we make this embedding concrete by
putting coordinates on the surface Σ. Let’s call them σa = (τ, σ), so that we can
describe the embedding by the set of functions

Xµ = Xµ(τ, σ), µ = 0, 1, 2, ...D − 1.

If we have an action functional for the embedding S[X] then we can try to quantise
the embedding. Things start to get special when we notice that the two-dimensional
quantum field theory living on the surface of the these ‘world-sheets’ has a rather
beautiful structure - it is a Conformal Field Theory. Moreover, there is a one-to-one
correspondence between states of the CFT and operators that describe deformations
in the background. These deformations include deformations of the metric - they
include gravitons. As such this theory includes perturbative quantum gravity. More-
over, one can argue that there are no problematic UV divergences in this theory.
There are some potential IR issues, but we will come to that later.

In units in which c = ~ = 1, the Planck length is

`p =
√

~GN/c3 = 1.6× 10−35m.

The characteristic length scale for the string is usually taken to be larger than this,
thus justifying using a classical spacetime as the background for the perturbation
theory.

Many questions are answered (unification, how to do gravitational perturbation
theory), some are strongly hinted at (there is no bh paradox - all evolution is unitary),
whilst others are not engaged with (in perturbation theory we have a pre-existing
causal structure to play with).

Many new questions are raised, such as the nature and significance of spacetime.
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Part I

The Classical String and Canonical
Quantisation
What to quantise? The standard approach to relativistic quantum theory is second
quantisation and with good reason - the approach is responsible for much of our
understanding of the Standard Model of particle physics and many advances in more
speculative quantum field theories. However, it is not the only game in town. In this
section we briefly champion the first quantised approach.

Second Quantization (X̂ i, t) → xµ = (xi, t) Space and time are parameters and
the physical objects are operators Φ̂(xi, t).

First Quantization (X̂ i, t) → X̂µ = (X̂ i, T̂ ) We elevate both space and time to
operators and introduce parameters σa to describe the theory. These operators
describe the embedding of surfaces (worldlines, worldsheets, worldvolumes, etc)
into spacetime. We expect one of these parameters, call it τ to play the role of
time on the parameter surface. The operators may then describe the embedding
of the parameterised surface in spacetime. In the simplest case we may have a
single parameter and the surface is a worldline with embedding(

X i(τ), T (τ)
)
.

Second quantisation is the route we take in conventional quantum field theory.
It is successful. One can deal with the physics of vacua, such as finding low energy
minima and symmetry breaking. Feynman rules can be easily derived and are not
introduced in an ad-hoc way and off-shell physics can be dealt with in a natural way.
However, first quantisation has had some success. It is arguably the framework that
allows more rigorous calculations to be done, one can study anomalies rigorously, and
there has been recent progress in the calculation of scattering amplitudes that suggest
Feynman rules are not the most sensible way to calculate and great simplifications
can be achieved by looking at formalisms that are closer in spirit to first quantisation.

2 Particles

We start with a more familiar example - the relativistic particle. This will serve as
a toy model for the relativistic string and many of the ideas central to the classical
string will be on display here, albeit in a simpler setting.
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2.1 Minimising worldline distance

We shall work throughout in a ‘mostly plus’ metric convention in spacetime; i.e.
ηµν = diag{−1,+1,+1, ...,+1}. Imagine a massive particle in flat spacetime with
background metric ηµν travelling between two points xµ1 and xµ2 . It sweeps out a
worldline L, the length of the which defines an action functional

S[X] = −m
∫ s2

s1

ds

where s is some parameter along L.

We can parameterise by τ , such that x1 = Xµ(τ1) and x2 = Xµ(τ2) for some
function Xµ(τ). We may write this as

S[X] = −m
∫ τ2

τ1

dτ

√
−ηµνẊµẊν (2.1)

where the dot denotes a derivative wrt τ . The constant m must have dimensions of
mass so we assume that this is the mass of the particle. The conjugate momentum
is given by

Pµ(τ) =
∂L

∂Ẋµ
= −m Ẋµ√

−Ẋ2
,

so that the mass-shell condition

P 2 +m2 = 0,

is satisfied identically. We see then that this formalism is manifestly on-shell.
The physics of the action above should be independent under a choice of parametri-

sation. We can see this if we change τ → τ + ξ(τ). The embedding changes as

Xµ(τ)→ Xµ(τ + ξ(τ)) = Xµ(τ) + ξẊµ(τ) + ...

and so to first order
δXµ(τ) = ξ(τ)Ẋµ(τ).

The action is indeed invariant under such a transformation if the variation vanishes
at the end points.
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2.2 Metric formalism

What about massless particles? Simply setting m → 0 in (2.1) is not very helpful.
We introduce an auxiliary field, the einbein1 e(τ) and instead consider the action

S[X, e] =
1

2

∫
L

dτ
(
e−1ηµνẊ

µẊν − em2
)

(2.2)

We shall show that this action is classically equivalent to (2.1) and shall assume that
it gives rise to an equivalent quantum theory. One of the many nice things about
the action (2.2) is that we can sensibly talk about massless particles.

Using the Lagrangian

L =
1

2

(
e−1ηµνẊ

µẊν − em2
)
,

the equations of motion are given by the Euler-Lagrange equations, such as

d

dτ

(
∂L

∂Ẋµ

)
− ∂L

∂Xµ
= 0,

which tells us that the Xµ equation of motion is

d

dτ

(
e−1Ẋµ

)
= 0.

The e(τ) equation of motion gives

Ẋ2 + e2m2 = 0, (2.3)

The key point is that the equation of motion for e(τ) is algebraic and so it is really a
constraint (think Lagrange multiplier) and we can substitute it back into the action
to recover the original action.

The momentum conjugate to Xµ is

Pµ ≡
∂L

∂Ẋµ
= e−1Ẋµ,

and so, written in terms of the momenta, the constraint equation (2.3) becomes the
mass-shell condition

P 2 +m2 = 0,

i.e. the constraint tells us something about the spacetime physics.
1The terminology comes from General Relativity. It is often useful (especially when describing

spinors) to encode the metric degrees of freedom in the field eµα, where gµν(x) = ηαβeµ
α(x)eν

β(x).
In four-dimensions, these vierbein have one leg in the tangent space and one leg on the spacetime,
hence the terminology. In one-dimension the same language may be used but the construcution is
somewhat redundant.
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For a time-like vector in this signature, we have Ẋ2 < 0 and so

e−1 =
m

|Ẋ|
,

Substituting back into the action

S[X, e(X)] =
1

2

∫
L

dτ e−1
(
ηµνẊ

µẊν − e2m2
)

= −
∫

dτ e−1|Ẋ|2

= −m
∫

dτ |Ẋ|

= −m
∫

dτ
√
−Ẋ2

which is the previous action.

2.3 Symmetries

• Worldline reparameterization acts as

δXµ = ξẊµ, δe =
d

dτ
(ξe).

We use the reparameterisation invariance to fix the einbein e(τ) to be whatever
we like (using the arbitrary functional dependence of ξ(τ) to remove the degrees
of freedom in e(τ)). This is just like using gauge invariance to remove the
longitudinal polarisation of the photon.

• There is also the rigid2 symmetry

Xµ(τ)→ Λµ
νX

ν(τ) + ξµ, Λµ
ν ∈ SO(D − 1, 1),

so the theory is naturally invariant under the Poincare symmetries of spacetime.

The Xµ(τ) equation of motion is

Ẍµ(τ) = 0,

telling us that free particles move in straight lines in flat spacetime. It is the mass-
shell constraint that is telling us whether the particle is time-like or space like, thus
both the Xµ(τ) and the e(τ) equations of motion play a crucial role in determining
the physics of the theory.

2We will use the terms ‘rigid’ and ‘global’ symmetry interchangably. In this context our matrices
Λµν are independent of τ .
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If we were to quantise the theory by introducing equal τ commutators

[Xµ(τ), Pν(τ)] = iδµν ,

we could then construct the Hilbert space of physical states H. The mass-shell
condition, which came from the e(τ) equation of motion, must then be imposed as a
constraint on the states in H

(P 2 +m2)|Φ〉 = 0.

2.4 Comments

Curved Backgrounds We could use this formalism to describe the motion of a
massless particle on a curved spacetime with metric gµν(X)

S[X, e] =
1

2

∫
L

dτe−1gµν(X)ẊµẊν

As one might expect, extremising the action leads to the geodesic equation

Ẍµ + ΓµνλẊ
νẊλ = 0

If we choose normal coordinates about a point x0, where gµν(x0) = ηµν , then
the metric becomes

gµν(x) = ηµν + (xλ − xλ0)∂λgµν(x0) + ...

or even better using Riemann normal coordinates, where x = x0 + y

gµν(x) = ηµν −
1

3
Rµλνρ(x0)yλyρ − 1

6
∇ρRµλνκ(x0)yρyλyκ +O(y4),

then the action looks like that of a free theory with a number of interaction
terms describing the curvature of the background and so, in principle, provides
a perturbative way to study particles moving in curved spacetime.

Quantum Gravity? This describes the motion of a particle on a curved back-
ground. If we quantize we find this gives a description of a quantum particle
on a classically curved background. The physics of the worldline theory does
not include deformations of the background. We have identified the momentum
above, so quantisation proceeds in the usual manner by imposing the canonical
equal time commutation relations of quantum mechanics

[Xµ(τ), Pν(τ)] = iδµν .

We see that a one-dimensional quantum field theory gives quantum mechanics.
Suppose we want to deform our massless theory from a flat background to a
curved one

ηµν → gµν = ηµν + hµν
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We could do so by adding into the action the term

S[X, e]→ S[X, e] +
1

2

∫
L

dτe−1O(X, Ẋ)

where O is the appropriate operator. This will not describe quantum gravity
in the background as the Hilbert space of the quantum mechanical theory does
not contain a state in its Hilbert space corresponding to the operator

O(X, Ẋ) = hµν(X)ẊµẊν

that deforms the metric of spacetime. All we have are plane waves. Put another
way, from the worldline quantum mechanics perspective this is not a physical
deformation of the existing theory, the worldline in the new background is really
a completely different theory altogether. We shall return to this idea later. If
we followed this through, we would be doing QFT on a curved background,
not quantum gravity.

3 Classical Strings

We now look at our man object of interest: the embedding of a two-dimensional
surface Σ into a D-dimensional spacetime M with coordinates Xµ, where µ =

0, 1, 2, ..., D − 1. We describe this surface by the embedding of Σ into M

X : Σ→M.

With this in mind, we often refer to M as the target space. To make this concrete,
we choose a parameterization (σ, τ) and describe the embedding by the functions
Xµ(σ, τ). What is the physics of this embedding? Classically we expect it to minimise
the area (think of a soap bubble). The justification will be aposterori.

We shall only consider closed strings, i.e. those for which

Xµ(τ, σ + 2π) = Xµ(τ, σ).

The generalisation to open strings (worldsheets with boundary) is straightforward
once you have understood the closed string. The closed sector contains gravity and so
will be the primary focus in this course. The attitude we shall take is that, once you
have mastered the bosonic closed string, you are well on the way to understanding
the open and supersymmetric strings.
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3.1 The Nambu-Goto Action

Following on from the worldline action (2.1), it is natural to propose the following
action for the relativistic string

S[X] = − 1

2πα′

∫
Σ

dτ dσ
√
− det(ηµν∂aXµ∂bXν) (3.1)

α′ is a constant (the only free parameter in the theory). It has dimensions of space-
time area. The string length is often introduced

`s = 2π
√
α′

and we usually justify the perturbation theory on a classical spacetime by assuming
`P � `s. We often also speak of the string tension3

T =
1

2πα′

The action is independent of the parameterization we use. The object

Gab = ηµν∂aX
µ∂bX

ν

is clearly the induced metric on the worldsheet. The square-root in this action makes
it difficult to work with. A much better starting point is:

3.2 The Polyakov Action

The Polyakov action is4

S[X, h] = − 1

4πα′

∫
Σ

d2σ
√
−hhabηµν∂aXµ∂bX

ν (3.2)

This is a two-dimensional generalisation for the action (2.2). The equations of motion
may be found in the usual way

The hab equations of motion: The response of the action to a change in the world-
sheet metric is given by the stress tensor Tab.

δS = − 1

2πα′

∫
Σ

d2σ
√
hTabδh

ab,

The hab(σ, τ) equation of motion5

4π√
h

δS

δhab
= Tab

3Not to be confused with the stress tensor!
4We will later choose a Euclidian signature and so replace

√
−h with

√
h, so more properly we

should write
√
|h| in place of

√
−h in the above action.

5The
√
h is not usually included in field theory but has become a standard convention in string

theory.
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is simply the vanishing of the stress tensor:

Tab = 0 ,

where the stress tensor is given by

Tab = − 1

α′

(
∂aX

µ∂bXµ −
1

2
habh

cd∂cX
µ∂dXµ

)
.

We shall see that this is one of the most important equations in string the-
ory. We notice that the trace of the stress tensor vanishes identically in two-
dimensions (since habhab = 2)

habTab = 0.

We should think of the vanishing of the stress tensor as the stringy generalisa-
tion of the mass-shell condition coming from the einbein equation of motion in
(2.2). In particular, we can decompose the stress tensor into harmonic modes,
each of which must vanish, and the vanishing of the zero mode will be the
mass-shell condition for the string. The string contains many states in its spec-
trum and the vanishing of the other modes will impose appropriate physical
constraints (such as an absence of longitudinal polarisations in massless states).

The Xµ equations of motion: The equation of motion for the embedding fields
Xµ is

1√
−h

∂a

(√
−hhab∂bXµ

)
= 2Xµ = 0

3.2.1 Classical Equivalence of the Nambu-Goto and Polyakov Actions

If we denote the induced metric by

Gab = ηµν∂aX
µ∂bX

ν ,

then the vanishing of the stress tensor says

Gab −
1

2
habG = 0

where G = habGab is the trace of the induced metric. Consider then

detGab =
1

4
G2 deth

and so √
−hhabηµν∂aXµ∂bX

ν = 2
√
− detGab

Thus the Polyakov action (3.2) gives the Nambu-Goto action (3.1) when we integrate
out the auxiliary metric.
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3.2.2 Extending the Polyakov action

What other types of term could we add to the action?

• The obvious thing we could do is allowM to be a general Riemannian manifold
with metric gµν(X). This makes the two-dimensional field theory on Σ highly
non-linear and in practice difficult to analyse (we will however discuss this
possibility later).

• Should we include an Einstein-Hilbert term? Since hab is appearing as a con-
straint, we do not want a kinetic term as the hab is not dynamical. What if we
do it anyway and add in?

λ

4π

∫
Σ

d2σ
√
−hR(h),

where R(h) is the Ricci scalar for the metric hab. This is just a Gauss-Bonnet
term and is proportional to the Euler characteristic of the surface6

χ =
1

4π

∫
Σ

d2σ
√
−hR.

• Additionally, we could consider adding a cosmological constant term

Λ

∫
Σ

d2σ
√
−h

The equation of motion for the metric would then be

Tab ∼ −Λhab

Since habTab = 0, we would conclude that

Λhabhab = 0

which is only acceptable if Λ = 0, so we will not consider cosmological constants
on the worldsheet further.

• If we have other ‘background’ fields already living onM , we can pull them back
to the worldsheet. A particularly important example is given by the two-form
field

B =
1

2
Bµν(X) dXµ ∧ dXν ,

which when pulled back to Σ gives the contribution

− 1

2πα′

∫
Σ

B = − 1

4πα′

∫
Σ

d2σ
√
−hεab∂aXµ∂bX

νBµν(X).

6Such terms will in fact play a role when we consider constant Dilaton backgrounds. In fact, in
two dimensions the Einstein tensor vanishes identically.
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We will see later why such modifications to the action arise naturally in string
theory.

Another possibility is a term of the form

1

4π

∫
Σ

R(h)Φ(X),

where R(h) is the worldsheet Ricci Scalar and Φ(X) is a spacetime scalar field,
often called the dilaton. 7.

3.2.3 Symmetries of the Polyakov Action

The Polyakov action has a number of local and global symmetries that we must
understand if we are successfully quantise the theory later on:

Global Symmetries: Poincare Invariance

Xµ → Λµ
νX

ν + aµ, hab → hab.

where ΛT = −Λ and Λ ∈ SO(D − 1, 1) is a Lorentz transformation.

Local Symmetries: The theory is invariant under the local symmetries:

Reparameterizations Under the transformation σa → σ′a(σ, τ), the world-
sheet fields transform as X → X ′, h→ h′ where

X ′µ(σ′, τ ′) = Xµ(σ, τ), hab(σ, τ) =
∂σ′c

∂σa
∂σ′d

∂σb
h′cd(σ

′, τ ′).

Under the infinitesimal transformation σa → σa − ξa(σ, τ) the worldsheet
fields transform infinitesimally as

δXµ = ξa∂aX
µ,

δhab = ξc∂chab + ∂aξ
c hbc + ∂bξ

c hac

= ∇aξb +∇bξa,

δ
√
−h = ∂a(ξ

a
√
−h). (3.3)

Weyl Transformations Weyl transformations are given by

X ′µ(σ, τ) = Xµ(σ, τ), h′ab(σ, τ) = e2Λ(σ,τ)hab(σ, τ).

Infinitesimally,

δhab = 2Λhab

δXµ = 0
7This is not obviously Weyl-invariant; however, such a term can be included in a Weyl-invariant

way in the quantum theory. The key to seeing something fishy is going on is to note that this term
appears at a different order of α′ to the other terms.
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We will have to gauge fix the local symmetries in order to make sense of the quan-
tum theory. There is a class of diffeomorphisms that can be cancelled out by cleverly
chosen Weyl transformation. Thus, fixing the metric leaves a class of residual dif-
feomorphisms. We shall see that these generate the conformal group and will play a
key role in the quantum theory.

3.3 Classical Solutions

We can use the three arbitrary degrees of freedom in (ξa,Λ)to fix the metric hab. We
can use the diffeomorphsims to remove two degrees of freedom from the worldsheet
metric and set it to be

hab = e2φηab

where ηab is the two dimensional Minkowski metric

ηab =

(
−1 0

0 1

)
.

The action then becomes

S[X] = − 1

4πα′

∫
Σ

d2σ
(
− Ẋ2 +X ′2

)
where

Ẋµ := ∂τX
µ, X ′µ := ∂σX

µ.

This choice of metric is called conformal gauge. In conformal gauge we have X2 =

XµXµ and

∂a

(√
hhab∂bX

µ
)

= 2Xµ = 0

where

2 = − ∂2

∂τ 2
+

∂2

∂σ2

is the two dimensional D’Alembertian. The extrema of the action thus describes
harmonic maps given by solutions of the form

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ)

Without loss of generality, we can express this in terms of Fourier modes as

Xµ
R(τ − σ) =

1

2
xµ +

α′

2
pµ(τ − σ) + i

√
α′

2

∑
n 6=0

αµn
n
e−in(τ−σ),

Xµ
L(τ + σ) =

1

2
xµ +

α′

2
pµ(τ + σ) + i

√
α′

2

∑
n6=0

ᾱµn
n
e−in(τ+σ),
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For Xµ to be real, we require xµ and pµ to be real and

(αµn)∗ = αµ−n,

and similarly for ᾱµn. We also define

αµ0 = ᾱµ0 =

√
α′

2
pµ.

3.4 Classical Hamiltonian Dynamics

We stay now in the conformal gauge. We can define conjugate momentum

Pµ =
δS[X]

δẊµ
=

1

2πα′
ηµνẊ

ν .

And the vanishing of the stress tensor, like the mass-shell condition for the particle,
must be imposed as a constraint.

One can define a Hamiltonian density in the usual way

H = PµẊ
µ − L =

1

4πα′

(
Ẋ2 +X ′2

)
where L is the Lagrangian density. Thus, the Hamiltonian is

H =
1

4πα′

∫ 2π

0

dσ
(
Ẋ2 +X ′2

)
.

As is standard in Hamiltonian mechanics, we introduce the Poisson bracket: Given
functions on phase space F (X,P ) and G(X,P ), the Poisson bracket is defined as

{F,G}PB =

∫ 2π

0

dσ

(
δF

δXµ(σ)

δG

δPµ(σ)
− δF

δPµ(σ)

δG

δXµ(σ)

)
,

which generalises the particle-like case

{f, g}PB =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
.

In particular {x, p}PB = 1, which generalises in the field theory to

{Xµ(τ, σ), Pν(τ, σ
′)}PB = δµν δ(σ − σ′),

which are the precursors to the canonical commutation relations. These give rise to
corresponding Poisson bracket for the modes

{αµm, ανn}PB = −im ηµνδm+n,0, {αµm, ᾱνn}PB = 0 {ᾱµm, ᾱνn}PB = −im ηµνδm+n,0
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Let us briefly verify this statement. The commutator is at equal τ , so let us chose
τ = 0 for simplicity. Using the mode expansions

Xµ(σ) = xµ + i

√
α′

2

∑
n6=0

1

n

(
αµne

inσ + ᾱµne
−inσ

)
,

Pν(σ
′) =

pµ

2π
+

1

2π

√
1

2α′

∑
n6=0

(
αµne

inσ + ᾱµne
−inσ

)
The Poisson bracket is then

{Xµ(σ), P ν(σ′)} =
1

2π
{xµ, pν}

+
i

4π

∑
m,n 6=0

1

m

(
{αµm, ανn}PB ei(mσ+nσ′) + {ᾱµm, ᾱνn}PB e−i(mσ+nσ′)

)
Using the proposed Poisson brackets for the modes gives

{Xµ(σ), P ν(σ′)} =
ηµν

2π
+
ηµν

2π

∑
m 6=0

eim(σ−σ′)

=
ηµν

2π

∑
m

eim(σ−σ′)

where the first term has been absorbed into the sum in the last expression. Intro-
ducing the periodic delta-function;

1

2π

∑
m

eim(σ−σ′) = δ(σ − σ′),

we recover the correct canonical Poisson bracket

{Xµ(σ), P ν(σ′)} = ηµνδ(σ − σ′).

3.4.1 The Classical Stress Tensor and the Wit Algebra

It is clearly sensible to introduce worldsheet light-cone coordinates

σ± = τ ± σ.

We note that

ds2 = − dτ 2 + dσ2 = ( dσ+, dσ−)

(
0 −1

2

−1
2

0

)(
dσ+

dσ−

)
and

∂± =
1

2
(∂τ ± ∂σ)
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The action and equation of motion become

S[X] = − 1

2πα′

∫
Σ

dσ+ dσ− ∂+X · ∂−X, ∂+∂−X
µ = 0.

The stress tensor becomes

T++(σ+) = − 1

α′
∂+X · ∂+X, T−−(σ−) = − 1

α′
∂−X · ∂−X

and T+− vanishes identically (this is effectively the trace of Tab).
We define the charges at τ = 0 as

`n = − 1

2π

∫ 2π

0

dσ T−−(σ)e−inσ, ¯̀
n = − 1

2π

∫ 2π

0

dσ T++(σ)einσ

These are just the Fourier modes of the stress tensor components. We shall see that
they are conserved on the constraint surface. Using

∂−X
µ(σ−) =

√
α′

2

∑
n

αµne
−inσ− , αµ0 =

√
α′

2
pµ,

we find that

`n =
1

2πα′

∫ 2π

0

dσ ∂−X
µ(σ)∂−Xµ(σ)

=
1

4π

∑
m,p

αm · αp
∫ 2π

0

dσ ei(m+p−n)σ

=
1

4π

∑
m,p

αm · αp2πδp,n−m

A similar result holds for ¯̀
n, so that

`n =
1

2

∑
m

αn−m · αm, ¯̀
n =

1

2

∑
m

ᾱn−m · ᾱm

The constraint is then
`m = 0, ¯̀

n = 0.

These constraints represent the difference between two-dimensional massless Klein-
Gordon theory and the bosonic string. In some sense they endow the two-dimensional
theory on Σ with a target space interpretation.

One can show, using the Poisson brackets for the mode operators that these
generators satisfy what is known as the Wit algebra

{`m, `n} = −i(m− n)`m+n, {`m, ¯̀
n} = 0, {¯̀m, ¯̀

n} = −i(m− n)¯̀
m+n.
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This is an infinite-dimensional Lie algebra. The subset `0, `1, `−1 generate the sub-
algebra SL(2;R) and similarly for ¯̀

0, ¯̀
1, ¯̀−1. Together these generate SL(2;C) - the

mobius symmetry acting on the compactified conformal plane. We shall see later
why this symmetry group is appearing.

The Hamiltonian may be written as

H =
1

2πα′

∫ 2π

0

dσ
(

(∂+X)2 + (∂−X)2
)

=
1

2

∑
n

(
α−n · αn + ᾱ−n · ᾱn

)
which we can write as

H = `0 + ¯̀
0.

This is the Hamiltonian of an infinite number of harmonic oscillators, each with
Hamiltonian Hn = α−n · αn + ᾱ−n · ᾱn.

These generators generate a symmetry of the theory. The time evolution of the
`n is given by the Poisson bracket with the Hamiltonian

d

dτ
`n =

∂`n
∂τ

+ {`n, H} ∝ n`n ∼ 0

We can understand this as follows: We consider the space of all embeddings Xµ and
restrict to the space of physical embeddings in two stages. In the first, we impose
the Xµ equations of motion, so that we are dealing with the space of harmonic maps
into the target space H . The Tab = 0 condition is then imposed. We can think of
the harmonic maps such that Tab = 0 as a subspace, or constraint surface N ⊂H .
On the constraint surface N , where `n = 0, we see that ˙̀

n = 0 and so the action of
the Hamiltonian keeps `n within the constraint surface and so the `n are conserved
charges. Noether’s theorem tells us that we then expect an infinite-dimensional
symmetry fo the theory. It is this infinite dimensional symmetry that is responsible
for many of the miraculous features in string theory.

In summary: The worldsheet metric equation of motion is a constraint Tab = 0.
If we gauge fix hab to conformal gauge (or any other gauge) we cannot recover Tab = 0

as an equation of motion and so it must be imposed as a constraint on the gauge-fixed
theory.

Noether’s theorem tells us that to each conserved quantity there is a an associated
symmetry. In this case the conserved quantity is the stress tensor Tab = 0. The
symmetry associated with, or generated by, it is the conformal symmetry of the
theory, i.e. that subset of Diff×Weyl that is not fixed by fixing the metric. It is easy
to see that a diffeomorphism

σa → σa + va(σ),

will preserved the gauge choice for the metric if it can be undone by a Weyl trans-
formation. These are the conformal transformations.
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4 A first look at the quantum theory

Suppose that the phase space of the classical theory is 2d-dimensional (we are count-
ing each infinity of values of Xµ(σ) once), with coordinates (Xµ(σ), Pµ(σ)). We then
have N constraints (again this is infinite-dimensional), giving a 2d−N dimensional
constraint surface. On this surface each constraint gives a conserved charge `n and,
by Noether’s theorem, a symmetry. These n gauge symmetries reduce the physical
phase space to be 2d − 2N dimensional. We could choose the physical phase space
coordinates to be (qµ(σ), πµ(σ)) with an appropriate Poisson bracket.

How do we deal with these constraints in the quantum theory? There are two
routes. Either we first reduce the classical theory to the 2d − 2n dimensional space
and then quantise by endowing (qµ(σ), πµ(σ)) with canonical commutation relations.
This is the track taken in the light-cone quantisation, where we solve the Virasoro
constraints by going to light-cone coordinates and fixing a gauge there (and in the
process breaking manifest space-time Lorentz invariance). One then choses to express
the theory in d−n dimensions using either the physical configuration or momentum
coordinates. This gives rise to a theory with Hilbert space Hl.c..

In this course we choose a second route. We quantise the unconstrained variables
(Xµ(σ), Pµ(σ)) by replacing the Poisson brackets by canonical commutation relations
and then imposing the constraints on the Hilbert space and restricting to gauge-
invariant states to give the physical Hilbert space HQ.

4.1 Canonical quantization

It is now a straightforward issue to quantise the theory. The standard approach to
canonical quantization is to elevate the phase space variables to Hermitian operators
and to replace Poisson brackets with commutators8 in the fundamental relations9

{ . }PB → −i[ , ].

In other words, we multiply our results for the Poisson-brackets by i to get the
commutators. We define the worldsheet momentum and impose the canonical com-
mutation (equal τ) relations

[Xµ(σ), Xν(σ′)] = 0, [Pµ(σ), Pν(σ
′)] = 0, [Pµ(σ), Xν(σ′)] = −iδνµδ(σ − σ′).

Using the mode expansion

Xµ(σ, τ) = xµ + α′pµτ + i

√
α′

2

∑
n6=0

1

n

(
αµne

−in(τ−σ) + ᾱµne
−in(τ+σ)

)
8Remember, we have set ~ = 1.
9Poisson brackets of more complicated functions of x and p may have complicated commutation

relations involving higher powers of ~.
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the corresponding commutation relations for the creation and annihilation operators
are

[αµm, α
ν
n] = mδm+n,0 η

µν , [ᾱµm, ᾱ
ν
n] = mδm+n,0 η

µν , [αµm, ᾱ
ν
n] = 0.

We can construct other useful objects from these operators such as the Virasoro
operators

Lm =
1

2

∑
n

αn · αm−n, m 6= 0

These are the Fourier modes of the stress tensor but, as we shall see, they satisfy a
slightly modified version of the Witt algebra, called the Virasoro algebra. As such it
is useful to distinguish the Ln from their the classical counterparts `n. Rescaling the
αµn as

αµn =
√
naµn,

and recalling that the reality of the Xµ requires

(αµn)† = αµ−n,

we see that the aµn satisfy the algebra

[aµm, (a
ν
n)†] = δm,n η

µν ,

and so, for each spacetime direction µ, we have an infinite number of harmonic
oscillators. The αµn have the interpretation of creation (annihilation) operators for
n < 0 (n > 0). What is it that they are creating? Left- and right-moving harmonic
waves on the worldsheet. When we come to look at the worldsheet theory as a
conformal field theory it will turn out to be more natural to work with the operators
αµn, rather than the aµn, so we will stick with the αµn.

We introduce the vacuum state10 |0〉 and demand that

αµn|0〉 = 0, n ≥ 0.

We have to take care to make sense of this as an operator expression in these expres-
sions. There is ambiguity in L0 as αn and α−n do not commute unless n = 0 so we
choose to define

L0 =
1

2
α2

0 +
∑
n>0

α−n · αn.

We use : : to denote normal ordering and take the αn with n ≤ 0 (n > 0) to
be creation (annihilation) operators. We can therefore sensibly define composite
operators, such as

T−− = − 1

α′
: ∂−X · ∂−X : .

10Note that this is a vacuum state in the Hilbert space of string oscillations. It is not a vaccum
of a spacetime theory as we have not discussed any means to create or destroy worldsheets, only
the modes on them.
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4.2 Physical State Conditions

We note that we may write nNn = α−n · αn, where Nn is the number operator11

counting the quanta at level n and so we may write

L0 =
α′

4
p2 +N, N =

∑
n

nNn, L̄0 =
α′

4
p2 + N̄ , N̄ =

∑
n

nN̄n.

As usual, the constraint Tab = 0, is too strong to impose as an operator constraint
on the Hilbert space. Instead, in the spirit of Gupta-Bleuler quantisation of QED,
we impose the weaker condition

Ln|ψ〉 = 0, n > 0

for |ψ〉 to be a physical state. Hermiticity then imposes

〈ψ|L−n = 0, n > 0.

The issue of L0 is a little subtle as αµn and αµ−n do not commute so there is a potential
normal ordering issue in imposing the constraint. The general statement is

L0|ψ〉 = a|ψ〉, L̄0|ψ〉 = a|ψ〉

for some a ∈ R is expected. In later chapters, when we come to consider the BRST
quantisation of the theory, we shall prove that a = 1 is required for a physically
sensible theory. For now we shall assume a = 1.

In fact, instead of the conditions L0|ψ〉 = |ψ〉 and L̄0|ψ〉 = |ψ〉, it is useful to
consider L+

0 |ψ〉 = 2|ψ〉 and L−0 |ψ〉 = 0, where

L±0 = L0 ± L̄0.

The condition L−0 |ψ〉 = 0 ensures N = N̄ in all physical states and is called the level
matching condition. It is the only constraint that relates the left and right-moving
sectors. The condition (L+

0 − 2)|ψ〉 = 0 is related to the spacetime equations of
motion of the states, thus we are interested in the physical state conditions12

(L+
0 − 2)|ψ〉 = 0, L−0 |ψ〉 = 0, Ln|ψ〉 = 0 = L̄n|ψ〉, n > 0

Just as the particle constraints gave the equation of motion in momentum space
p2 + m2 = 0, these are the momentum space equations of motion for the physical
excitations in string.

11Note that it is actually an =
√
nαn that satisfies the operator algebr for a creation and anni-

hilation operator.
12It turns out that, if a = 1 and D = 26, there are a number of states that have zero norm that

satisfy these conditions. These sates decouple from all physical processes and so we really take the
physical Hilbert space to be states of positive norm that satisfy the above conditions.
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4.3 The spectrum

Let us explore the spectrum of the theory by considering the lowest lying states in
the physical Hilbert space. This will give us a quantum theoretic description for the
oscillations of the string.

4.3.1 The Tachyon

With no oscillators the most general state is a superposition of momentum eigen-
states. A single momentum eigenstate is13

|k〉 = eik·x|0〉.

This describes the centre of mass motion of the string. We see the action of the
centre of mass momentum operator is

pµe
ik·x|0〉 = −i ∂

∂xµ
eik·x|0〉 = kµ|k〉,

where we have used the position space realisation of the commutator {xµ, pν} = iδµν
A general superposition of such states may be written as

|T 〉 =

∫
dk T (k)|k〉.

The condition (L+
0 − 2)|T 〉 = 0 gives(

L+
0 − 2

)
|T 〉 =

(
α′

2
p2 +N + N̄ − 2

)
|T 〉 =

(
α′

2
k2 − 2

)
|T 〉 = 0

The constraint thus gives the momentum space Klein-Gordon equation(
k2 − 4

α′

)
T (k) = 0.

Comparing this with the momentum space Klein-Gordon equation k2 +M2 = 0, we
see that the mass-shell condition is

p2 +
2

α′

(
N + N̄ − 2

)
= 0.

We see this is simply a standard mass-shell condition with

M2 =
2

α′

(
N + N̄ − 2

)
.

And so for the lowest lying state we have

M2 = − 4

α′

13We will see how this relates to a more familiar momentum eigenfunction eik·X later when we
study the state operator correspondence.

– 27 –



The state is tachyonic. The other virasoro conditions do not place any further con-
straints on T (k). It is interesting to note that the free Klein-Gordon action (expressed
in terms of momentum space) may be given by S[T ] = 〈T |(L+

0 − 2)|T 〉. This isn’t
quite right but it is not far from the truth.

The Tachyon is the main deficiency of the bosonic string. It leads to incurable
problems in the theory. The supersymmetric string, about which we shall say little,
provides a cure. The imposition of supersymmetry forces the ground state of the
theory to be massless and so there is no tachyon. So why study the bosonic string?
Many of the key ideas in superstring theory can be understood as relatively mild
generalisations of what occurs in the bosonic string.

4.3.2 Massless States

Next we consider states of the form

|ε〉 = εµνα
µ
−1ᾱ

ν
−1|k〉

It is helpful to decompose the tensor εµν into irreducible representations of the
Lorentz group

εµν = φ̃ηµν + g̃µν + b̃µν

where g̃µν(k) is symmetric and traceless and b̃µν(k) is antisymmetric and traceless.
We have satisfied the level matching constraint by construction but the con-

ditions L1|ε〉 = 0, L̄1|ε〉, and L0|ε〉 = L̄0|ε〉 = |ε〉 will impose additional physical
constraints.

Let us first consider L1|ε〉. The key part is

1

2

∑
n

α1−n · αn εµναµ−1ᾱ
ν
−1|k〉 = α1 · α0 εµν α

µ
−1ᾱ

ν
−1|k〉

= kλεµνᾱ
ν
−1α

λ
1α

µ
−1|k〉

= kλεµνᾱ
ν
−1

(
[αλ1 , α

µ
−1] + αµ−1α

λ
1

)
|k〉

= kλεµνᾱ
ν
−1η

λµ|k〉
= kµεµνᾱ

ν
−1|k〉

and so we require kµεµν = 0. From the other conditions we find:

• L1|ε〉 = 0 implies kµεµν(k) = 0

• L̄1|ε〉 = 0 implies kνεµν(k) = 0

• L0|ε〉 = L̄0|ε〉 = |ε〉 implies k2 = 0 and so the states are massless.

The physical states are then the graviton |g̃〉, the Kalb-Ramond or B-field |b̃〉 and
the dilaton |φ̃〉 given by

|g̃〉 = g̃µνα
µ
−1ᾱ

ν
−1|k〉, |b̃〉 = b̃µνα

µ
−1ᾱ

ν
−1|k〉
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|φ̃〉 = φ̃αµ−1ᾱ
µ
−1|k〉

where g̃µν is symmetric and traceless and b̃µν is anti-symmetric.
These properties may be recovered form studying the linearised description of

the spacetime action

S[φ, g, B] = − 1

2κ2

∫
dDx
√
−ge−2φ

(
R− 4∂µφ∂

µφ+
1

12
HµνλH

µνλ

)
+ ...,

where Hµνλ = ∂[µBνλ], which is invariant under the gauge transformation δBµν =

∂[µλν]. The +... denote corrections of order α′. The Einstein-Hilbert action to
quadratic order is the famous Fierz-Pauli action.

The split into Lorentz representations is motivated by our desire to understand
these states as propagating states on spacetime. Is this the right thing to do? Should
we be putting so much weight on a spacetime interpretation? T-duality suggests that
the more natural object is the background tensor Eµν = gµν + Bµν . We shall say
more about this later.

4.3.3 Massive States

We consider

εµνα
µ
−2ᾱ

ν
−2|k〉+ εµνλα

µ
−2ᾱ

ν
−1ᾱ

λ
−1|k〉+ ε̄µνλα

µ
−1α

ν
−1ᾱ

λ
−2|k〉+ εµνλρα

µ
−1α

ν
−1ᾱ

λ
−1ᾱ

ρ
−1|k〉

The mass of these states is
M2 =

4

α′
.

It is clear that the mass scales involved mean that, if we are to make contact with the
Standard Model of particle physics, it must be solely through the massless sector,
with masses generated in Higgs-like mechanisms, rather than directly from massive
string excitations.

The physical state conditions will clearly require a careful treatment of L2 and
L̄2.

4.3.4 Spurious States and Gauge-Invariance
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Part II

Path Integral Quantisation
So far we have only discussed free strings. In order to introduce interactions it is
useful to have at our disposal more powerful techniques. As such we consider an
alternative method of quantising the string - the path integral. If you have studied
an advanced course of quantum field theory (such as Part III AQFT), path integrals
will be familiar already. If they are new to you, do not worry! We will need only the
simplest aspects of the path integral here.

5 The path integral

We begin with a crash course in path integrals in one-dimensional quantum field the-
ory (quantum mechnics) before generalising the results to two-dimensional quantum
field theory (string theory).

5.1 The Path Integral in Quantum Mechanics

t

tf

.

At

ti

I I

X ; Xf
x

Figure 5. The path integral gives a weighted sum of all possible trajectories between the
initial and final events.

We start with the transition amplitude, familiar from non-relatvistic quantum
mechanics in one dimension in the Schrodinger picture

〈xf , tf |xi, ti〉,

This is the amplitude associated with finding the particle at position xi at time ti
and then finding at position xf at a later time tf . We can slice up the interval [ti, tf ]
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into N + 1 equal units of duration ∆t. We then look at the probabilities of following
the path

(xi, ti)→ (x1, t1)→ (x2, t2)→ (x3, t3)...→ (xN , tN)→ (xf , tf ),

where tn = ti + n∆t and we integrate over all intermediate points, thus using a
complete basis of states at each intermediate point

〈xf , tf |xi, ti〉 =

∫
dx1...

∫
dxN 〈xf , tf |xN , tN〉〈xN , tN |xN−1, tN−1〉...〈x1, t1|xi, ti〉

We can factor off the time-dependence

〈xj+1, tj+1|xj, tj〉 = 〈xj+1|eiHtj+1e−iHtj |xj〉

and, noting that tj+1 − tj = ∆t, we have

〈xj+1, tj+1|xj, tj〉 = 〈xj+1|e−iH ∆t|xj〉

=

∫
dp dp′〈xj+1|p′〉〈p′|e−iH ∆t|p〉〈p|xj〉

=

∫
dp dp′〈p′|e−iH ∆t|p〉ei(p′xj+1−pxj)

where two complete basis of momentum states has been inserted in the second line
and we have used the standard momentum wavefunction expression

〈xj+1|p〉 =
1√
2π
eip xj+1 ,

in the last line. We are interested in a free theory so H = P̂ 2/2m and

〈p′|e−iĤ ∆t|p〉 = δ(p− p′)e−iH(p) ∆t

where we have briefly introduced a hat on the Hamiltonian on the left hand side
to note that it is an operator and a classical function on the right hand side. It is
interesting to note that this is not canged by the inclusion of a potential V (x) and,
more generally, we have

〈xj+1, tj+1|xj, tj〉 =

∫
dp exp

(
i∆t

(
xj+1 − xj

∆t
−H(p, x̄j)

))
where x̄ is given by the average

x̄j =
1

2
(xj+1 + xj).

And so

〈xf , tf |xi, ti〉 =

∫ N∏
j=1

dxj

∫ N∏
j=0

dpj exp

(
i∆t

N∑
j=0

(
pj
xj+1 − xj

∆t
−H(pj, x̄j)

))
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where x0 = xi and xN+1 = xf . We take the continuum limit

N →∞, ∆t→ 0.

In this limit, p and x become functions of t and

xj+1 − xj
∆t

→ ẋ,

N∑
j=0

∆t→
∫ tf

ti

dt,

and so we have

〈xf , tf |xi, ti〉 =

∫
Dx
∫
Dp exp

(
i

∫ tf

ti

dt
(
pẋ−H(p, x)

))
where the functional integral notation

lim
N→∞,∆t→0

∫ N∏
j=1

dxj ≡
∫
Dx,

has been introduced.
In many cases, we can perform the pj integral before we take the limit to give

the alternative, Lagrangian, expression

〈xf , tf |xi, ti〉 = N
∫
Dx exp

(
i

~
S[x]

)
where the action is

S[x] =

∫ tf

ti

dt L(x, ẋ)

One may show that

N = lim
N→∞

( m

i~∆t

)(N+1)/2

,

which diverges in the limit; however, the physics will reside in a normalised version
of this expression, so such factors will be consistently dropped. From now on we
shall work in units in which ~ = c = 1.

5.2 The Worldsheet Path Integral

We shall somewhat cavalierly assume that this final result generalises, even to those
cases for which the steps in the derivation above do not hold. The justification will be
that it works - the proof will be in the pudding. We could analyse this in more detail
and satisfy ourselves that this is justified but our efforts will be required elsewhere.
The obvious thing to do would be to discretise the σ coordinate on the worldsheet
also

Xµ
j (σ)→ Xµ

jk
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where k denotes the location on the lattice in the σ direction.
The path integral we need to make sense of is

〈Ψi|Ψf〉 =

∫ f

i

DXDh eiS[X,h].

The action is
S[X, h] = − 1

4πα′

∫
Σ

d2σ
√
−hhabηµν∂aXµ∂bX

ν

We can improve matters slightly by Wick rotating to a Euclidean worldsheet so
that dτ dσ → i dτ dσ so that the integral has a chance of converging. The use of a
Euclidean worldsheet also has the benefit that we will be able to use the full power
of complex analysis to perform worldsheet calculations later on.

FEE
Figure 6. The path integral sums over all possible Riemann surfaces with give boundary
conditions.

This clearly involves more than just cylinders.
Another problem is that the gauge symmetries mean that the path integral

overcounts and does so infinitely. We would like to count only gauge-inequivalent
configurations. Formally we may express this wish as

〈Ψi|Ψf〉 =
1

|Weyl × Diff|

∫ f

i

DX Dh e−S[X,h].

We shall see that it is useful to incorporate initial and final asymptotic states as
operator insertions into the path integral.

The main task in this chapter is to make sense of the object

DX Dh
dVol(Diff × Weyl)
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This is hardly a well-defined object. What is it we are trying to capture in this
expression? The space of diffeomorphisms is not simply connceted and we shall say
something about ‘large differomorphsis’ later. For now, we will focus on only the
connected component of Diff that contains the identity, which shall be denoted by
Diff0. Thus, we are interested in making sense of

DX Dh
dVol(Diff0 × Weyl)

Of course, matters have not improved and this expression is also purely formal -∫
Dh is infinite and the diffeomorphism and Weyl groups are infinite dimensional.

In order to make sense of what this means we need to explicitly decompose Dh into
metrics on the gauge slice and those that represent an over-counting given by the
gauge symmetry

Dh = J ×Dhphys ×DV

where Dhphys is a measure on the space of physically inequivalent metrics. Thus,
what we mean above is

1

Vol(Diff0 × Weyl)

∫
DX Dh ... =

∫
J ×Dhphys ...

and ∫
DV = Vol(Diff×Weyl).

J is an appropriate Jacobian. In many ways, the aim of this section will be to find
the form of the Jacobian J . One can show (see the Appendix) that this Jacobian is a
rational function of square-roots of functional determinants and cam be expressed as
a functional integral, in much the same way a normal determinant may be expressed
as a Gaussian integral over auxiliary variables√

(2π)n

detM
=

∫
V

dnx e−
1
2

(x,Mx)

for some self-adjoint operator M on an n-dimensional Euclidean space V . In the
functional case the x’s above are replaced by local fields and this Jacobian will
contribute to the classical action.

A helpful trick in finding the measure on the space of metrics H is to instead
find the measure on the tangent space to the space of metrics TH . The Jacobean
will be the same in either case. The measure on TH is given by D(δh) where

Dδh = J D(δphysh) D(δDiff× Weylh)

The general transformation of the metric is

δhab = δthab + δωhab + δvhab
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where ω generates Weyl transformations and δv generates diffeomorphsims connected
to the identity

δωhab = 2ωhab, δvhab = Lvhab = ∇avb +∇bva.

It will be useful to extract the trace-ful part of the infinitesimal diffeomorphism and
include that in the Weyl transformations so that

ω → ω +∇ava

and we define the trace-free diffeomorphsim

(Pv)ab ≡ ∇avb +∇bva − hab∇cvc.

so that
δhab = (Pv)ab + 2(ω +∇cv

a)hab

We shall take all transformations that are not in Diff0×Weyl as physical. Given a
particular metric ĥab, can all other metrics be reached from this one using the above
transformations? To answer this question we must deal with the fact that the path
integral involves sums over all surfaces Σ subject to the boundary conditions, not just
cylinders. As such, we need to learn a little more about two-dimensional geometry
and topology.

'

Figure 7. We want the path integral to count physically inequivalent metrics only once.

6 A crash course on Riemann Surfaces

Happily for us, mathematicians have long studied two dimensional Riemannian man-
ifolds (Σ, h). By Riemannian geometry, we implicitly mean metrics, modulo diffeo-
morphisms. In the pantheon of Riemannian Geometry, the study of metrics defined,
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modulo Weyl invariance is particularly revered. Such manifolds are called Riemann
Surfaces

{Riemannian Manifolds, mod Weyl } = {Riemann Surfaces}

Modulo diffeomorphisms is assumed in the definition of a Reimannian manifold. One
of the many reasons why Riemann surfaces are so interesting is that, our manifold Σ

looks locally like C. If we require that these local patches are glued together using
holomorphic transition functions we naturally have a Riemann surface.

6.1 Worldsheet Genus and Punctures

For Riemann surfaces without boundary, the topology of the surface is encoded in
the Euler characteristic

χ =
1

4π

∫
Σ

d2σ
√
−hR(h)

A more useful quantity is the genus g, which is related to the Euler characteristic by

χ = 2− 2g

From a perturbation theory perspective, it is clear that the genus counts the number
of loops in a string diagram.

I -.

g
-

- O

g
-

- I
g

-
- 2+

. - - .  . t )¥t,...- t - . . '

Another set of data we can include to specify a Riemann surface is the number
and location of marked points, or punctures on the surface. In our considerations
such punctures will be locations where we insert vertex operators and will correspond,
by conformal transformation, to asymptotic states.
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6.2 The Moduli Space of Riemann Surfaces

What is remarkable is that, for a given number of handles and boundaries, the space
of inequivalent metrics on Riemann surfaces is finite-dimensional

Mg =
{metrics}
{Diff ×Weyl}

We callMg the moduli space of Riemann surfaces. Note that it is the full Diff group
used, not just that part connected to the identity.

An example of two tori not related by Weyl and diffeomorphsim invariance are
sketched below

6.2.1 Example: T 2

One can use the Riemann-Roch theorem (or Atiyah-Singer index theorem) to show
that the sphere has no moduli, i.e. on a sphere hab can be brought to a standard
form globally using Diff and Weyl transformtions - given a standard round metric
ĥab on S2, all other metrics may be locally brought to the form

hab = e2ωĥab

using diffeomorphisms. Often this is phrased as all metrics on the sphere being
conformally equivalent.

The torus is a little more interesting and provides an illustrative example. We
shall construct the torus as a quotient of the complex plane by a discrete subgroup
of translations. This can be written as

z ∼ z + nλ1 +mλ2, n,m ∈ Z,

where λ1 and λ2 may be thought of as complex lattice vectors. λ1 and λ2 are not
invariant under doffeomorphisms and Weyl transformations but their ratio is

τ =
λ1

λ2

.

We can always define λ1 and λ2 such that Im(τ) > 0. This object, not to be con-
fused with the time coordinate on the worldsheet is often referred to as the complex
structure. The torus inherits the flat metric from the complex plane and we could
write the metric on the torus as

ds2 = | dz + τ dz̄|2. (6.1)

Put another way, it is always possible to bring a general metric satisfying the peri-
odicity conditions to any form; however, one can always bring it to the form (6.1)
for some τ ∈UHP, where UHP signifies the upper half plane

UHP = {z ∈ C|Im(z) > 0}.
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We take the upper half plane as the metric (6.1) is real so replacing τ with its complex
conjugate is a symmetry and the torus degenerates if the real part of τ is allowed to
go to zero. This is not quite the full story. If we write the periodicity condition as

z ∼ z + naλ
a, na = (n,m), λa =

(
λ1

λ2

)
,

we see the general form of the expression is invariant under

na → (U−1)a
bnb, λa → Ua

bλ
b

for U ∈ SL(2). If U ∈ SL(2;Z), then the components of na remain integers and we
simply have another description of the same torus, thus the moduli space is

M1 =
UHP

SL(2;Z)
.

The SL(2;Z) does not act freely on the upper half plane and there are fixed points
which give rise to singularities in the quotient. The space is an orbifold.

Im )

i
BB

* ←

l h I Re -4 )
-  11 O Y

2 2

Figure 8. Under the identification with the modular group, the integration over moduli
space may be take to be in the fundamental domain (shaded in purple).

6.2.2 The dimension of moduli space

The (real) dimension of the moduli space can be shown to be

s ≡ |Mg| =


0, g = 0

2, g = 1

6g − 6, g ≥ 2
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6.3 Moving around moduli space

Recall that
δωhab = 2ωhab, δvhab = Lvhab = ∇avb +∇bva.

It will be useful to extract the trace-ful part of the infinitesimal diffeomorphism and
include that in the Weyl transformations so that

ω → ω +∇ava

and we define the trace-free diffeomorphsim

(Pv)ab ≡ ∇avb +∇bva − hab∇cvc.

so that
δhab = (Pv)ab + 2(ω +∇cv

a)hab

Introducing coordinates mI on the finite dimensional moduli spaceMg of Riemann
surfaces, we may write

δhab = (Pv)ab + 2(ω +∇cv
c)hab + δthab

where the moduli shift is

δthab = δmI ∂

∂mI
hab = δmI∂Ihab.

It will be useful to denote a vector in the tangent to the moduli space as tI = δmI .
Note that we are really thinking of a metric on a Riemann surface as depending on
the coordinates of the Riemann surface and the point on moduli space that selects
that particular metric. As such it is helpful to write

hab(z, z̄)→ hab(z, z̄,m
I)

explicitly to denote the fact that the metric is dependent on the point in moduli
space.

The first thing to note is that there are trace contributions to both δD0 and δPhys
are we have defined them. Such trace components can be absorbed into δω and so
we extract out the trace parts of each transformation and define

δthab → tIµIab

where
µIab :=

∂hab
∂mI

− 1

2
habh

cd∂hcd
∂mI

is traceless and we incorporate the trace int the Weyl transformation. The Weyl
transformation then becomes δωhab = 2ω̄hab where

ω̄ := ω +∇ava + habtIµIab
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6.4 Conformal Killing Vectors

Our plan is to gauge fix the diffeomorphisms by fixing the worldsheet metric hab to
take some value ĥab. This will not quite work as there are diffeomorphisms that are
equivalent to a Weyl transformation and these will not be fixed by fixing the metric.
In this section we wish to deal with those parts of Diff0 that have overlap with Weyl.
These are important as these are the symmetries that remain after we gauge fix the
metric. We consider diffeomrophisms that may be undone by a Weyl transformation
such that

δCKhab = ∇avb +∇bva + 2ωhab = 0

taking the trace, we find

ω = −1

2
∇av

a,

and so we define
(Pv)ab = ∇avb +∇bva − hab∇cvc ,

and note that if va ∈ Ker(P), i.e.

∇avb +∇bva − hab∇cvc = 0,

then va is a conformal Killing vector; i.e. if v ∈ Ker(P1) then the diffeomorphism
generated by v can be absorbed by a Weyl transformation.

We have
Weyl ∩Diff0 = CKV

where the real dimension of the group generated by the CKVs is

κ ≡ |CKV| =


6, g = 0

2, g = 1

0, g ≥ 2

Since these groups are finite dimensional, it is quite easy to deal with the overcounting
in the path integral. A hint on how to do this comes from the Riemann sphere. At
genus 0, Σ is the Riemann sphere. The CKG in this case is just SL(2;C) - the
Mobius group, which acts as

z → az + b

cz + d
, ad− bc = 1.

It is well known that we can fix such a transformation by specifying the mapping of
three distinct points. We can chose a number of marked point on the Riemann surface
and demand that they stay fixed under the action of the diffeomorphism group. In
other words, we require that the vector fields va that generate the differomorphisms
vanish (have fixed points) at three locations, which fixes three of the {a, b, c, d} in
the above transformation (the forth is fixed by requiring ad − bc = 1). This then
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means we are selecting a particular mobius transformation, not an integral over all
possible transformations. It doesn’t matter which points we choose as all choices
are equivalent. Each point σa ∈ Σ has two degrees of freedom. For the case of the
sphere this means choosing three points (fixing six degrees of freedom) whilst for the
torus, the group is U(1)× U(1) and we need only chose one point (two real degrees
of freedom).

Without proof, we describe the CKVs in the two non-trivial cases.

6.4.1 The Sphere

There are three globally defined CKVs on the sphere, given in local coordinates by

`−1 = ∂−, `0 = σ−∂−, `1 = (σ−)2∂−.

and
¯̀−1 = ∂+, ¯̀

0 = σ+∂+, ¯̀
1 = (σ+)2∂+.

These generate the conformal killing group SL(2;C). One can show that these also
give a subalgebra of the Virasoro algebra. These are the only vectrors

6.4.2 The Torus

In this case the two globally defined conformal killing vectors are the isometries

`−1 = ∂−, ¯̀−1 = ∂+.

6.5 The Modular Group

Let us begin by pointing out that the diffeomorphism group is not simply connected
- there are diffeomorphisms that are not connected to the identity. Denoting those
diffeomorphisms that are connected to the identity by Diff0, the modular group14 is
defined by

M =
Diff
Diff0

What sort of things live in the modular group? In the case of the torus, the modular
group is simply the same SL(2;Z) we saw in our discussion of the moduli space.

All of the concrete calculations we do will be at tree level so the worldsheet will
be topologically a sphere which has trivial modular group so this will not concern
us further. It is worth noting that modular invariance, the invariance of physical
observables under the action of the modular group is responsible for the finiteness of
the string theory, order by order, in perturbation theory.

Notice that we can write

Mg =
{metrics}

{Diff × Weyl}
=

{metrics}
{Diff0 × Weyl}

/
Mg

14This is sometimes called the Mapping Class Group.
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The space

Tg =
{metrics}

{Diff0 × Weyl}
,

is called the Teichmuller space.
Since the modular group may not act freely on {metrics}

{Diff0}×{Weyl} , this may not be a
manifold as it may have isolated singularities. In general it is an orbifold. More on
these later.

6.6 Summary

In Summary

• Not all diffeomorphisms are connected to the identity. The connected part
including the identity is called Diff0. Diff/Diff0 = Mg (modular group).

• Diff0∩Weyl=CKG, i.e. those diffeomorphisms that may be undone by a Weyl
transformation. If v ∈ Ker(P), then v is a CKV.

• The Teichmuller space is given by {metrics}/{Diff0 × Weyl}. The moduli space
is given byMg = Tg/Mg

7 The Faddeev-Popov Determinant

We now come to the calculation of the Jacobian J . An indirect way to calculate J is
to use the Faddeev-Popov technique. We proceed by a finite-dimensional analogy and
justify the procedure by the fact that the same result may be reached by alternative,
more rigorous, methods which are outlined in the Appendix.

7.1 Faddeev-Popov on the sphere

To get the basic idea, let us consider the case where the worldsheet is topologically
a sphere (g = 0). There are no moduli so we do not have to worry about large
diffeomorphisms...
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7.2 Faddeev-Popov with moduli

We now generalise to worldsheets of arbitrary genus g and with an arbitrary number
of punctures n. The moduli space is thenMg,n. Schematically we have

1 = ∆FP [ĥ, σ̂]

∫
Mg,n

dst

∫
Diff×Weyl

DU δ[hU − ĥ]
∏
i

δ(v(σ̂i))

where U denotes elements of the diffeomorphism and Weyl group connected to the
identity and ĥab and hab are related by a gauge transformation and a change of
moduli. The σ̂i are the coordinates of κ =|CKV| punctures on the Riemann surface
that are fixed by requiring the conformal Killing vectors to vanish at these points;
δva(σ̂i) = 0. Fixing these κ points will completely fix the conformal killing symmetry.
The tI take values in the Teichmuller space, rather than the moduli space as we are
yet to impose identifications under the modular group.

The Fadeev-Popov determinant is defined as

1 = 4FP [ĥ, σ̂]

∫
Mg,n

dst

∫
Diff×Weyl

DωDv δ
[
hv,ω − ĥ

] ∏
(a,i∈f)

δ
(
va(σ̂i)

)
where the delta-functional is

δ
[
hv,ω − ĥ

]
=
∏
a,b,σ,τ

δ
(
hv,ωab (σ, τ)− ĥab(σ, τ)

)
.

The idea here is that we choose a particular metric ĥab and then generate another
metric hv,ω from this one by a gauge transformation connected to the identity

hv,ω = ĥab + δhab, δhab = (Pv)ab + 2ω̄hab + tIµIab.

A useful choice will be ĥab = ηab or, later when we work in Euclidean signature ĥab =

δab. We shall assume, without proof, that 4FP [ĥ, σ̂] is invariant under infinitesimal
gauge transformations.

We can use the functional version of the integral expression for the delta-function
to write the delta functional as a functional integral. The inverse of the Fadeev-Popov
determinant may then be written as

4−1
FP [ĥ, σ̂] =

∫
Mg,n

dst

∫
Diff×Weyl

DωDv δ[δh]
∏

(a,i∈f)

δ
(
va(σ̂i)

)

=

∫
Mg,n

dst

∫
Diff×Weyl

DvDωDβ dκζ exp

(
i(β|Pv + 2ω̄h+ tIµI) + i

κ∑
i=1

ζ iav
a(σ̂i)

)
where the delta functionals have been expressed as integrals over the auxiliary fields15

βab and ζ ia, where βab = βba. Notice that, since the va(σ̂i) are defined at specific points,
15Note that the βab here has nothing to do with the superpartner of the b-ghost.
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the last term is an ordinary delta function, rather than a delta functional16. In the
exponent we have introduced the inner product

(β|Pv + 2ω̄h+ tIµI) ≡
∫

Σ

d2σ
√
−hβab

(
(Pv)ab + 2ω̄hab + tIµIab

)
for notational convenience.

The integration over the Weyl transformation parameters δω̄ = ω + ... can be
done simply and imposes the constraint

βabhab = 0.

we then have

4−1
FP [ĥ, σ̂] =

∫
Mg,n

dst

∫
Diff×Weyl

DvDβ dκζ exp

(
i
(
β
∣∣∣Pv + tIµI

)
+ i

κ∑
i=1

ζ iav
a(σ̂i)

)

where it is understood that βab is traceless and symmetric.
We have an expression for 4−1

FP [ĥ, σ̂]. We would like an expression for 4FP [ĥ, σ̂].
It is a simple result in grassman integration that this may be achieved if we replace
the bosonic variables with grassman ones. For example, in the finite-dimensional
case, if we start with

1

detM
=

∫
V

dz̄ dz e−(z̄,Mz)

If we introduce Grassmann variables θ, θ̄ then it is not too hard to show that∫
dθ̄ dθ e−(θ̄,Mθ) = detM.

Thus changing the statistics of the auxiliary fields inverts the determinant.
To this end, we introduce the grassmann fields ca, bab, ηia, and ξI as

va → ca, βab → bab, ζ ia → ηia, tI → ξI

Notice that we are relating the conformal killing vectors to c ghosts and the defor-
mations associated with the image of P to b ghosts.

We then have an expression for the Faddeev-Popov determinant

4FP [ĥ, σ̂] =

∫
dsξDcDb dκη exp

(
−(b|Pc+ ξIµI) + i

κ∑
i=1

ηiac
a(σ̂i)

)
16We could of course write this as

ζiav
a(σ̂i) =

∫
Σ

d2σ δ2(σ − σ̂i)ζia(σ)va(σ),

where now ζia is promoted from being a Lagrange multiplier to a field.
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Performing the ξI integral gives δ [(b|fIh)], whilst doing the ηia integrals gives δ (ca(σ̂)).
The determinant then takes the form

4FP [ĥ, σ̂] =

∫
DcDb e−(b|Pc)

s∏
I=1

δ
[
(b|µI)

] κ∏
i=1

δ
(
ca(σ̂i)

)
We notice that, for a fermonic object δ(θ) = θ, and so we can write

4FP [ĥ, σ̂] =

∫
DcDb eiS[b,c]

s∏
I=1

(b|µI)
κ∏
i=1

δ
(
ca(σ̂i)

)
where the ghost action is

S[b, c] =
i

4π
(b|Pc) =

i

4π

∫
Σ

d2σ

√
−ĥ bab(Pc)ab =

i

2π

∫
Σ

d2σ

√
−ĥ bab∇acb

where we have used the fact that bab is symmetric and traceless and have introduced
a factor of 4π into the definition of the ghosts for future convenience.

We now return to the original path integral expression

Z[0] =
1

|Diff × Weyl|

∫
DhDX eiS[h,X]

and insert a factor of

1 = 4FP (ĥ, σ̂)

∫
Mg

dst

∫
Diff×Weyl

Dω̄Dv δ[hv,ω − ĥ]
∏

(a,i∈f)

δ (va(σ̂i))

to give

Z[0] =
1

|Diff × Weyl|

∫
Diff×Weyl

Dω̄Dv
∏
a,i

δ
(
va(σ̂i)

)∫
DhDX

∫
Mg

dst δ[hv,ω − ĥ]

×4FP [ĥ, σ̂] eiS[h,X]

We now perform a gauge transformation

hv,ω → h.

The action S[h,X], measure Dh and Faddeev-Popov determinant are all assumed
invariant under such a transformation17 so we have

Z[0] =
1

|Diff × Weyl|

∫
Diff×Weyl

Dω̄Dv
∏
a,i

δ
(
va(σ̂i)

)
×
∫
Mg,n

dst

∫
DX Dh δ[h− ĥ] 4FP [ĥ, σ̂] eiS[h,X]

17One can show that this is true iff D = 26.
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where the terms in the second line are all independent of v and ω. The delta func-
tional kills the metric integral and sets hab = ĥab, leaving

Z[0] =
1

|Diff × Weyl|

∫
DX

∫
Mg,n

dst

(∫
Diff×Weyl

Dω̄Dv
∏
a,i

δ
(
va(σ̂i)

))
eiS[ĥ,X]4FP (ĥ, σ̂)

We notice that the terms in brackets factor out of the functional integrals and may
be identified as ∫

Diff×Weyl
Dω̄Dv

∏
a,i

δ
(
va(σ̂i)

)
=
|Diff × Weyl|
|CKG|

,

where we recall that the delta functions remove the CKV part of Diff0. We therefore
have the gauge fixed expression

Z =
1

|CKG|

∫
Mg,n

dst

∫
DX eiS[ĥ,X]4FP (ĥ, σ̂)

We note that, since the ca are grassman, we can write

δ
(
ca(σ̂i)

)
=
∏
a=1,2

ca(σ̂i)

Putting in our expression for the Faddeev-Popov determinant

Z =
1

|CKG|

∫
Mg,n

dst

∫
DX DcDb eiS[X,ĥ,b,c]

s∏
I=1

(b|µI)
∏
i,a

ca(σ̂i)

where the action is the sum of matter and ghost terms.

S = S[ĥ, X] + S[b, c, ĥ]

Notice that, in the case of the sphere, the moduli are those of n−3 punctures - three
fixed by the conformal Killing transformations, so we effectively have∫

Mg,n

dst
∏
i,a

ca(σ̂i)→
∫ n−3∏

i=1

d2zi.

We will see this play an important role when we consider scattering amplitudes.

7.3 UV finiteness

The moduli space integral is over a finite domain, often called the fundamental
domain. This a finite space in the one-loop amplitude and is given by

UHP/PSL(2;Z)

where UHP denotes the upper half plane in C. The modular group makes this finite
so there are no ultraviolet divergences as seen if we were to attempt to quantise the
Einstein-Hilbert action.
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7.4 Ghosts!

It is sometimes useful to keep the gauge-fixing part explicit and write

Z =
1

|CKG|

∫
Mg,n

dst

∫
DXDhDcDb eiS[X,ĥ,b,c] δ[h− ĥ]

s∏
I=1

(b|µI)
∏
i,a

ca(σ̂i)

On the support of this delta-functional we can exchange hab and ĥab. It will also be
useful to incorporate the delta-functional into the action. To this end, we introduce
the symmetric, traceless fields Bab and introduce

Sgf[B, h] =
1

4π

∫
Σ

d2σ
√
−hBab

(
δab − hab

)
,

to the action. Functional integration over Bab gives the gauge-fixing condition hab =

hab. The full action is now

S[X, h, b, c, B] = − 1

4πα′

∫
Σ

d2σ
√
−hhabηµν∂aXµ∂bX

ν +
i

2π

∫
Σ

d2σ
√
−hbab∇acb

+
1

4π

∫
Σ

d2σ
√
−hBab

(
δab − hab

)
(7.1)

The quantization of the ghosts follows from this action and the fact that the are
Grassmann fields. The key point is that bab(τ, σ) and ca(τ, σ) are conjugate fields.
It is worth pointing out that the ghosts have integer spin but fermionic statistics.
They are not physical observables and this violation of the spin-statistics theorem is
the hallmark of ghost fields.
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Part III

Conformal Field Theory
8 The worldsheet theory as a Conformal Field Theory

We have seen in the previous section that the path integral can be made sense of by
the introduction of a Fadeev-Popov ghost system. The resulting action is then

S[X, b, c] = T

∫
Σ

ηµν∂X
µ∂̄Xν + b∂̄c+ b̄∂c̄

We may take this as the starting point for our gauge-fixed theory and

8.1 The Conformal Plane

It will be useful to Wick rotate to a Euclidean worldsheet and write the theory in
terms of the complex plane with coordinates (z, z̄) using the conformal transforma-
tion

z = eτ−iσ, z̄ = eτ+iσ.

Consider a string propagating from the infinite past τ = −∞, this maps to a string
propagating from the origin (z, z̄) = 0 radially outwards. Thus the dilation operator
L+

0 plays the role of the worldsheet Hamiltonian and time ordering becomes radial
ordering.

9 Introduction to CFTs

A conformal transformation on flat space preserves the angle between any two straight
lines. In particular, under xµ → x′µ(x), the metric transforms as

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν .

for some function Λ(x). Note that if Λ(x) = 1 this defines the Poincare group of
transformations18. More generally, on a curved spacetime, we have

g′ρσ(x′)
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν(x).

If we introduce an infinitesimal parameter ε << 1 and write the transformation as

xµ → x′µ(x) = xµ + εvµ(x) +O(ε2),

18Lorentz transformations and spacetime translations, sometimes written as ISO(d− 1, 1).
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then to first order we have on flat space

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ + ε∂µv

ρ + ...
)

(δσν + ε∂νv
σ + ...)

= ηµν + ε (∂µvν + ∂νvµ) + ...

= Λ(x)ηµν , (9.1)

where the ellipsis denote terms of order ε2 and higher. If we write Λ(x) = eεω(x) for
some function ω(x), then we can write

ηµν + ε (∂µvν + ∂νvµ) + ... = ηµν + εω(x)ηµν + ...

and so to leading order
∂µvν + ∂νvµ = ω(x)ηµν .

We can find ω(x) in terms of vµ(x) by first taking the trace of the above equation to
give

ω(x) =
2

d
∂ · v(x),

where d is the dimension of the spacetime in question. Substituting this back in to
eliminate ω(x) gives that the condition that the vµ(x) generate infinitesimal confor-
mall transformations is that they satisfy

∂µvν + ∂νvµ =
2

d
ηµν∂λv

λ(x). (9.2)

9.1 The special case of d = 2

Our worldsheet is two-dimensional. We shall see that soemthing magical happens
when we restrict to the special case of d = 2 which allows the full power of complex
analysis to be brought to bear. We choose the Euclidean metric to be

hµν =

(
1 0

0 1

)
and choose coordinates xµ = (τ, σ). The equation (9.2) places constraints on the
components vτ and vσ. It is easy to show that, with this choice of metric (9.2)
becomes the pair of equations

∂vτ
∂τ

=
∂vσ
∂σ

,
∂vσ
∂τ

= −∂vτ
∂σ

.

But these are nothing more that the Cauchy-Riemann equations for the complex
function v = vτ + ivσ. If we introduce the complex coordinates

ω = τ + iσ, ω̄ = z = τ − iσ,
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then the condition for the vector field to generate infinitesimal conformal transfor-
mations is that the complex function v = vτ + ivσ is holomorphic; i.e.

∂̄v = 0.

This result is clearly special to d = 2 and the fact that any holomorphic function
ω → z = f(ω) gives a conformal transformation suggests that there are an infinite
number of generators of the conformal symmetry.

A particularly useful choice of coordinates are

z = eτ+iσ, z̄ = eτ−iσ.

Under this map the cylinder is mapped to the Riemann sphere. In particular, the
infinite past is mapped to the origin and the infinite future to the point at infinity
and time19 evolution becomes radial evolution.

It
.

-

'

if
. . .

-
←

" "

Figure 9.

9.2 The Witt Algebra

We can identify a basis for these generators as follows. We expand the (holomorphic)
vector field as

v(z) =
∑
n

vnz
n+1

where the vn are constants. Under the conformal transformation, we have20

z → z + v(z) = z +
∑
n

vnz
n+1.

19Of course what we mean by ‘time’ here is Euclidean time, which is Wick rotated from our usual
notion of worldsheet time.

20We henceforth absorb the infinitesimal parameter ε into the definition of v(z).
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This transformation is generated by21

−
∑
n

`nvn

where
`n = −zn+1∂z

and similarly for ¯̀
n. Since n takes any integer value, there are a countably infinite

number of such generators and they close to give

[`n, `m] = [−zn+1∂z,−zm+1∂z]

= −(m− n)zm+n+1∂z, (9.3)

and so
[`n, `m] = (m− n)`m+n.

This is called the Witt algebra.

9.3 Conformal Fields

First, some definitions:

Chiral Field is a field that depends only on z; Φ(z). Similarly an anti-chiral field
depends only on z̄. We also use holomorphic/anti-holomorphic and, in the
context of a Minkowski worldsheet metric it makes sense to speak of left/right-
movers as the embedding feilds satisfy the wave equation.

Conformal Dimension refers to how a field transforms under conformal transfor-
mations. If a field transforms as

Φ(z, z̄)→ Φ′(z′, z̄′) = λhλ̄h̄Φ(λz, λ̄z̄)

under (z, z̄) → λz, λ̄z̄, then we say the field has conformal dimension (h, h̄).
Note that a chiral field has dimension (h, 0).

Primary Field Under the holomorphic transformation z → z′ = f(z), a Primary
conformal field of weight (h, h̄) transforms as22

Φ(z, z̄)→
(
∂f

∂z

)h(
∂f

∂z

)h̄
Φ(f(z), f̄(z̄))

21The negative sign is for later convenience.
22If f(z) is in SL(2;C)/Z2 (Moebius) then we call this a quasi-primary field.
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The infinitesimal transformation of primary field may be found by expanding in
powers of ε as we did with the metric. Let f(z) = z + εv(z) + ..., then(

∂f

∂z

)h
= (z + εv(z) + ...)h = 1 + h∂zv(z) + ...

= Φ(z, z̄) + v(z)∂zΦ(z, z̄) + ... (9.4)

Also

Φ(f(z), z̄) = Φ(z + v(z) + ..., z̄)

= Φ(z, z̄) + v(z)∂zΦ(z, z̄) + ... (9.5)

and so

Φ(z, z̄) →
(
∂f

∂z

)h(
∂f

∂z

)h̄
Φ(f(z), f̄(z̄))

= (1 + h∂v(z))(1 + h̄∂̄v̄(z̄))(Φ(z, z̄) + v(z)∂Φ(z, z̄) + v̄(z̄)∂̄Φ(z, z̄)) + ...

= Φ(z, z̄) + (h∂v(z) + v(z)∂ + h̄∂̄ + v̄∂̄)Φ(z, z̄) + ... (9.6)

and so, to first order, the conformal transformation of a primary field is given by

δv,v̄Φ(z, z̄) =
(
h∂v(z) + v(z)∂ + h̄∂̄ + v̄∂̄

)
Φ(z, z̄)

10 Conformal Transformations from the stress tensor

Another important (perhaps the most important) field is the stress tensor Tab. We
saw the stress tensor defined in terms of the functional derivative of the action with
respect to the world-sheet metric and the requirement Tab = 0 arose as a constraint.
In a way that we will study later, we will see that this same field generates the
conformal transformations. The conformal symmetry holds at the classical level but
we shall see the emergence of potential anomalies when we come to the quantum
theory later and as such there are additional associated subtleties when we deal with
the stress tensor as a quantum field. For now we will confine our attention to the
classical field theory.

10.1 The Stress Tensor and Noether’s Theorem

In the classical theory, Noether’s theorem tells us that a symmetry gives rise to a
conserved current ja, so that for some action

S[X] = − 1

4πα′

∫
Σ

d2σ ∂aX
µ∂aX

νηµν ,

under the transformation
δvX

µ = va∂aX
µ,
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we have

δvS[X] = − 1

2πα′

∫
Σ

d2σ
(

(∂av
b) ∂bX

µ∂aXµ + vb ∂a(∂bX
µ)∂aXµ

)
=

1

2π

∫
Σ

d2σ (∂avb)Tab,

where Tab is the stress tensor.23

Noether’s theorem tells us that this symmetry δvS[X] = 0 implies the existence
of a conserved current

δvS[X] =
1

2π

∫
Σ

d2σ (∂avb)Tab = − 1

2π

∫
Σ

d2σ vb(∂aTab) = 0

and so we have
∂aTab = ∂aTba = 0

where we have used the fact that the stress tensor is symmetric.
The conserved charge, evaluated at τ = 0 is then

Q = Q+ +Q−, Q± =
1

2π

∮ 2π

0

dσ v±(σ)T±±(σ)

The symmetry transformation is then generated by the commutator with the Poisson
bracket

δvX
µ = {Q,Xµ}PB.

Something similar happens in the quantum theory.

10.2 Complex Coordinates

Using complex coordinates we find that

Tzz = ∂Xµ∂Xµ, Tz̄z̄ = ∂̄Xµ∂̄Xµ, Tzz̄ = 0 = Tz̄z.

From now on we shall refer to the non-trivial components of the stress tensor by the
shorthand

T := Tzz, T̄ := Tz̄z̄.

The conservation law simply states that ∂̄T = 0 and ∂T̄ = 0; i.e. T (z) and T̄ (z̄) are
holomorphic and anti-holomorphic respectively.

Under the change of coordinates

dτ dσ = − dz dz̄

2i|z|2
, ∂τ = z∂ + z̄∂̄, ∂σ = iz∂ − iz̄∂̄,

23Notice that, since the stress tensor is traceless, we can write this as

δvS[X] =
1

4π

∫
Σ

d2σ (Pv)abTab.
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so that the action becomes

S[X] =
i

2πα′

∫
Σ

d2z ηµν∂X
µ∂̄Xν .

We choose to redefine the action S[X]→ iS[X], so that in the path integral∫
DX eiS[X] →

∫
DX e−S[X],

where
S[X] = − 1

2πα′

∫
Σ

d2z ηµν∂X
µ∂̄Xν .

Moving from Minkowski to Euclidean space must be handled carefully; however, the
subtleties involved will not arise in the limited cases we will study in this course
and so we shall take a rather cavalier attitude of moving between Minkowski and
Euclidean spaces whenever the need arises.

10.3 Ward Identities and Conformal Transformations

We investigate the quantum version of Noether’s theorem. Classically, if we have a
Lagrangian with fields φ and make some change of the form δφ = εf(φ, ∂φ, ...) with
parameter ε that preserves the action, then this is a classical symmetry of the theory
if ε is a constant.

For example, if we have the action

S[X] = − 1

4πα′

∫
Σ

d2σ∂aX
µ∂aXµ,

then under the rigid transformation δXµ = εa∂aX
µ, the action is invariant. If we

allow ε to depend on the coordinates on Σ, we find

δS[X] =
1

2π

∫
Σ

d2σ (∂aεb)Tab

where Tab is the stress tensor so, classically, the invariance of he action under the
transformation implies the conservation of the stress tensor

∂aTab = 0.

Let us look at the quantum analogue of Noether’s theorem. Consider the correlation
function

〈φ(z1)...φ(zn)〉 =

∫
Dφ e−S[φ] φ(z1)...φ(zn).

Consider a small change in the field

φ′ = φ+ δφ, S[φ′] = S[φ] + δS
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Then

〈φ′(z1)...φ′(zn)〉 =

∫
Dφ′ e−S[φ]−δS φ′(z1)...φ′(zn)

=

∫
Dφ

(
1− δS[φ] + ...

)
×
(
φ1 + δφ1 + ...

)
× ...×

(
φ1 + δφ1 + ...

)
=

∫
Dφ e−S[φ] φ1...φn −

∫
Dφ e−S[φ] δS[φ] φ1...φn

+

∫
Dφ e−S[φ]

n∑
k=1

φ1...φk−1 δφk φk+1...φn

= 〈φ1...φn〉 − 〈δS[φ] φ1...φn〉+
n∑
k=1

〈φ1...φk−1 δφk φk+1...φn〉

where we have assumed Dφ′ = Dφ. If we define

δ〈φ(z1)...φ(zn)〉 = 〈φ′(z1)...φ′(zn)〉 − 〈φ(z1)...φ(zn)〉 = 0,

then we have

〈δS[φ] φ1...φn〉 =
n∑
k=1

〈φ1...φk−1 δφk φk+1...φn〉

Let us focus on the case of conformal transformations. Using the fact that

δS[φ] =
1

2π

∫
Σ

d2σ ∂avb(σ) Tab(σ)

where Tab is the appropriate stress tensor for the action S[φ], gives,

1

2π

∫
Σ

d2σ (∂avb)〈Tab φ1...φn〉 =
n∑
k=1

〈φ1...φk−1 δφk φk+1...φn〉

remembering that va(z) is not operator valued.
What is Σ here? Σ is the worldsheet with small discs removed around points

where we insert operators. We shall denote the disc centred on zi by Di and the
contour defining the boundary of the disc as ∂Di = Ci. We take curvee Cω to
encircle the point ω = zk and not any other points. We take v(z) to be zero in, and
on the boundary of Di, when i 6= k and a conformal vector inside and on Cω.

va(z, z̄)|Ci = 0, i 6= k

vz(z, z̄)|Cω = v(z) and vz̄(z, z̄)|Cω = v̄(z̄).

We define Σ such that ∂Σ = Cω ∪i 6=k Ci, so v(z) is arbitrary on Σ (excluding the
boundaries).

Thus δφk = 0 unless zk = ω, giving

〈φ1...δφ(ω, ω̄)...φn〉 =
1

2π

∫
Σ

d2σ ∂avb(σ)〈Tab(σ) φ1...φn〉
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Integrating by parts

〈φ1...δvφ(ω, ω̄)...φn〉 =
1

2π

∫
Σ

d2σ ∂a
(
vb(σ)〈Tab(σ)φ1...φn〉

)
− 1

2π

∫
Σ

d2σ vb(σ)∂a〈Tab(σ)φ1...φn〉

The first term on the RHS may be evaluated on ∂Σ. It is useful to use complex
coordinates24

1

2π

∫
Σ

d2σ ∂a
(
vb(σ)〈Tab(σ)φ1...φn〉

)
=

1

2πi

∮
Cω

dz vz(z, z̄)〈Tzz(z, z̄) φ1...φn〉 −
1

2πi

∮
Cω

dz̄ vz̄(z, z̄)〈T̄z̄z̄(z, z̄) φ1...φn〉

=
1

2πi

∮
Cω

dz v(z) 〈T (z) φ1...φn〉 −
1

2πi

∮
Cω

dz̄ v̄(z̄)〈T̄ (z̄)φ1...φn〉

where we have use the fact that va(z) vanishes on Ci 6=k and is conformal on Cω, i.e.
vz(z, z̄) = v(z) and vz̄(z, z̄) = v̄(z̄). We then have

〈φ1...δvφ(ω, ω̄)...φn〉 =
1

2πi

∮
C1

dz v(z) 〈T (z) φ1...φn〉 −
1

2πi

∮
C1

dz̄ v̄ (z̄)〈T̄ (z̄) φ1...φn〉

− 1

2π

∫
Σ

d2σ va(z) ∂b〈Tab(z, z̄) φ1...φn〉

The RHS includes an arbitrary function va(z), whereas the LHS contains this function
evaluated at ω, a point that is not included in Σ. We conclude that

∂a〈Tab(z, z̄)φ1...φn〉 = 0,

24e.g.∫
Σ

dz ∧ dz̄ ∂aj
a =

∫
Σ

dz ∧ dz̄ (∂zj
z + ∂z̄j

z̄) = −
∮
∂Σ

dz̄ jz +

∮
∂Σ

dz jz̄ = −
∮
∂Σ

dz̄ jz̄ +

∮
∂Σ

dz jz
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and so

〈φ1...δvφ(ω, ω̄)...φn〉 =
1

2πi

∮
Cω

dz v(z) 〈T (z) φ1...φn〉−
1

2πi

∮
Cω

dz̄ v̄ (z̄)〈T̄ (z̄) φ1...φn〉

We may therefore conclude that the abstract operator expression follows

δvφ(ω, ω̄) =

∮
Cω

dz

2πi
v(z) T (z) φ(ω, ω̄)−

∮
Cω

dz̄

2πi
v̄ (z̄)T̄ (z̄) φ(ω, ω̄)

where this is taken to hold when inserted into a correlation function. The contour
Cω is taken to be any contour surrounding the point ω in the z-plane.

We see that the non-trivial contributions come from where

lim
z→ω

T (z) φ(ω, ω̄),

is singular. i.e. where there are poles in T (z) φ(ω, ω̄). This is related to the fact
that, if these are operator expressions, we need to be careful about the ordering of
the operators.

10.4 Radial Ordering and Symmetry Transformations

If we want to work with operator expressions, we need to think carefully about the
ordering of the terms in correlation functions. Taking z = eτ+iσ, time ordering on the
worldsheet becomes radial ordering: τ1 > τ2 ≡ |z1| > |z2|. We define radial ordering
as

R
(
A(z)B(ω)

)
:=

{
A(z)B(ω), |z| > |ω|
B(ω)A(z), |z| < |ω| (10.1)

Consider the expression ∮
C(ω)

dzR
(
a(z)b(ω)

)
where C(ω) is a contour on the z-plane around the point z = ω. How do we radial
order this expression? On some parts of the contour |z| > |ω|, whilst on others
|z| < |ω|.We can use a simple trick of writing the contour as the difference of two
contours, as shown in figure ??.

In the first contour we have that |z| > |ω| on all points of C1, whilst |z| < |ω| on
all points of C2, thus this decomposition of the contour C(ω) is suitable for radial
ordering expressions. We may therefore write∮

C(ω)

dzR
(
a(z)b(ω)

)
=

∮
C1

dzR
(
a(z)b(ω)

)
−
∮
C2

dzR
(
a(z)b(ω)

)
Since |z| > |ω| on C1, we have∮

C1

dz R
(
a(z)b(ω)

)
=

∮
C1

dz a(z)b(ω)
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Figure 11. Making sense of radial ordering.

and since |z| < |ω| on C2, we have∮
C2

dz R
(
a(z)b(ω)

)
=

∮
C2

dz b(ω)a(z),

thus we have∮
C(ω)

dz R
(
a(z)b(ω)

)
=

∮
C1

dz a(z)b(ω)−
∮
C2

dz b(ω)a(z)

We can define the operators

A =

∮
C1

dz a(z), B =

∮
C(0)

dω b(ω),

and if we now consider ∮
C(0)

dω

∮
C(ω)

dzR
(
a(z)b(ω)

)
where C(0) is a contour in the ω-plane surrounding the origin, we can write this as∮

C(0)

dω

∮
|z|>|ω|

dz a(z)b(ω)−
∮
C(0)

dω

∮
|z|<|ω|

dz b(ω)a(z) ≡ [A,B]

thus we can make sense of the commutator as∮
C(0)

dω

∮
C(ω)

dz R
(
a(z)b(ω)

)
= [A,B]

And so we can make sense of our previous expression for the symmetry transformation
(we focus on the holomorphic transformation here)

δεΦ(z) =

∮
C(z)

dω

2πi
R
(
v(ω)T (ω)Φ(z)

)
=

∮
|ω|>|z|

dω

2πi
v(ω)T (ω)Φ(z)−

∮
|ω|<|z|

dω

2πi
Φ(z)v(ω)T (ω)
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and so we can make sense of the classical analogue of the statement (??) and state

δvφ(ω, ω̄) =

∮
Cω

dz

2πi
R
(
v(z) T (z) φ(ω, ω̄)

)
−
∮
Cω

dz̄

2πi
R
(
v̄(z̄) T̄ (z̄) φ(ω, ω̄)

)
= [Q, φ(ω, ω̄)]

where
Q =

∮
Cω

dz

2πi
v(z) T (z)−

∮
Cω

dz̄

2πi
v̄(z̄) T̄ (z̄)

This is defined at fixed radius, which is the analogue of defining the Noether charge
at fixed time.

11 Mode Expansions

If we put a Minkowski metric on the cylinder, we found that the equation of motion
for the Xµ was naturally written in terms of the world-sheet light-cone coordinates
σ± = τ ± σ, so that

Xµ(σ, τ) = Xµ(σ−) + X̄µ(σ−).

and we would then expand

Xµ(σ−) = xµ + pµσ + i

√
α′

2

∑
n 6=0

1

n

(
αµne

−inσ− + ᾱµne
−inσ+

)
.

A more natural object was

∂−X
µ =

√
α′

2

∑
n

αµne
−nσ− .

We could study the same object on a worldsheet with Euclidean metric on the cylin-
der. The natural split is in terms of a complex coordinate ω = τ + iσ and Xµ,
which now obeys ∂ω∂ω̄Xµ = 0, splits into holomorphic and anti-holomorphic parts
[FACTOR OF i?]

∂ωX
µ = −i

√
α′

2

∑
n

αne
−nω,

What does this look like on the conformal plane?
Imagine the general chiral primary field of weight h on the cylinder

φcyl(ω) =
∑
n

φne
−nω

Transforming to the complex plane z = eω is a conformal transformation

φ(z) =

(
∂z

∂ω

)−h
φcyl(ω) = z−h

∑
n

φne
−nω,
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and so the natural expansion of a chiral primary on the plane is

Φ(z) =
∑
n

φnz
−n−h

This is the general form of the mode expansion of a chiral primary of weight h. More
generally

Φ(z, z̄) =
∑
m,n

φmnz
−m−hz̄−n−h̄

For example, the stress tensor, of weight h = +2, it is useful to write the stress tensor
in terms of the modes Ln, where

T (z) =
∑
n

Lnz
−n−2, T̄ =

∑
n

L̄nz̄
−n−2.

For later reference we also note

Xµ(z, z̄) = xµ − iα
′

2
pµ ln |z|2 + i

√
α′

2

∑
n6=0

1

n

(
αµnz

−n + ᾱµnz̄
−n
)

11.1 States and Operators

We have thus far focussed on the space of operators. These operators have a nat-
ural action on the Hilbert space of the theory H. In fact, a special feature of two
dimensional CFT is that the states of the theory are in one-to-one correspondence
with the operators. We shall discuss this more later. Consider the mode expansion
of the weight-one chiral field25

∂Xµ(z) = −i
√
α′

2

∑
n

αµnz
−n−1

The modes with n > 0 are annihilation operators and they define a vacuum |0〉 such
that

αµn|0〉 = 0, n ≥ 0.

and similarly
〈0|αµn = 0, n ≤ 0.

A state corresponding to the field Φ(z) is given by choosing local coordinates z and
inserting the operator at z = 0, giving the relationship

lim
z→0

Φ(z)|0〉 = |Φ〉

25One might think that, for pedagogical purposes it is better to use Xµ(z) and not its derivative;
however, we will see later that Xµ(z) is not a conformal primary.
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11.2 Relationship between normal and radial ordering

Consider the weight-one chiral field

∂Xµ(z) =
∑
n

αµnz
−n−1 := jµ(z).

We split this into creation (jµ−(z)) and annihilation (jµ+(z)) operator components

jµ(z) = jµ+(z) + jµ−(z)

where
jµ+(z) =

∑
n>0

αµnz
−n−1, jµ−(z) =

∑
n≥0

αµ−nz
n−1

where we have included the n = 0 term in jµ−(z). We define the normal ordering
of an operator expression by putting all of the creation operators to the left of
the annihilation operators, thus the expectation of any normal ordered product will
vanish. For example:

: jµ(z)jν(ω) := jµ+(z)jν+(ω) + jµ−(z)jν+(ω) + jν−(ω)jµ+(z) + jµ−(z)jν−(ω)

Note that
: jµ(z)jν(ω) := jµ(z)jν(ω) + [jν−(ω), jµ+(z)]

Let us use the mode expansion to evaluate this commutator

[jν−(ω), jµ+(z)] =
∑

m≥0,n>0

[αν−m, α
µ
n]ωm−1z−n−1

= −
∑
m,n>0

nδmnη
µνωm−1z−n−1

= −η
µν

z2

∑
n>0

n
(ω
z

)n−1

=
ηµν

(z − ω)2

The series converges if we assume |z| > |ω|. And so we have

jµ(z)jν(ω)− : jµ(z)jν(ω) :=
ηµν

(z − ω)2
, if |z| > |ω|.

If we swap z ↔ ω and µ↔ ν in the above expression we find

jν(ω)jµ(z)− : jµ(z)jν(ω) :=
ηµν

(z − ω)2
, if |z| < |ω|.

The two expressions may be combined to give

R
(
jµ(z)jν(ω)

)
− : jµ(z)jν(ω) :=

ηµν

(z − ω)2
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This is a simple example of Wick’s theorem, which you should have already come
across before in Quantum Field Theory. We often denote the contraction by

jν(ω)jµ(z) =
ηµν

(z − ω)2
.

In general

R
(

Φ1(z1)...Φn(zn)
)

= : Φ1(z1)...Φn(zn) : +
∑
(i,j)

: Φ1(z1)...Φi(zi)...Φj(zj)...Φn(zn) :

+
∑

(i,j),(k,l)

: Φ1(z1)...Φi(zi)...Φk(zj)...Φj(zi)...Φl(zj)...Φn(zn) : +...

where the sums are taken over all distinct pairs. For example

R
(

Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4)
)

= : Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4) :

+
(

: Φ1(z1)Φ2(z2) : Φ3(z3)Φ4(z4) +2 terms
)

+
(

Φ1(z1)Φ2(z2) Φ3(z3)Φ4(z4) +2 terms
)

and so〈
R
(

Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4)
)〉

= Φ1(z1)Φ2(z2) Φ3(z3)Φ4(z4) +2 terms.

and since 〈
R
(

Φ1(z1)Φ2(z2)
)〉

= Φ1(z1)Φ2(z2),

we have for a free theory〈
R
(

Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4)
)〉

=
〈
R
(

Φ1(z1)Φ2(z2)
)〉〈
R
(

Φ3(z3)Φ4(z4)
)〉

+2 terms.

It will be understood that correlation functions are radially ordered unless stated
otherwise and we will not always explicitly include the radial ordering explicitly.
Compactly the above result gives

〈Φ1Φ2Φ3Φ4〉 = 〈Φ1Φ2〉 〈Φ3Φ4〉+ 〈Φ1Φ3〉 〈Φ2Φ4〉+ 〈Φ1Φ4〉 〈Φ2Φ3〉 .

Wick’s theorem gives a way of removing divergences from a radially ordered string
of operators26.

26In the path integral formalism we have classical functions, not operators; however, a careful
treatment of the time-slicing construction of the path integral leads to a natural time ordering when
path integral expressions are defined carefully. The need for such care is obvious when we must be
able to derive results such as 〈[X,P ]〉 = i~ from the path integral where X and P are both classical
functions (but defined on different time slices).
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12 Operator Product Expansions

Operator product expansions are a useful idea in many areas of quantum field theory,
reaching from QCD to our present concern in Strung Theory. The basic idea is to
describe a theory in terms of the short range behaviour of its operators. For example,
if we have a theory with local operators Oi(z), then the operator product expansion
tells us what happens when we move two such operators close together

lim
ω→z
Oi(ω)Oj(z) =

∑
k

fij
k(z − ω)Ok(z).

In general there will be singularities as ω → z. This is not a problem, in fact for
our purposes, it is the interesting part of the OPE. Many of our expressions involve
contour integrals and it will be the pole structure of the OPE which contains the
informations we are after in most cases.

12.1 Xµ(z)Xν(ω) OPE

We will see that the two-point correlation function for a free theory is simply the
Green’s function for the Xµ(z, z̄) equation of motion

1

4πα′
∂∂̄Xµ(z, z̄) = 0.

We are therefore looking for a function G(zω) that satisfies

∂∂̄G(zω) = 2πδ2(z − ω).

Using the result

∂̄

(
1

z − ω

)
= 2πδ2(z − ω),

we see that
∂∂̄G(zω) =

1

z − ω
,

and so
G(z, z̄;ω, ω̄) = ln |z − ω|2.

The general solution to the equation of motion is the sum of holomorphic and anti-
holomorphic functions

Xµ(z, z̄) = Xµ(z) + X̄µ(z̄).

and the correlation functions are

〈Xµ(z)Xν(ω)〉 = ηµν ln(z − ω), 〈X̄µ(z̄)X̄ν(ω̄)〉 = ηµν ln(z̄ − ω̄)

and the OPEs are

Xµ(z)Xν(ω) = ηµν ln(z − ω) + ..., X̄µ(z̄)X̄ν(ω̄) = ηµν ln(z̄ − ω̄) + ...

whereas Xµ(z)X̄ν(ω̄) is regular.
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12.1.1 Composite Operators

Note that
Xµ(z)Xν(ω) = −α

′

2
ln(z − ω)

and so
∂Xµ(z)∂Xν(ω) = −α

′

2

1

(z − ω)2

We can then see that the correct definition of the stress tensor is

T (z) = − 1

α′
lim
ω→z

(
∂Xµ(z)∂Xν(ω) +

α′

2

1

(z − ω)2

)
Thus the OPEs allow us to correctly define composite operators in a meaningful way.

12.2 T (z)Xµ(ω) OPE and conformal transformations

We shall implicitly assume radial ordering in what follows. We shall be interested in
the OPE of the stress tensor with functions of X.

12.2.1 T (z)Xµ(ω) OPE

We are interested in

T (z)Xµ(ω) = − 1

α′
: ∂Xν∂Xν(z) : Xµ(ω)

Differentiating with respect to z and ω, we find the expressions

∂Xµ(z)Xν(ω) = −α
′

2

1

z − ω
+ ...

and so

T (z)Xµ(ω) = − 1

α′
: ∂Xν∂Xν(z) : Xµ(ω)

= − 2

α′
: ∂Xν∂Xν(z) :Xµ(ω) + ...

= − 2

α′
∂Xν(z)

(
−α

′

2

ηµν

z − ω

)
+ ...

=
∂Xµ(z)

z − ω
+ ...

We may then expand ∂Xµ(z) around ω

∂Xµ(z) = ∂Xµ(ω) + (z − ω)∂2Xµ(ω) + ...

The divergent term is then

T (z)Xµ(ω) =
1

z − ω
∂Xµ(ω) + ...
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It is not hard to show that this gives the correct conformal transformation for Xµ(z).
In fact we can use the known conformal transformations of fields to determine the
OPE with the stress tensor. For a chiral primary field of weight h

δvΦ(z) =

∮
C(z)

dω

2πi
R
(
T (ω)v(ω)Φ(z)

)
But we know that

δvΦ(z) = v(z) ∂Φ(z) + h∂v(z) Φ(z),

so, using the residue theorem,

1

(n− 1)!
∂n−1
z f(z) =

1

2πi

∮
C(z)

dω
f(ω)

(ω − z)n

we have that∮
C(z)

dω

2πi
R
(
T (ω)v(ω)Φ(z)

)
=

∮
C(z)

dω

2πi
v(ω)

(
h

(z − ω)2
Φ(z) +

1

z − ω
∂Φ(z) + Regular terms

)
and so the OPE is

T (ω)Φ(z) =
h

(z − ω)2
Φ(z) +

1

z − ω
∂Φ(z) + ...

12.2.2 T (z) eik·X(ω) OPE

Xµ(z, z̄) is not a conformal primary; however ∂Xµ(z, z̄) is. We can trace this fact back
to the XX OPE being a logarithm, whereas derivatives of X have OPEs are negative
powers of the difference for the arguments. One might imagine that exponentials of
X also stands a chance of having OPEs of the form ??.

T (z) : eik·X(ω) := T (z)
∑
n≥0

(i)n

n!
kµ1 ...kµn : Xµ1(ω)...Xµn(ω) :

Single contractions contribute

− 2

α′
∂X·∂X(z) :

∑
n≥0

(i)n

n!
kµ1 ...kν ...kµn : Xµ1(ω)...Xν(ω)...Xµn(ω)

=
∑
n>0

(i)n

n!
n
(
k ·X(ω)

)n−1

kν

(
1

z − ω
∂Xν(ω)

)
=
∑
m≥0

(i)m

m!

(
k ·X(ω)

)m
ikν

(
1

z − ω
∂Xν(ω)

)
=

1

z − ω
∂
(
eik·X(ω)

)
,
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whilst double contractions contribute

− 1

α′
: ∂Xµ∂Xµ(z) :

∑
(i,j)

∑
n≥0

(i)n

n!
kµ1 ...kµi ...kµj ...kµnX

µ1(ω)...Xµi(ω)...Xµj(ω)...Xµn(ω) :

= − 1

α′

∑
n≥2

kµ2 ...kµn
in

n!
n(n− 1) Xµ2 ...Xµn

(
−α

′

2

)2
k2

(z − ω)2

= −α
′

4

k2

(z − ω)2

∑
n≥2

(
k ·X(ω)

)n−2

i2in−2 n!

n!(n− 2)!

=
α′

4

k2

(z − ω)2
eik·X(ω), (12.1)

so we have

T (z) : eik·X(ω) :=

(
α′k2/4

(z − ω)2
+

∂

z − ω

)
: eik·X(ω) : +...

And so we deduce that the conformal weight of the operator : eik·X(z,z̄) is

(h, h̄) =

(
α′k2

4
,
α′k2

4

)
.

This fact will become important when we consider momentum space wave-functions
of the physical states.

12.3 T (z)T (ω) OPE and the Virasoro Algebra

We saw that the TΦ OPE described how the field Φ transforms under conformal
transformations. We now consider how the stress tensor transforms under conformal
transformations by calculating the TT OPE.

12.3.1 The T (z)T (ω) OPE

We have that

T (z) = − 1

α′
: ∂Xµ∂Xµ(z) :, ∂Xµ(z)∂Xν(ω) = −α

′

2

1

(z − ω)2
.

We are then interested in

T (z)T (ω) = 4×
(
− 1

α′
:

)2

: ∂Xµ(z)∂Xµ(z)∂Xν(ω)∂Xν(ω) :

+2×
(
− 1

α′
:

)2

: ∂Xµ(z)∂Xµ(z)∂Xν(ω)∂Xν(ω) : +...

where the first term includes the four possible double contractions (each giving the
same result) and the second the two possible double contractions. We have then

T (z)T (ω) = − 2

α′
ηµν

(z − ω)2
: ∂Xµ(z)∂Xν(ω) : +

1

2

δµν
(z − ω)2

δνµ
(z − ω)2

+ ...
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Notice that : ∂Xµ(z)∂Xν(ω) : is not proportional to the stress tensor as it is bi-local.
If we expand ∂Xµ(z) about z = ω,

∂Xµ(z) = ∂Xµ(ω) + (z − ω)∂2Xµ(ω) + ...

and so

T (z)T (ω) =
D/2

(z − ω)4
− 2

α′
1

(z − ω)2
: ∂Xµ∂X

µ(ω) : − 1

α′
2

z − ω
: ∂Xµ∂

2Xµ(ω) : +...

Using the fact that

∂T (ω) = − 2

α′
: ∂2X · ∂X(ω) :,

we have

T (z)T (ω) =
D/2

(z − ω)4
+

2

(z − ω)2
T (ω) +

1

z − ω
∂T (ω) + ...

where we implicitly assume radial ordering, so |z| ≥ |ω|.

12.3.2 The Virasoro Algebra

For example, the stress tensor, of weight h = +2, it is useful to write the stress tensor
in terms of the modes Ln, where

T (z) =
∑
n

Lnz
−n−2, T̄ =

∑
n

L̄nz̄
−n−2.

which may be inverted to give

Lm =
1

2πi

∮
C

dzzm+1 T (z)

The commutator of two such generators is

[Lm, Ln] =

∮
Cz(0)

dz

2πi

∮
Cω(0)

dω

2πi
zm+1ωn+1[T (z), T (ω)]

What do we mean by this commutator? Recall, the definition based on radial ordering∮
Cz(0)

dz zm+1[T (z), T (ω)] :=

∮
|z|>|ω|

dz T (z)T (ω)−
∮
|z|<|ω|

dz T (ω)T (z)

=

∮
C(ω)

dz zm+1R
(
T (z)T (ω)

)
(12.2)

so we have

[Lm, Ln] =

∮
C(0)

dω

2πi
ωn+1

∮
C(ω)

dz

2πi
zm+1 R

(
T (z)T (ω)

)
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Using the TT OPE we have

[Lm, Ln] =

∮
C(0)

dω

2πi
ωn+1

∮
C(ω)

dz

2πi
zm+1

(
D/2

(z − ω)4
+

2T (ω)

(z − ω)2
+
∂T (ω)

z − ω

)
=
D

12
(m3 −m)δm,−n + (m− n)Lm+n. (12.3)

and so we see that the Wit algebra acquires a central extension in the quantum
theory

[Lm, Ln] = (m− n)Lm+n +
D

12
(m3 −m)δm,−n

We call this algebra the Virasoro algebra. It is not hard to see that L̄m will give
another copy of the algebra and [Lm, L̄n] = 0.

13 The b, c Ghost System

We now bring all of our experience thus far to study this important CFT for string
theory. The action may be written as

S[b, c] =
i

2π

∫
Σ

d2σ
√
−hhacbab∇cc

b

bab(z, z̄) is a symmetric traceless tensor field and ca(z, z̄ is a vector field. The stress
tensor is given by varying the action with respect to the metric and we see that the
ghost terms give a contribution to the metric that we have not yet considered. The
effect of the ghosts is to give the contribution to the total stress tensor (remember
there is metric-dependence in the connection ∇a as well as the obvious

√
−hhac

factor)

T gh
ab = −i

(
1

2
cc∇(abb)c + (∇(ac

c)bb)c − trace
)
.

We to work with a Euclidean metric. In conformal gauge hab = eφδab with (z, z̄)

coordinates, the ghost action becomes

S[b, c] =
1

2π

∫
Σ

d2z bzz∂z̄c
z +

1

2π

∫
Σ

d2z bz̄z̄∂zc
z̄

The two degrees of freedom in ca may then be written as

cz = c, cz̄ = c̄

bab is symmetric and traceless and so has two real degrees of freedom which, in these
coordinates may be written as

bzz = b, bz̄z̄ = b̄.
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The total action may be written as

S[X, b, c] = − 1

2πα′

∫
Σ

d2z ηµν∂X
µ∂̄Xν +

1

2π

∫
Σ

d2z b∂̄c+
1

2π

∫
Σ

d2z b̄∂c̄

These holomorphic and anti-holomorphic sectors clearly do not interact (the Hilbert
space factorizes) so it is sufficient to consider just the holomorphic sector. A new
feature for us is the fact that these ghosts do not obey the spin-statistics theorem27

and are bosonic fields with Fermi statistics. The matter and ghost stress tensors may
be incorporated into a total stress tensor

T (z) = TX(z) + Tgh(z),

where TX(z) is the contribution to the stress tensor coming from the embedding
fields Xµ(z). Explicitly, we have

TX(z) = − 1

α′
: ∂Xµ∂Xµ(z) :, Tgh(z) =: (∂b)c(z) : −2∂(: bc(z) :).

The b and c ghosts are clearly canonically conjugate. The action gives the canonical
anti-commutation relations by the usual route of replacing the Poisson brackets of
the classical theory with equal time commutators (or anti-commutators, in this case)

{b(z), c(ω)}

where
{A,B} := AB +BA

for Grassmann quantities A and B. We shall instead derive such anti-commutators
for the modes from the OPE directly and not rely on Poisson brackets.

13.1 OPEs

The ghost system is a free theory and so we may use Wick’s theorem, which states
that

R
(
b(z)c(ω)

)
=: b(z)c(ω) : + b(z)c(ω) .

Taking expectations of both sides gives the contraction as the two-point function〈
R
(
b(z)c(ω)

)〉
= b(z)c(ω) .

Our first task then is to compute the two-point function for the ghost system.
The tree-level two point function is simply the classical Green’s function. Since

the theory is free, this is the whole story. To find the Green’s function S(z, ω), which
must satisfy

1

2π
∂̄S(z, ω) = δ2(z − ω)

27Once has to be a little careful about what one means by spin in 2D.
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we make use of the result on the sphere that28

∂

∂z̄

(
1

z − ω

)
= 2πδ2(z − ω),

29 We therefore identify the Green’s function for the ghosts as

S(z, ω) =
1

z − ω
.

We then have that
〈b(z)c(ω)〉 = b(z)c(ω) =

1

z − ω
which means that the OPE is simply

b(z)c(ω) =
1

z − ω
+ ...

and so the correct definition of the ghost stress tensor is30

Tgh(z) =: lim
z→ω

(
−2b(ω) ∂c(z) + ∂b(ω) c(z) +

1

(z − ω)2

)
13.1.1 Conformal Transformations from OPEs

Now that we have the basic OPE of the ghost theory, we can calculate OPEs of
composite operators. We introduce the Noether current ja = vbTab and compute the
conformal transformation generated by the stress tensor. We shall compute δvb(z)

explicitly. The calculation of the c(z) transformation follows straightforwardly.

R
(
T (z)b(ω)

)
= : ∂b(z) c(z)b(ω) : − : 2∂(b c(z))b(ω) : +...

=
∂b(z)

z − ω
− 2∂z

(
b(z)

z − ω

)
+ ...

=
2

(z − ω)2
b(z)− 1

z − ω
∂b(z) + ...

Expanding around z = ω

b(z) = b(ω) + (z − ω)∂b(ω) + ...

28One may check this by integrating over a region in the complex plane and then using Stoke’s
theorem.

29There are no globally holomorphic zero modes of ∂̄ on the sphere. This changes at higher genus.
30Where the fact that

∂z
1

z − ω
= − 1

(z − ω)2

has been used.
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gives

Tgh(z)b(ω) =
2

(z − ω)2
b(ω) +

1

z − ω
∂b(ω) + ...

and so we find that b(z) has weight (h, h̄) = (2, 0). A similar calculation gives

Tgh(z)c(ω) =
−1

(z − ω)2
c(ω) +

1

z − ω
∂c(ω) + ...

so that c(z) has weight (h, h̄) = (−1, 0). Both are primary fields.
We now consider the conformal transformation of the stress tensor. The TghTgh

OPE is

Tgh(z)Tgh(ω) =
−26/2

(z − ω)4
+

2

(z − ω)2
Tgh(ω) +

1

z − ω
∂Tgh(ω) + ...

13.2 Total Stress Tensor and the Critical Dimension

The total stress tensor is the sum of the matter and ghost stress tensor

T (z) = TX(z) + Tgh(z).

The OPE between the ghost and matter sectors are trivial TX(z)Tgh(ω) = 0 + ... and
so the OPE of the total stress tensor with itself is

T (z)T (ω) =
(D − 26)

2(z − ω)4
+

2T (ω)

(z − ω)2
+
∂T (ω)

z − ω
+ ...

so that if
D = 26

then the total stress tensor has no anomaly and the theory is conformal at the
quantum level. This is a remarkable result: the dimension of spacetime is fixed by
the quantum consistency of the theory!

13.3 Mode expansions

In terms of mode expansions, we have

b(z) =
∑
n

bnz
−n−2, c(z) =

∑
n

cnz
−n+1.

The canonical anticommutation relations become

{bm, cn} = δm,−n

Using this, it is not hard to check the validity of the contraction b(z)c(ω) above .
Perhaps a more direct (and satisfying?) route is to use the OPE to compute this
commutator directly. We may write the modes as

bn =
1

2πi

∮
C(0)

dz zn+1b(z), cn =
1

2πi

∮
C(0)

dz zn−2c(z).
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Then

{bm, cn} =

∮
z=0

dz

2πi
zm+1

∮
ω=0

dω

2πi
ωn−2{b(z), c(ω)}

=

∮
ω=0

dω

2πi
ωn−2

∮
z=ω

dz

2πi
zm+1R

(
b(z)c(ω)

)
We can now use the OPE to evaluate the contour integral

{bm, cn} =

∮
ω=0

dω

2πi
ωn−2

∮
z=ω

dz

2πi
zm+1

(
1

z − ω
+ Regular terms

)
=

∮
ω=0

dω

2πi
ωm+n−1 = δm,−n.

and so we recover the mode commutator without further recourse to the classical
theory.

14 BRST Symmetry

In the path integral it is sometimes useful to keep the gauge-fixing part explicit and
write

Z =
1

|CKG|

∫
Mg

dst

∫
DXDhDcDb eiS[X,ĥ,b,c] δ[h− ĥ]

s∏
I=1

(b|µI)
∏
i,a

ca(σ̂i)

On the support of this delta-functional we can exchange hab and ĥab. It will also be
useful to incorporate the delta-functional into the action. To this end, we introduce
the symmetric, traceless fields Bab and introduce

Sgf[B, h] =
1

4π

∫
Σ

d2σ
√
−hBab

(
δab − hab

)
,

to the action. Functional integration over Bab gives the gauge-fixing condition hab =

δab. The full action is now

S[X, h, b, c, B] = − 1

4πα′

∫
Σ

d2σ
√
−hhabηµν∂aXµ∂bX

ν +
i

2π

∫
Σ

d2σ
√
−hbab∇acb

+
1

4π

∫
Σ

d2σ
√
−hBab

(
δab − hab

)
(14.1)

The quantization of the ghosts follows from this action and the fact that the are
Grassmann fields. The key point is that bab(τ, σ) and ca(τ, σ) are conjugate fields.
It is worth pointing out that the ghosts have integer spin but fermionic statistics.
They are not physical observables and this violation of the spin-statistics theorem is
the hallmark of ghost fields.
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The BRST symmetry is a remnant of the original gauge symmetry. The idea
is that the gauge-fixed theory has a residual rigid symmetry - the BRST symmetry,
where we replace the gauge parameter v(z) with ε c(z) where ε is a constant anti-
commuting parameter and c(z) is the weight−1 ghost field. The fields thus transform
as

δQX
µ = iεca∂aX

µ

δQhab = ε(Pc)ab
δQc

a = iεcb∂bc
a,

δQbab = iεBab, δQBab = 0

where P is the operator whose kernel gives the conformal Killing vectors, defined in
the previous set of notes. The original action

S[X, h] =
1

4πα′

∫
Σ

d2σ
√
hhab∂aX

µ∂bX
ν

is invariant under this transformation as the BRST transformation is simply a gauge
transformation with (field-dependent) parameter va = ε ca.

To see that the remaining terms are BRST-invariant we define a gauge-fixing
fermion

Ψ[b, h] =
i

4π

∫
Σ

d2σ
√
hbab

(
δab − hab

)
,

which transforms as

δQΨ =
i

4π

∫
Σ

d2σ
√
hBab

(
δab − hab

)
+

i

4π

∫
Σ

d2σ
√
hbab(Pc)ab

This is precisely the ghost and gauge-fixing terms in the action. So we see that the
full action

S =
1

4πα′

∫
Σ

d2σ
√
hhabηµν∂aX

µ∂bX
ν+

i

4π

∫
Σ

d2σ
√
hbab(Pc)ab+

i

4π

∫
Σ

d2σ
√
hBab

(
δab−hab

)
may be written as

S[X, h] + δQΨ.

The last thing we need to note is that classically, the BRST transformation is nilpo-
tent, i.e. δ2

QΦ = 0 on any field Φ, thus the full action is manifestly invariant under
classical BRST transformations since δ2

QΨ = 0. The nilpotency of the BRST sym-
metry plays an important role in determining the physical spectrum of the theory
and the requirement that δ2

QΦ = 0 holds at the quantum level will be of crucial
importance to the quantum consistency of the theory.

The equation of motion for the metric is modified to

Tab = Bab,
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where this Tab is the total ghost and matter stress tensor. If we now integrate out
the Bab Lagrange multiplier, the gauge choice hab = δab is imposed and the effective
action is

S = − 1

4πα′

∫
Σ

d2σ ηµν∂aX
µ∂aXν +

i

4π

∫
Σ

d2σ bab(Pc)ab

with the effective BRST transformations

δQX
µ = iεca∂aX

µ

δQc
a = iεcb∂bc

a,

δQbab = iεTab,

where Tab here is the total stress tensor. Note that, on-shell, c(z) is holomorphic and
so the equation of motion ∂̄c = 0 tells us that ca is a conformal Killing vector field
(albeit with the wrong statistics). Thus, under the BRST transformation, the metric
is invariant, consistent with the gauge-fixing requirement31.

δQhab = ε (Pc)ab = 0.

where we have used the fact that ca is a conformal Killing vector.

14.1 BRST Cohomology and the physical spectrum of the string

What makes the BRST symmetry so useful is that all physical states must be in the
cohomology of QB. We break this argument down into the following steps. Let |φ〉
be a physical state, we can show that:

|φ〉 ∈ Ker(QB): We require that all physical results derivable from the theory be
independent of the choice of gauge. Consider the observable

〈φi|φf〉 =

∫
Dφ φiφf eiS[φ]+i{QB ,Ψ[b,h]}

and now consider a change in the gauge-fixing functional, corresponding to a
change in the gauge-fixing choice, the change in the correlation function is

δ〈φi|φf〉 =

∫
Dφ φiφf eiS[φ]+i{QB ,Ψ[b,h]+δΨ} −

∫
Dφ φiφf eiS[φ]+{Q,Ψ[b,h]}

= i

∫
Dφ φiφf {QB, δΨ} eiS[φ]+i{QB ,Ψ[b,h]}

= iδ〈φi|{QB, δΨ}|φf〉

For this to be true for all δΨ, we require that all physical states satisfy

QB|φf〉 = 0, 〈φi|QB = 0

31This is true of Diff0×Weyl transformations. One could allow for moduli transformations to be
included also, in which case there will be a residual transformation of the metric under BRST which
will involve the moduli only.
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If we assume that Q†B = QB, then it must be that all physical states are BRST
closed, i.e.

QB|φ〉 = 0.

Q2
B = 0: The BRST charge generates a symmetry of the theory and so, by Noether’s

theorem it must be conserved. This is usually measured by the charge being
required to commute with the Hamiltonian of the theory.

[QB, H] = 0.

We now change the explicit form of the Hamiltonian by changing the gauge
choice. Since we demand that such a change does not affect the physics we
require that the BRST charge is still conserved under this new Hamiltonian.
Since the change is given by

{QB, δΨ},

we require that

0 = [QB, {QB, δΨ}]
= −[δΨ, {QB,QB}]− [QB, {δΨ,QB}]
= −[δΨ, {QB,QB}]− [QB, {QB, δΨ}]
= −[δΨ, {QB,QB}]

using the Jacobi identity in the second line. We see then that, for general δΨ,
we have

Q2
B =

1

2
{QB,QB} = 0.

|φ〉 /∈ Im(QB): Given thatQ2
B = 0, it is clear that any state of the form |ξ〉 = QB|Λ〉

is in the kernel of QB; however, such states can also be seen to have zero norm

〈ξ|ξ〉 = 〈Λ|Q2
B|Λ〉 = 0.

Such states are also orthogonal to all physical states

〈ξ|φ〉 = 〈Λ|QB|φ〉 = 0.

Such states decouple entirely from the theory, so we take any physical state to
be defined up to an arbitrary BRST exact term

|φ〉 ∼ |φ〉+QB|Λ〉.

Given that |φ〉 ∈ Ker(QB) but |φ〉 /∈ Im(QB) we have then, by definition, that
the physical states in the theory are in the cohomology of Q

|φ〉 ∈HBRST =
Hclosed

Hexact
=

Ker(QB)

Im(QB)
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for |φ〉 to be a physical state.
The state operator correspondence tells us that an operator creating a physical

state must be BRST invariant i.e. if

lim
z→0

φ(z)|0〉 = |φ〉,

then, given that the vacuum is BRST invariant,

QB|φ〉 = 0, ⇐⇒ [QB, φ(z)] = 0.

14.2 The BRST Charge

We now look for a charge QB that generates the above BRST transformations and
is nilpotent, i.e.

Q2
B = 0.

It will be useful to treat the holomorphic and anti-holomorphic sectors seperately
and write

QB = QB + Q̄B,

and require that

Q2
B =

1

2
{QB, QB} = 0, Q̄2

B =
1

2
{Q̄B, Q̄B} = 0, {QB, Q̄B} = 0

On the physical fieldsXµ(z), the BRST transformation is simply the conformal trans-
formation with the parameter v(z) replaced by εc(z) and so the obvious candidate
is

QB =

∮
dz c(z)TX(z).

But this does not reproduce the correct ghost transformations, nor does it satisfy
Q2 = 0. It is not hard to show that the BRST charge

QB =

∮
dz c(z)

(
TX(z) +

1

2
Tgh(z)

)
reproduces the correct BRST transformations.

[QB, X
µ(ω)] = c(ω)∂Xµ(ω)

{QB, c(ω)} = c(ω)∂c(ω)

{QB, b(ω)} = T (ω)

[QB, T (ω)] =
D − 26

12
∂3c(ω)

It is easy to check these. The Xµ transformation follows directly from the action of
the stress tensors on Xµ. The b-ghost transformation may be calculated as follows

{QB, b(ω)} =

∮
z=0

dz

2πi

{
c(z)

(
TX(z) +

1

2
Tgh(z)

)
, b(ω)

}
=

∮
z=ω

dz

2πi

((
TX(z) +

1

2
Tgh(z)

) 1

z − ω
+

1

2
c(z)

(
2

(z − ω)2
b(ω) +

1

z − ω
∂b(ω)

))
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Writing
c(z) = c(ω) + (z − ω)∂c(ω) + ...

{QB, b(ω)} =

∮
z=ω

dz

2πi

(
1

z − ω

(
TX(z) +

1

2
Tgh(z)

)
+

1

2

2

(z − ω)2
c(ω)∂b(ω) +

1

2

1

z − ω
(2∂c(ω)b(ω) + c(ω)∂b(ω))

)
The fist term on the second line doesn’t contribute anything and the remaining terms
may be written

{QB, b(ω)} =

∮
z=ω

dz

2πi

1

z − ω

(
TX(z) +

1

2
Tgh(z)− ∂(b(ω)c(ω)) +

1

2
∂b(ω) c(ω)

)
=

∮
z=ω

dz

2πi

T (ω)

z − ω
and so

δQb(ω) = T (ω),

as required.

14.3 BRST Current and the Conformal Anomaly

It is useful to define the BRST current jB(z) as

QB = QB + Q̄B =
1

2πi

∮
dz jB(z)− 1

2πi

∮
dz̄ j̄B(z̄).

The natural guess is jB(z) = c(z)
(
TX(z) + 1

2
Tgh(z)

)
; however, adding terms regular

at z = 0 to the current will not change Q so there is some ambiguity here. This can be
resolved by asking that jB(z) transforms as a vector under conformal transformations.
Our first guess does not but a minor modification

jB(z) = c(z)

(
TX(z) +

1

2
Tgh(z)

)
+

3

2
∂2c(z)

The jB(z)jB(ω) OPE is given by

jB(z)jB(ω) = − D − 18

2(z − ω)3
c∂c(ω)− D − 18

4(z − ω)2
c∂2c(ω)− D − 26

12(z − ω)
c∂3c(ω) + ...

We can check Q2 = 0 is consistent with the OPE calculations above

{QB, QB} =

∮
z=0

dz

2πi

∮
ω=0

dω

2πi
{jB(z), jB(ω)}

=

∮
z=0

dz

2πi

∮
ω=z

dω

2πi

(
− D − 18

2(z − ω)3
c∂c(ω)− D − 18

4(z − ω)2
c∂2c(ω)− D − 26

12(z − ω)
c∂3c(ω)

)
=
D − 26

12

∮
z=0

dz

2πi
c(z)∂3c(z)

as all of the D − 18 contributions cancel out, which may be seen by integrating by
parts. The remaining contour integral is not zero so, in order to have Q2

B = 0, we
require D = 26, as above. A similar result holds for Q̄B
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Part IV

Symmetry Enhancement and
T-Duality

15 Strings on Tori

16 Symmetry Enhancement

Something very special happens when the radius of the target space circle is exactly

R =
√
α′.

16.1 The SU(2) Operator Algebra

J3(z) = ∂XL(z), J±(z) =: exp
(
i2XL(z)/

√
α′
)

:

Using standard OPE techniques (try it!) we find the operator product expansions
are

H(z)E±(w) = ...

From this we can define the charges32

H =

∮
dzJ3(z), E± =

∮
dzJ±(z).

Remarkably we find that these generate an SU(2) Lie algebra!

16.2 The Target Space Perspective: A Stringy Higgs Mechanism

17 Unbroken Symmetry: T-Duality

32the currents we are integrating are wight (1,0) which means the charges will be conserved - can
you see why?
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Part V

Scattering Amplitudes
18 What’s The Big Idea?

What should we calculate with this theory we have built? We only have a perturba-
tive understanding of the theory and we would like to understand its connection with
conventional field theory. As such it makes sense to see what the S-Matrix of string
theory looks like and learn about the perturbative similarities and differences with
conventional field theory. After all, one of the motivations for considering the theory
in the first place were the divergences present in conventional field theory approaches
to gravity. It is important to see how string theory overcomes these problems.

Another motivation is that it is very difficult to think up local diffeomorphism
invariant quantities that could act as observables. The S-Matrix includes quantities
living ‘at infinity’, where we take local diffeomorphism transformations to die off and
so it makes sense to look at correlation functions of such objects.

One of the more remarkable features of string theory is that one can calculate the
amplitudes for scattering processes in spacetime by computing correlation functions
on the worldsheet. The aim of this chapter is to explain how this is done. Recall
the infinite cylinder describing a free string propagating from the infinite past to the
infinite future. The conformal map

z = eτ+iσ,

is defined globally and maps the cylinder to the complex plane. The point at the
origin is the location of the string in the infinite past. For an initial string at time
τ = τi, the initial string is the boundary of a small disc Di, centred on the origin
that is removed. As τi → −∞, Di shrinks to a point and the worldsheet is the
complex plane with the origin removed. The same argument holds for the final state
string at τf → ∞, where we remove the point at infinity. Alternatively, and the
mental picture we shall often adopt, is to thinlkof this as the Riemann sphere with
two points removed. We often call these removed points punctures. The initial and
final states are then encoded as operators inserted at the punctures. The idea is that
the operator Vi(z, z̄) that creates the initial state |i〉 is given by the state/operator
correspondence

|i〉 = lim
z,z̄→0

Vi(z, z̄)|0〉.

For example, for the graviton we shall find

εµνα
µ
−1ᾱ

ν
−1|k〉 = lim

z,z̄→0
εµν : ∂Xµ(z)∂̄Xν(z̄)eik·X(z,z̄) : |0〉.
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Figure 12. The Cylinder may be mapped from to the complex plane with the origin
removed. Alternatively, we may view it as the Riemann sphere with two punctures.

When we first discussed the path integral we introduced the expression

〈Ψi|Ψf〉 =

∫ f

i

DXDh e−S[X,h],

without really thinking abut how we specify the initial and final states. We se that
the vertex operators give a natural way to specify asymptotic states in terms of
operator insertions so that

〈Ψi|Ψf〉 =

∫
DXDh ViVf e−S[X,h].

This is all fine for the cylinder, where the conformal map described above is globally
defined but what of more complicated Riemann surfaces with many initial and final
states? The idea is a local take on the global construction described above. Take
the worldsheet and remove the cylinders that contain the initial and final states.
On this cylinder we define local a local coordinate system and a map from the
cylinder to a local coordinate system on an annulus. Taking the initial state to the
infinite past gives a map from the semi-infinite cylinder to a punctured disc where,
by convention, the puncture is at the origin of the local coordinate system. We
then glue these punctured discs back into the worldsheet to get an Riemann surface
with many punctures, each with a local coordinate system centred on the puncture.
The details of this construction are not needed for what we consider here but the
construction generalises straightforwardly to higher genus Riemann surfaces.

Higher genus Riemann surfaces correspond to loop corrections in spacetime.
For example, we associate the genus one worldsheets with one-loop contributions
to spacetime processes.
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Figure 13. The one-loop correction to the propagator may be mapped to a torus with two
punctures.

It is a remarkable feature of string theory that spacetime processes may be
computed using two-dimensional conformal field theory.

19 Preliminaries

There are a couple of things we need to discuss before computing scattering ampli-
tudes.

19.1 Ghost Vacua

We start with the standard vacuum |0〉. This vacuum is invariant under the SL(2;C)

sub-algebra of the Virasoro algebra generated by {L0, L±} so we shall call it the
"SL(2;C)-invariant vacuum" to distinguish it from the other vacua we shall need to
introduce. The state-operator correspondence gives

|Φ〉 = lim
z→0

Φ(z)|0〉.

What are the conditions needed for this limit to exist? We may write this as

|Φ〉 = lim
z→0

∑
n

φnz
−n−h|0〉.

Clearly those terms for which n < −h vanish in the limit. The n = −h term has no
z-dependence and so is not affected by the limit, leaving

|Φ〉 = lim
z→0

(
φ−h +

∑
n>−h

φnz
−n−h

)
|0〉.
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A necessary condition for the limit to exist is that

φn|0〉 = 0, n > −h.

The state is then |Φ〉 = φ−h|0〉. This nicely reproduces the requirement that

lim
z→0

∂Xµ(z)|0〉 = αµ−1|0〉

and αn|0〉 = 0 for n > −1. For the ghost field we then have the conditions that

bn|0〉 = 0, n > −2 and cn|0〉 = 0, n > +1.

where
b(z) =

∑
n

bnz
−n−2, c(z) =

∑
n

cnz
−n+1.

These are not the usual conditions we expect from a vacuum state. One usually
would expect all non-negative modes to annihilate the vacuum. What is going on?

In fact |0〉, though the vacuum for the Xµ(z) sector is not the vacuum for the
ghost sector. Indeed, a curious feature of the ghost system is that there is not a
unique vacuum. If we define the vacuum as the state which is annihilated by the
operators cn and bn for n ≥ 0 we find, the failure of all such operators to commute
means that there is no unique vacuum that can satisfy both of these conditions.
Instead we are left with two distinct vacua, which we shall call | ↑〉 and | ↓〉. We
define | ↑〉 by

c0| ↑〉 = 0.

Since b0 and c0 don’t commute, they cannot both annihilate | ↑〉 (they would then
both have it is a zero-eigenvalue eigenstate). It must be that b0 acting on | ↑〉 gives
another state. Let us call this state | ↓〉

b0| ↑〉 = | ↓〉.

It then follows that
b0| ↓〉 = b2

0| ↑〉 = 0

and
c0| ↓〉 = c0b0| ↑〉 = ({c0, b0} − b0c0)| ↑〉 = | ↑〉

thus we have

c0| ↑〉 = 0, b0| ↓〉 = 0, b0| ↑〉 = | ↓〉, c0| ↓〉 = | ↑〉, b0| ↑〉 = | ↑〉

We can then deduce that33 they are related by

c0| ↓〉 = | ↑〉, b0| ↑〉 = | ↓〉.
33

c0| ↓〉 = c0b0| ↑〉 = (1− b0c0)| ↑〉 = | ↑〉.

and similarly for the second relationship.
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An immediate question arises; what is the relationship between these ghost vacua
and the SL(2;C)-inarviant vacuum |0〉? If we want to think of | ↑〉 as a c-ghost
vacuum, then we might also like c1| ↑〉 = 0. This condition is satisfied if we choose

c1|0〉 = | ↓〉

so that
| ↑〉 = c0c1|0〉, | ↓〉 = c1|0〉

Other considerations, such as ghost number, also lead us to this conclusion.
We can consider inner products of these vacua:

〈↑ | ↑〉 = 〈0|c−1c
2
0c1|0〉 = 0, 〈↓ | ↓〉 = 〈↑ |b+ 02| ↑〉 = 0,

However 〈↑ | ↓〉 is not vanishing

〈↑ | ↓〉 = 〈↑ | ↓〉 = 〈0|c−1c0c1|0〉 6= 0.

We have a enough flexibility left in the definitions of these vacua to chose the nor-
malisation

〈0|c−1c0c1|0〉 = 1 (19.1)

The Hilbert space factorises into embedding and ghost sectors H = HX ⊗ Hb,c.
Reflecting this, the vacuum may be written as

|0, ↓〉 = |0〉X | ↓〉

where we have chosen | ↓〉 to be the ghost vaccum.
Note that

〈0|c(z1)c(z2)c(z3)|0〉 = 〈0|c−1c0c1|0〉

∣∣∣∣∣∣
1 1 1

z1 z2 z3

z2
1 z

2
2 z

2
3

∣∣∣∣∣∣ = (z1 − z2)(z2 − z3)(z3 − z1).

and so 〈
3∏
i=1

c(zi)c̄(z̄i)

〉
= |z1 − z2|2|z2 − z3|2|z3 − z1|2.

This result will be useful in the computation of scattering amplitudes.

19.2 The Dilaton and the String Coupling

We can imagine the string propagating in a background with metric gµν(X), B-field
Bµν(X) and dilaton Φ(X). The metric and B-field couple to the string as

S[X] = − 1

4πα′

∫
Σ

d2σ
√
−hhabgµν(X)∂aX

µ∂bX
ν− i

4πα′

∫
Σ

d2σ
√
−hεabBµν(X)∂aX

µ∂bX
ν
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and there are conditions on gµν(X) and Bµν(X) such that the theory is conformally
invariant.

Suppose we have a background dilaton field Φ(X). This can be coupled to the
string worldsheet by adding to the action the term

SΦ[X, h] =
1

4π

∫
Σ

d2σ
√
−hΦ(X)RΣ

A few comments are in order

• This breaks classical Weyl invariance. However, the term enters at higher
order in α′ that the other terms in the action and so a proper analysis requires
considering loop effects on the worldsheet. One finds that the quantum theory
is actually still Weyl invariant provided the background metric and dilaton
obey the appropriate equations of motion. We will discuss this briefly in the
following chapter.

• If the dilaton is evaluated at an expectation value 〈Φ(X)〉 = Φ0, then the this
term in the action becomes a topological term

SΦ[h] = Φ0χ = Φ0(2g − 2)

where χ is the Euler character of the Riemann surface and g is its genus.

We define the closed string coupling as

gc = eΦ0

and the contribution to the path integral is then

An =
∞∑
g=0

g2g−2
c

1

|CKG|

∫
Mg

dst

∫
DbDb̄DcDc̄

s∏
i=1

(µi|b)(µ̄i|b̄) e−Sgh[b,c] 〈V1V2...Vn〉

where we have interpreted the path integral over the worldsheet metric to include a
sum over all genus.

Imagine a closed string being emitted and reabsorbed by a worldsheet of genus
g. This adds a handle to the surface and so raises the genus by one g → g + 1 and
so adds in an extra g2

c to the amplitude. As such we associate a factor of gc with the
emission or absorption of a closed string. It is in this sense that we think of gc as a
coupling constant for the closed string theory.

20 Vertex Operators

We are looking for operators that are in the BRST cohomology. We shall see that
there are two inequivalent ways to represent the same state. Suppose we construct
an operator φ(z, z̄) that satisfies

[Q, φ] = ∂(cφ), [Q̄, φ] = ∂̄(c̄φ)
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where QB = QB + Q̄B is the BRST charge. Then, we can construct BRST-invariant
integrals

Vφ =

∫
Σ

d2z φ(z, z̄),

since the BRST operator gives a surface term when commuted with the integrand
which vanishes in the integral. A problem with such an object is that it is manifestly
non-local; however, we shall be able to make sense of this.

An alternative operator is given by

U(z, z̄) = c(z)c̄(z̄)φ(z, z̄)

This is clearly BRST closed

[Q, cc̄φ] = (c∂c) c̄ φ+ cc̄ ∂(cφ) = 0.

and so, given an appropriate φ(z, z̄), we have two types of operator in the cohomology.
How easy is it to find φ(z, z̄) that transforms in the correct way? We expect the

field to be a primary operator, so that under conformal transformations we have

δvφ(z, z̄) = hφ∂v(z) + v(z)∂φ(z, z̄) + c.c..

thus, under BRST transformations, we require

[QB, φ(z, z̄)] = hφ∂c(z)φ(z, z̄) + c(z)∂φ(z, z̄)

= (hφ − 1)∂c(z)φ(z, z̄) + ∂(c(z)φ(z, z̄))

where we have integrated by parts to get to the second line. It is clear that if

(hφ, h̄φ) = (1, 1),

then φ(z, z̄) will transform in the required way.
An observation: Before we gauge fix the metric we do not have ghosts and so

we only have the non-local integrated vertex operators, consistent with a quantum
theory of gravity. Once we gauge fix gravity and no longer work in a diffeomorphism
invariant framework, we have ghosts and we can consistently construct local vertex
operators using these ghosts.

We now consider some examples:

20.1 The Tachyon

The simplest boundary condition we can put on a string is that the worldsheet
must pass through a particular point, i.e. the point (zi, z̄i) on the worldsheet should
correspond to the point xµi in spacetime. We might write this as a delta functional

δ[xµi −Xµ(zi, z̄i)]
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to be inserted into the path integral. We are more interested in computing scattering
amplitudes in momentum space, so we Fourier transform this to momentum space∫

d26ki e
iki·xi δ[xµi −Xµ(zi, z̄i)] = eik·X

µ(z,z̄).

We know that the conformal weight of this operator is

(h, h̄) =

(
α′k2

4
,
α′k2

4

)
.

so, if
α′k2

4
= 1,

i.e. we are dealing with the Tachyon, with mass m2 = −k2 = −4/α′ then we can
construct an integrated and an unintegrated vertex operator

UT (z, z̄) =
2gc
α′

: c(z)c̄(z̄)eik·X(z,z̄) :, VT =
2gc
α′

∫
Σ

d2z : eik·X(z,z̄) : .

where conventional factors of the coupling constant have been added in.

20.2 Massless Modes

We can get a feel for what might constitute the graviton vertex operator by con-
sidering a linear perturbation of the metric in the path integral. Let ηµν → gµν =

ηµν +hµνe
ik·X(z,z̄) by a plane wave deformation of the metric. The X part of the path

integral becomes∫
DX exp

(
−T

∫
Σ

d2z gµν∂X
µ∂̄Xν

)
=

∫
DX e−Sη [X]

(
1− T

∫
Σ

d2z hµν∂X
µ∂̄Xνeik·X(z,z̄) + ...

)
where

Sη[X] = −T
∫

Σ

d2z gµν∂X
µ∂̄Xν

It is clear that the leading order correction to the flat space metric is given by
inserting the operator

T

∫
Σ

d2z hµν∂X
µ∂̄Xνeik·X(z,z̄)

into the path integral. This suggests the following massless vertex operators

Dilaton

Uφ(z, z̄) =
2gc
α′

: c(z)c̄(z̄)∂Xµ∂̄Xµe
ik·X(z,z̄) :, Vφ =

2gc
α′

∫
Σ

d2z φηµν∂X
µ∂̄Xνeik·X(z,z̄)
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Graviton

Ug(z, z̄) =
2gc
α′
hµν : c(z)c̄(z̄)∂X(µ∂̄Xν)eik·X(z,z̄) : Vg =

2gc
α′

∫
Σ

d2z hµν∂X
µ∂̄Xνeik·X(z,z̄)

B-Field

UB(z, z̄) =
2gc
α′
bµν : c(z)c̄(z̄)∂X [µ∂̄Xν]eik·X(z,z̄) : VB =

2gc
α′

∫
Σ

d2z bµν∂X
µ∂̄Xνeik·X(z,z̄)

These all have the correct weight if k2 = 0.

20.3 A comment on massive modes

We could clearly continue and explore the vertex operators for massive modes. One
reason not to do this is that the vertex operators we already have will be more than
enough to keep us busy in this course. Another reason not to is that massive modes
are subject to mass renormalisation. This is a finite shift in the mass so no infinities
develop but it does mean that the physical vertex operators have a mass which means
we cannot deal with them easily in the on-shell first quantised formalism. This issue
can be overcome. One way to do so is to use a second quantised string field theory.
This would take us far beyond what we want to cover in this course and as stated
above, we have more than enough to be getting on with. Thus, and with some regret,
we shall not consider the massive modes further in this course.

21 The general structure of the S-Matrix

In terms of the ghost fields, this S-matrix element 〈V (z1)V (z2)...V (zn)〉 may be
written as

An =
∞∑
g=0

g2g−2
c

1

|CKG|

∫
M

dsm

∫
DbDb̄DcDc̄

s∏
i=1

(µi|b)(µ̄i|b̄) e−Sgh[b,c] 〈V1V2...Vn〉
∏
i,a

ca(σ̂i)

where we define
〈V1V2...Vn〉X =

∫
DX V1V2...Vn e

−S[X]

and the V (z) are vertex operators which may be written as

Vi = gc

∫
d2zi φ(zi, z̄i)

21.1 Tree Level

At tree level g = 0 and the moduli space is a point, so s = 0 and the conformal
Killing group is SL(2;C), so we have

An =
1

|SL(2,C)|
gn−2
c

∫ n∏
i=1

d2zi

〈 3∏
i=1

c(zi)c̄(z̄i)
〉
b,c

〈
φ(z1)φ(z2)...φ(zn)

〉
X
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where the ghost and matter contribution factorise

〈 3∏
i=1

c(zi)c̄(z̄i)
〉
b,c

=

∫
DbDb̄DcDc̄ e−Sgh[b,c]

3∏
i=1

c(zi)c̄(z̄i),

〈
φ(z1)φ(z2)...φ(zn)

〉
X

=

∫
DX e−S[X] φ(z1)φ(z2)...φ(zn).

21.1.1 SL(2;C)

The infinitesimal action of SL(2;C) on the coordinate zi may be written as

zi → z′i = a1 + a2zi + a3z
2
i ,

where the ai are infinitesimal parameters. We can relate integration over zi to inte-
gration over ai as

det(∂zi/∂aj) d3a = d3z

where the Jacobian is

det(∂zi/∂aj) =

∣∣∣∣∣∣
1 z1 z

2
1

1 z2 z
2
2

1 z2 z
2
3

∣∣∣∣∣∣ = (z1 − z2)(z2 − z3)(z3 − z1)

and so the SL(2;C) volume element is

d2a1 d2a2 d2a3 =
d2z1 d2z2 d2z3

|(z1 − z2)(z2 − z3)(z3 − z1)|2

which may be written as

1

d|SL(2;C)|
=
|(z1 − z2)(z2 − z3)(z3 − z1)|2

d2z1 d2z2 d2z3

=
〈
∏3

i=1 c(zi)c̄(z̄i) 〉
d2z1 d2z2 d2z3

We can now see that the 〈c(z1)c(z2)c(z3)〉 factor we included dealt with the Jacobian,
all that remains is to factor out by d2z1 d2z2 d2z3.

Thus we interpret the quotient by SL(2;C) to have the effect of removing three
of the integrals (i.e. fixing the locations of three punctures). Any three will do, but
for definiteness we choose the first three

An = gn−2
c

〈 3∏
i=1

c(zi)c̄(z̄i)
〉
b,c

∫ n∏
i=4

d2zi

〈
φ(z1)φ(z2)...φ(zn)

〉
X

where we are at liberty to fix z1, z2 and z3 to any distinct points. The usual choice
is 0, 1 and ∞, but any will do and the SL(2;C) invariance of the metric means that
the amplitude does not depend on the choice we make.
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21.1.2 The Scattering Amplitude Simplified

Notice that the expression for the amplitude could be written as

An = gn−2
c

〈 3∏
i=1

Ui(zi, z̄i) V4...Vn

〉
where the Ui are un-intergrated vertex operators and the Vi are integrated vertex
operators.

22 Some Tree-Level Amplitudes using Path Integrals

From now on we work in the complex plane. We want to know how to compute the
correlation function

〈φ1(z1, z̄1)...φn(zn, z̄n)〉X =

∫
DX e−S[X]φ1(z1, z̄1)...φn(zn, z̄n).

We start by introducing the source term

SJ [X, J ] =

∫
Σ

d2z JµX
µ.

and considering the normalised generating functional

Z[J ] = Z−1[0]

∫
DX e−S[X]−SJ [X,J ].

It is useful to separate the constant centre of mass term from the Xµ, so we write

Xµ(z) = xµ + X̃µ(z),

∫
DX =

∫
d26x

∫
DX̃.

Introducing the Greens function

− 1

πα′
2G(z, ω) = δ2(z − ω),

i.e.
G(z, ω) = −α

′

2
ln |z − ω|2

we may write the modified action as

S[X] + SJ [X, J ] =
1

2πα′

∫
Σ

d2z X̃µ2X̃νηµν +

∫
Σ

d2z JµX̃
µ + xµ

∫
Σ

d2z Jµ(z)

=
1

2πα′

∫
Σ

d2z Y µ(z)2Yµ(z) +
1

2

∫
Σ×Σ

d2z d2ω Jµ(z)G(z, ω)Jµ(ω)

+xµ
∫

Σ

d2z Jµ(z)
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where
Y µ(z) = X̃µ(z)−

∫
Σ

d2ω G(z, ω)Jµ(ω)

and we have completed the square in Xµ in going from the first to the second line.
The relationship between Xµ and Y µ is linear and so we may set DX = DY and
first term, quadratic in Y µ, may be integrated out. We note that the Y µ dependent
terms may be written, up to a factor coming from the zero modes, as

Z[0] =

∫
DY exp

(
1

2πα′

∫
Σ

d2z Y µ(z)2Yµ(z)

)
,

and so the generating functional becomes

Z[J ] = exp

(
1

2

∫
Σ×Σ

d2z d2ω Jµ(z)G(z, ω)Jµ(ω)

)∫
d26x exp

(
xµ
∫

Σ

d2z Jµ(z)

)
Correlation functions may then be computed by functional differentiation

〈Xµ1(z1)Xµ2(z2)...Xµn(zn)〉 =
δ

δJµ1(z1)

δ

δJµ2(z2)
...

δ

δJµn(zn)
Z[J ]

We shall have no need of this here.

23 Some sample calculations using path integrals

We look at some concrete examples.

23.1 Tachyon Scattering

The X-correlation function is of the form〈
eik1·X(z1,z̄1)...eik1·X(z1,z̄1)

〉
X

=

∫
DX e−S[X] eik1·X(z1,z̄1)...eik1·X(z1,z̄1)

=

∫
DX exp

(
−S[X] + i

n∑
j=1

kj ·X(zj, z̄j)

)

since in the path integral the eik·X(z,z̄) with functions not operators. We may write
this as 〈

eik1·X(z1,z̄1)...eik1·X(z1,z̄1)
〉
X

=

∫
DX exp

(
−S[X]−

∫
Σ

d2z J ·X
)

where

J(z, z̄) = −i
n∑
i=1

kiδ
2(z − zi)

Then ∫
Σ

d2z Jµ(z) = −i
∫

Σ

d2z

n∑
i=1

kiδ
2(z − zi) = −i

n∑
i=1

ki
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and so∫
d26x exp

(
xµ
∫

Σ

d2z Jµ(z)

)
=

∫
d26x exp

(
−ixµ

n∑
i=1

kµi

)
= (2π)26δ26

(
n∑
i=1

kµi

)
and so this delta function enforces overall momentum conservation.

We also have
1

2

∫
Σ×Σ

d2z d2ω Jµ(z)G(z, ω)Jµ(ω)

= −1

2

∑
i 6=j

∫
Σ×Σ

d2z d2ω kµi δ
2(z − zi) G(z, ω) kjµδ

2(ω − zj)

= −1

2

∑
i 6=j

kµi

(
− α′

2
ln |zi − zj|2

)
kjµ

so that

exp

(
1

2

∫
Σ×Σ

d2z d2ω Jµ(z)G(z, ω)Jµ(ω)

)
=
∏
i 6=j

|zi − zj|α
′ki·kj/2

=
∏
i>j

|zi − zj|α
′ki·kj

We then have

〈φ1(z1, z̄1)...φn(zn, z̄n)〉X = (2π)26δ26

(
n∑
i=1

kµi

)
×
∏
i<j

|zi − zj|α
′ki·kj

23.1.1 Three-Point Tachyon Amplitude

We have
α′k1 · k2 =

α′

2

(
(k1 + k2)2 − k2

1 − k2
2

)
=
α′

2
(k2

3 − k2
1 − k2

2)

using the mass shell condition for Tachyons k2 = −m2 = 4/α′, we find

α′k1 · k2 = −2

and so

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉X = (2π)26δ26

(
3∑
i=1

kµi

)
× 1

|(z1 − z2)(z2 − z3)(z3 − z1)|2

which cancels with the ghost contirbution〈 3∏
i=1

c(zi)c̄(z̄i)
〉
b,c

= |(z1 − z2)(z2 − z3)(z3 − z1)|2

to give

A3 = gc(2π)26δ26

(
3∑
i=1

kµi

)
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23.1.2 Four-Point Tachyon Amplitude: The Virasoro-Shapiro Amplitude

For the four point amplitude we use the SL(2;C) invariance to choose

z1 = 0, z2 = 1, z3 = λ→∞

and set z4 = z. The amplitude includes∏
i<j

|zi−zj|α
′ki·kj = |z1−z2|α

′k1·k2|z1−z3|α
′k1·k3 |z1−z4|α

′k1·k4|z2−z3|α
′k2·k3|z2−z4|α

′k2·k4|z3−z4|α
′k3·k4

The ghost contributions give |z1 − z2|2|z2 − z3|2|z3 − z1|2, giving〈 3∏
i=1

c(zi)c̄(z̄i)
〉
b,c

∏
i<j

|zi − zj|α
′ki·kj

= |z1 − z2|α
′k1·k2+2|z1 − z3|α

′k1·k3+2|z1 − z4|α
′k1·k4|z2 − z3|α

′k2·k3+2|z2 − z4|α
′k2·k4|z3 − z4|α

′k3·k4

= |λ|α′k1·k3+2|z|α′k1·k4|1− λ|α′k2·k3+2|1− z|α′k2·k4 |λ− z|α′k3·k4

z takes values in a patch of the Riemann sphere that does not include the point at
infinity so we assume that λ� 1, z and so in the limit λ→∞〈 3∏

i=1

c(zi)c̄(z̄i)
〉
b,c

∏
i<j

|zi − zj|α
′ki·kj = |λ|α′(k1+k2+k4)·k3+4|z|α′k1·k4|1− z|α′k2·k4

We note that
α′(k1 + k2 + k4) · k3 + 4 = −α′k2

3 + 4 = 0.

where momentum conservation and the mass-shell condition have been used. The
amplitude is then

A4 = g2
c (2π)26δ26

(
4∑
i=1

kµi

)∫
d2z |z|α′k1·k4|1− z|α′k2·k4

where we are integrating over the complex plane with the points at z = 0, 1 removed
(or the Riemann sphere with z = 0, 1,∞ removed).

We can introduce the Madelstam variables

t = −(k1 + k3)2, u = −(k1 + k4)2.

Using the fact that

α′k1 · k4 = −α
′u

2
− 4, α′k2 · k4 = −α

′t

2
− 4

, the amplitude may be written as

A4 = g2
c (2π)26δ26

(
4∑
i=1

kµi

)∫
d2z |z|−α′u/2−4|1− z|−α′t/2−4

A few comments are in order:

– 92 –



• We can work harder and write the amplitude in terms of the Gamma functions

Γ(a) =

∫ ∞
0

xa−1e−x dx.

We find the elegant result

A4 = g2
c (2π)26δ26

(
4∑
i=1

kµi

)
2π

Γ(α(s))Γ(α(t))Γ(α(u))

Γ(α(t) + α(u))Γ(α(s) + α(u))Γ(α(s) + α(t))

(23.1)
where

α(s) = −1− α′

4
s,

and s, t, u are the famed Mandelstam variables

s = −(k1 + k2)2, t = −(k1 + k3)2, u = −(k1 + k4)2.

• If we allow the punctures to coincide then the integrand will have poles at z =

0, 1,∞. The corresponds to the Riemann surface degenerating and physically
the mode propagating through the degeneration point is going on-shell.

The expression (23.1) makes the symmetry between the s, t and u channels
apparent. Historically, it was of great interest finding scattering amplitudes that has
his symmetry (or duality). Indeed it was the investigation of such ‘dual models’ that
lead to some of the first steps in the construction of the bosonic string. Today, we
see the duality between these channels as a manifestation of invariance of the path
integral under deformations of the worldsheet.
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Figure 14. The ‘duality’ between s, t and u channels.
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23.2 Scattering of massless states

We are now interested in vertex operators of the form

Vj = gc

∫
Σ

d2z εµν∂X
µ∂̄Xνeikj ·X

We can write

i∂Xµ(zj) e
ikj ·X(zj) =

[
∂

∂ρj
exp

(
i

n∑
j=1

∫
Σ

d2z

(
kjµ + ρj

∂

∂z

)
Xµ(z)δ2(z − zj)

)]
ρj=0

similarly, we can write

εµν∂X
µ(zj)∂̄X

ν(zj) e
ikj ·X(zj)

= −εµν
[

∂2

∂ρj∂ρ̄j
exp

(
i

∫
Σ

d2z δ2(z − zj)
(
kjµ + ρj

∂

∂z
+ ρ̄j

∂

∂z̄

)
Xµ(z, z̄)

)]
ρj=0

and so, writing

Jµ(z) = −i
n∑
j=1

δ2(z − zj)
(
kjµ + ρj

∂

∂z
+ ρ̄j

∂

∂z̄

)
the amplitude of n massless states may be written as

An = (−1)ngn−2
c

n∏
i=1

εµν

[
∂2

∂ρj∂ρ̄j
exp

(
1

2

∫
Σ×Σ

d2z d2ω J(z)J(ω)G(z, ω)

)]
ρj ρ̄j=0

where the ordering in the exponent matters as J(z) is now a differential operator on
the worldsheet.

It can be helpful to split the Green’s function into z, z̄ dependent parts

G(z, ω) = −α
′

2
ln(z − ω)− α′

2
ln(z̄ − ω̄).

The above expression then factorises

An ∼ (−1)ngn−2
c

n∏
i=1

εµν

[
∂2

∂ρj∂ρ̄j
exp

(
1

2

∫
Σ×Σ

d2z d2ω J(z)J(ω)G(z, ω)

)]
ρj ρ̄j=0

= (−1)ngn−2
c

n∏
i=1

εµν

[
∂

∂ρj
exp

(
−α

′

4

∫
Σ×Σ

d2z d2ω j(z)j(ω) ln(z − ω)

)]
ρj=0

×
[
∂

∂ρ̄j
exp

(
−α

′

4

∫
Σ×Σ

d2z d2ω j̄(z)j̄(ω) ln(z̄ − ω̄)

)]
ρ̄j=0

(23.2)

where

j(z) = −i
n∑
j=1

δ2(z − zj)
(

1

2
kjµ + ρj

∂

∂z

)
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If we write X̃µ(z, z̄) = X̃µ(z) + X̄µ(z̄), the amplitude may be written as

A3 = gn−2
c (2π)26|(z1 − z2)(z2 − z3)(z3 − z1)|2 δ26

(
3∑
i=1

kµi

)

×
∫ n∏

j=4

d2zj

n∏
j=1

εµjνj

〈
n∏
j=1

∂X̃νjeikj ·X̃(zj)

〉〈
n∏
j=1

∂̄X̄µjeikj ·X̄(z̄j)

〉
,

where the interesting part of the amplitude is then we note that〈
n∏
j=1

∂Xµjeikj ·X(zj)

〉
=

1

in

[
n∏
j=1

∂n

∂ρ1...∂ρn
exp

(
−α

′

4

∫
Σ×Σ

d2z d2ω j(z)j(ω) ln(z − ω)

)]
ρj=0

and its right-moving counterpart. Substituting the expressions for j(z) into the
exponent gives

W [j] := exp

(
−α

′

4

∫
Σ×Σ

d2z d2ω j(z)j(ω) ln(z − ω)

)
= exp

(
α′

4

∑
i 6=j

(
1

2
kiµ + ρi

∂

∂zi

)(
1

2
kjµ + ρj

∂

∂zj

)
ln(zi − zj)

)

=
∏
i<j

|zi − zj|
α′
2
ki·kj × exp

(
α′

2

∑
i<j

ρi · ρj
(zi − zj)2

+
α′

2

∑
i 6=j

ki · ρj
zi − zj

)

We then have 〈
n∏
j=1

∂Xµjeikj ·X(zj)

〉
=

1

in

[
n∏
j=1

∂nW [j]

∂ρ1...∂ρn

]
ρj=0

23.2.1 The three-point graviton amplitude

We first note that
α′k1 · k2 =

α′

2
(k1 + k2)2 =

α′

2
k2

3 = 0,

as all states are massless. Thus∏
i<j

|zi − zj|
α′
2
ki·kj = 1

With work, one finds that〈
3∏
j=1

∂Xµjeikj ·X(zj)

〉
=

(
α′

2

)2
T µ1µ2µ3

(z1 − z2)(z2 − z3)(z3 − z1)
.

where
T µ1µ2µ3 = ηµ1µ2kµ3

2 + ηµ2µ3kµ1

3 + ηµ3µ1kµ2

1 +
α′

2
kµ1

3 kµ2

1 kµ3

2
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Putting this with the similar expression for the anti-holomrophic sector and
reintroducing the zero modes and ghosts gives

A3 = gc(2π)26δ26

(
3∑
i=1

kµi

)
εµ1ν1εµ2ν2εµ3ν3T

µ1µ2µ3T ν1ν2ν3

A few comments are in order.

• The terms quadratic in momenta are consistent with that given by perturbation
of the Einstein-Hilbert action (with a suitable identification of the gravitational
coupling constant).

• The quartic and sextic momenta come from higher derivative corrections to the
Einstein-Hilbert action. These enter at order α′ and vanish in the field theory
limit where the string sclae is small compared to the curvature scale on the
background.

24 Loops and Beyond

A brief overview of some more advanced topics are given.

24.1 One Loop

This is off the syllabus but it is interesting to see how the previous arguments at tree
level are modified at one-loop. The major change here is that the moduli space is
not trivial. In the one-loop case the moduli space is one-complex dimensional, the
modulus, given by the complex structure of the torus

τ = τ1 + iτ2.

As discussed earlier, the moduli space is given by the upper half plane modded out
by the action of the modular group. There are many choices but, by convention, we
shall choose the fundamental domain that we integrate over to be

M1 =

{
τ = τ1 + iτ2

∣∣∣τ2 > 0;−1

2
≤ τ1 ≤

1

2
, |τ | ≥ 1

}
.

This region is the purple shaded area in the picture below. The green shaded area
gives an alternative choice.

Another change is that the conformal Killing group is U(1) × U(1), which is
finite-dimensional, thus we can just divide out by the volume of this group. Since
the CKVs are just translations of the torus, |U(1) × U(1)| is just the area of the
torus, the area of the torus is

|U(1)× U(1)| = τ 2
2 ,
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and it is simpler just to integrate over all punctures and divide out by the volume of
the conformal Killing group explicitly.

The n-point amplitude then takes the form

An =
1

|U(1)× U(1)|

∫
M1

d2τ

τ 2
2

∫
DbDcDb̄Dc̄ (µτ |b)(µ̄τ |b̄) cc̄ e−S[b,c]〈V1...Vn〉X

24.1.1 The ghost sector

We focus on the ghost sector first. Recall that (µτ |b) = (∂τhab|bab). How does the
metric depend on the modulus τ? The line element on the worldsheet is given by
ds2 = dz dz̄. Consider a non-conformal deformation of the metric

hab =

(
0 1

2
1
2

0

)
→
(
ε̄ 1

2
1
2
ε

)
.

Then
ds2 → (1 + ε+ ε̄) dz′ dz̄′,

where z′ = z + ε(z + z̄) +O(ε2). The factor in front of the metric is simply a Weyl
factor. Under this change, the periodicity of the coordinates changes as

z ∼ z + τ =⇒ z′ ∼ z′ + τ ′

where τ ′ = τ − 2iτ2ε+O(ε2). Thus

δhz̄z̄ = ε ↔ δτ = −2iτ2ε,

and so
∂τhz̄z̄ =

i

2τ2

,

giving

(µτ |b) =
i

2τ2

∫
Σ

d2z b(z).

Thus the net ghost correlation function is 〈bb̄cc̄〉 which gives a function of τ2.
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24.1.2 The matter setor

More significant are the changes to the matter calculation. The manipulations that
lead to the contributions

〈V1...Vn〉X ∼ exp

(
1

2

∫
Σ×Σ

d2z d2ω Jµ(z)G(z, ω)Jµ(ω)

)
(2π)26δ26

(
n∑
i=1

kµi

)

are unchanged. The Green’s function is required to have the correct periodicity
under z ∼ z + τ and so will depend explicitly on the complex structure τ . The
correct Green’s function is

G(z, ω; τ) = −α
′

2
lnFτ (z, ω)

where

Fτ (z, ω) = exp

(
π(z − z̄ − ω − ω̄)2

2τ2

) ∣∣∣∣Θ1(z − ω; τ)

Θ′1(0; τ)

∣∣∣∣2
where the first factor ensures that the function is single valued on the torus and the
second involves the celebrated theta functions34 The amplitude takes the form

An ∼ δ26

(
n∑
i=1

kµi

)∫
d2z1... d

2zn
∏
i<j

Fτ (z, ω)α
′ki·kj .

A few comments are in order.

• One can perform a similar calculation of the one-loop amplitude from the first
quantised perspective in field theory. There one is integrating over world lines
and one finds a similar integral over the modulus ` which parameterises the
length of the circle in the loop amplitude. This is the field theory analogue of
the complex structure modulus considered here. In the field theory calculations,
there is a UV divergence as `→ 0 in the integral. The analogous region τ = 0

is absent in string theory. Thus the UV finiteness of the theory at a particular
order of perturbation theory is guaranteed by modular invariance.

• There are no UV divergences in bosonic string theory; however, there is an IR
divergence as τ2 → ∞. This corresponds to a long propagation time for the
Tachyon and is a problem for the bosonic string. Matters are better in the
superstring as there is no Tachyon in the spectrum.

• Higher loop calculations are hard. This is mostly down to the complicated
moduli spaces of higher genus Riemann surfaces and the difficulty of performing
the integrals explicitly.

34The Θ′1(0; τ) comes from subtracting off diverges (normalised self-contractions).
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24.2 A reevaluation of moduli space

Scattering amplitudes are computed by inserting a vertex operator into a puncture
of a punctured Riemann surface of genus g. We denote such Riemann surfaces, with
n punctures by Σn,g. Punctured Riemann surfaces have moduli associated with the
punctures. Clearly the location of the puncture may be specified by the coordinates
σa of the puncture, which gives an additional 2n moduli corresponding to the two
coordinates for each puncture. The real dimension of the moduli space is then s+2n.
We can then write∫

Mg

dst→
∫
Mg,n

ds+2nt =

∫
Mg

dst

∫ n∏
i=1

d2zi

At tree level, this means

An =

∫ n∏
i=4

d2zi

〈
φ(z1)φ(z2)...φ(zn)

〉
X

=

∫
M0,n

d2n−6zi

〈
φ(z1)φ(z2)...φ(zn)

〉
X

If we are now taking the dimension of the moduli space to be 2n − 6, what of the
(µI |b) insertions? We find that they are precisely what we need to eliminate the cc̄
ghost insertions in the unintegrated vertex operators U(z, z̄), so we may write the
amplitude as

An =

∫
M0,n

d2n−6zi

n−3∏
i=1

(µi|b)(µ̄i|b̄)
〈
U(z1)U(z2)...U(zn)

〉
The b-ghost insertions remove the c-ghosts from n− 3 of the vertex operators. The
c-ghosts from the remaining three vertex operators give a factor of

|(z1 − z2)(z2 − z3)(z3 − z1)|2

which we are free to fix. This perspective can be useful when studying degenerating
Riemann surfaces that describe the situation when punctures collide.
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Part VI

Open Strings and D-Branes

In this final section we consider worldsheets with boundary, i.e. open strings. In
some sense it is a little odd to put this topic as the last in the course as, historically,
it was open strings and their connection to non-abelian gauge theory which were
stumbled across first. However, we shall see that the inclusion of boundaries on the
worldsheet requires only a relatively minor modification of the techniques we have
discussed in previous sections for the closed string (although the physical differences
are profound) and we will be able to mount a relatively brisk investigation of open
strings.

25 Open String Theory

25.1 Neumann and Dirichlet Boundary Conditions

25.2 Quantization

26 D-Branes

26.1 The Dirac-Born-Infeld Action

27 Chan-Paton factors and gauge symmetry

28 The Spacetime Perspective

29 Scattering Amplitudes

29.1 Vertex Operators

29.2 The Ubiquity of Gravitation
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Part VII

Appendices
A Grassmann Integration

A short note on Grassmann integration will be added. In the meantime consult
standard Quantum Field Theory Textbooks such as Ryder or Peskin and Schroeder.

B The Ghost Propagator and the Path Integral

We introduce anti-commuting sources for the ghosts

SJ,K [b, c] =
1

2π

∫
Σ

b∂̄c+

∫
Σ

Jc+ bK

It will be useful to define the shifted fields

B(z) ≡ b(z) +

∫
Σ

dωS(z, ω)J(ω), C(z) ≡ c(z) +

∫
Σ

dωS(z, ω)K(ω)

where S(z, ω) is the classical Green’s function for ∂̄ satisfying

∂̄S(z, ω) = 2πδ2(z − ω).

It is not too hard to show35

1

2π

∫
Σ

d2zB∂̄C =
1

2π

∫
Σ

b∂̄c+

∫
Σ

Jc+ bK +

∫
Σ×Σ

d2z d2ωJ(z)S(z, ω)K(ω).

The relationship between (b, c) and (B,C) is linear so there is no additional Jaco-
bian if we change integration variables in the functional integral. The generating
functional becomes

Z[J,K] =
(∫
DBDC e−

1
2π

∫
ΣB∂̄C

)
× exp

(
−
∫

Σ×Σ

d2z d2ωJ(z)S(z, ω)K(ω)
)

The term in the first brackets is just Z[0, 0] so we should normalise by diving out by
it, leaving

Z[J,K] = exp
(
−
∫

Σ×Σ

d2z d2ωJ(z)S(z, ω)K(ω)
)
.

The two-point function is given by

〈b(z)c(ω)〉 =
δ2Z[J,K]

δJ(z)δK(ω)
= S(z, ω),

35A term must be integrated by parts and the surface term discarded; otherwise, the calculation
is straightforward.
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so we see that the two point function is simply the classical Green’s function. This
far the discussion would hold for any genus Riemann surface. To solve for the green’s
function we need to select a genus of interest so that the Green’s function has the
appropriate periodicity conditions. To find the Green’s function, we make use of the
result on the sphere that

∂̄

(
1

z − ω

)
= 2πδ2(z − ω),

to identify36

S(z, ω) =
1

z − ω
.

We then have that

〈b(z)c(ω)〉 = b(z)c(ω) =
1

z − ω

36There are no globally holomorphic zero modes of ∂̄ on the sphere. This changes at higher genus.
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