
Chapter 1

Basic Concepts

1.1 Trajectories

We shall be concerned in this course with the motion of particles. Larger bodies will (with

a few exceptions) be made up of collections of particles. We will find that large bodies

can be represented as point particles for certain purposes (e.g., for the Earth orbiting the

Sun), but that when rotations about an axis are involved we need to take account of the

composition of the body.

We denote the trajectory of a particle by either x(t) or r(t) (sometimes interchange-

ably), a 3D vector function of time with components denoted either by (x1, x2, x3) or

(x, y, z). The vector velocity is v(t) = ẋ(t) and the acceleration is ẍ(t). Two particles

with position vectors r1 and r2 have a relative displacement of r2 − r1 (relative to the

first particle) and a relative velocity of v2 − v1.

Note that many rules of calculus apply to vectors just as they do to scalars: for

example, if a(t) and b(t) are general vector functions of time then

d

dt
(a . b) = ȧ . b + a . ḃ

d

dt
(a× b) = ȧ× b + a× ḃ

da

dt
= (ȧ1, ȧ2, ȧ3)

d

dt
a
(
λ(t)

)
=

da

dλ

dλ

dt∫ t2

t1

ȧ(t) dt = a(t2)− a(t1).

These can be proved easily using suffix notation.
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1.2 Units

To measure any physical, dimensional quantity we first need a system of units, which

defines a fairly small set of base units. These base units can then be combined to produce

a complete set of derived units for all possible physical quantities. The SI system is

widely used, though there are many others (notably ones based on Imperial measures).

In the SI system there are seven base units, viz., metre (m), kilogram (kg), second (s),

ampere (A), Kelvin (K), mole (mol) and candela (cd) for measuring length, mass, time,

electric current, temperature, “amount of substance” and light intensity respectively.

One metre (1m) is the distance that light travels in a vacuum in 1
299,792,458 s. (The speed of light in

vacuum in m/s is therefore defined, rather than being something we could measure.)

One kilogram (1 kg) is the mass of a particular platinum–iridium cylinder held at Sèvres, near Paris.

One second (1 s) is defined to be the time taken for 9, 192, 631, 770 cycles of the radiation emitted by
a Caesium-133 atom at rest at 0 K (resulting from transitions between the two hyperfine levels of its
ground state).

One amp (1 A) is the current which, when passed through two perfect wires placed 1 m apart in a vacuum,
produces a force of 2× 10−7 kgm/s2 per metre of length.

Kelvin, mole and candela have similarly precise definitions.

All other SI units are formed from these base units. For instance, force is measured in

Newtons (N), and 1 N ≡ 1 kg m/s2. Energy, to be introduced later, is measured in Joules

(1 J ≡ 1 N m). Power, i.e., rate of production or loss of energy, is measured in Watts

(1 W ≡ 1 J/s ≡ 1 kg m2/s3).

Electric charge is measured in Coulombs, which is not an SI base unit: 1 C is the total

charge which passes a fixed point on a wire when a current of 1 A flows through that wire

for 1 s. Hence, 1 C ≡ 1 A s.

1.3 Newton’s Laws

We shall treat these as axioms.

N I Every body continues in its state of rest or of uniform motion in a right [straight]

line, unless it is compelled to change that state by a force impressed on it.

This is simply a special case of N II.

N II The rate of change of motion [i.e., momentum: see below] is proportional to the

motive force impressed; and is made in the direction of the right line in which that

force is impressed.
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If a particle has mass m and velocity v and is subjected to a total force F then its

momentum is defined by p = mv, and N II states that

F =
d

dt
(mv).

If m is constant then F = ma where a is the acceleration.

N III The mutual actions of two bodies are always equal and directed to contrary parts.

That is, every action has an equal and opposite reaction; so if I press against a wall,

applying a force F to it, then the wall will exert a force −F on me. Sometimes,

however, it is less easy to work out how the reaction takes place: for instance, when

a charged particle experiences a force because it is moving through a magnetic field.

Nevertheless, the reaction still exists!

1.4 Reference Frames

Motion can only exist because we can detect it relative to something else. It would not

make sense to say that an object is moving, or not moving, unless we know what it is

moving, or not moving, relative to. However, this is cumbersome since most of the time

it is obvious what we mean. It is therefore convenient to define a “standard” reference

frame with respect to which we make all measurements (unless stated otherwise).

For our present purposes we shall consider the “fixed stars” (i.e., real stars, not the

planets), which Newton assumed not to move, to be our standard reference frame. Any

frame which moves at constant velocity relative to the fixed stars is called an inertial

frame.

This idea is due to Ernst Mach (1836–1916) in 1883. Many refinements were made subsequently, leading
eventually to the ideas of General Relativity in which the whole concept of a global inertial frame of this
kind collapses.

Consider an inertial frame S in which the coordinate system is (x, t); and another

inertial frame S ′ with coordinates (x′, t′). S ′ must be moving at a constant velocity, V

say, relative to S; so

x′ = x−Vt, t′ = t. (1.1)

Such a coordinate transformation is an example of a Galilean transformation. The full

Galilean group of transformations also includes rotations of the spatial axes and changes

in the origins of space and time; hence

x′ = y − V t, y′ = z, z′ = x− z0, t′ = t− t0
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(where V , z0 and t0 are constants) is a Galilean transformation, because it consists of a

rotation ((x, y, z) 7→ (y, z, x)) followed by a constant velocity translation (x 7→ x − V t)

and a fixed translation of origins (z 7→ z − z0, t 7→ t− t0).

We can check that the Galilean group is indeed a group, because we have inverses, an identity, etc.

Suppose that N II is true in S, i.e., F = ma. With S ′ defined by (1.1),

v′ =
dx′

dt′
=

dx

dt
−V = v −V

=⇒ a′ =
dv′

dt′
=

dv

dt
= a.

Hence F = ma′, so N II is true in S ′ as well. This is an example of the statement that

the Laws of Physics must be equally true in any inertial frame.

Note that we can write (1.1) as
x′

y′

z′

t′

 =


1 0 0 −V1

0 1 0 −V2

0 0 1 −V3

0 0 0 1




x
y
z
t

 ≡ M


x
y
z
t

 .

We might ask what other transformation matrices M could be possible. They should certainly form a
closed group. If we assume that the speed of light c is fixed (i.e., that x = ±ct ⇒ x′ = ±ct′), then
with a few very basic and obvious other assumptions — for instance, that if the speed of S′ relative to
S is positive, and a third frame S′′ has positive speed relative to S′, then the speed of S′′ relative to S
must also be positive — it can be proved that there is only one possibility! This is the Lorentz group of
transformations of the form

x′ = γ(x−Vt), t′ = γ

(
t− V. x

c2

)
where γ = 1/

√
1− |V|2/c2. This fact is the basis of Special Relativity.

In practical problems, we usually use the Earth (rather than the “fixed stars”) as our

reference frame; this ignores the rotation of the Earth (which produces an acceleration

of the order of 2 × 10−2 m/s2, much less than gravitational acceleration). When we

investigate the dynamics of the Solar System, we take the Sun as fixed, ignoring its

rotation about the centre of the galaxy (an acceleration of order 2× 10−10 m/s2).

1.5 Fundamental Forces

1.5.1 Gravity

Consider two particles, of masses m1 and m2 at r1 and r2 respectively. Let r = r2− r1 be

their relative displacement, and let êr = r/|r| be the unit vector in that direction. The
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first particle experiences a force of gravitational attraction towards the second given by

Newton’s Universal Law of Gravitation (so called because it acts between every pair of

bodies in the Universe):

F =
Gm1m2

|r|2
êr.

The force on the second particle is equal and opposite. F can also be written in the form

F =
Gm1m2

|r2 − r1|3
(r2 − r1),

which is often more convenient for calculations even though it makes the inverse-square

nature of the force less obvious. In these formulae, G is the gravitational constant,

approximately 6.672× 10−11 N m2 kg−2.

The ms which appear in this Law have a different physical significance from the m in N II. These ms
are gravitational masses and represent the quantity of gravitational matter. In N II, m is the inertial
mass and measures a body’s resistance to being accelerated. It has been shown experimentally (first by
Galileo, then using a torsion balance for the first time in 1889 by Baron Roland von Eötvös, and most
recently to an accuracy of 10−18 in 2003) that gravitational mass is always proportional to inertial mass;
hence, by choosing our units sensibly, we can arrange for them to be equal. So we need not distinguish.

Consider a fixed point R on the Earth’s surface, with position vector R relative to

the centre of the Earth; and a particle of mass m at a point x relative to R. In normal

applications, |x| � |R|. Then if the mass of the Earth is M , the gravitational force on

the particle is

F = − GMm

|R + x|3
(R + x) ≈ −GMm

|R|3
R.

We define g = −(GM/|R|3)R, so that F = mg. If the particle starts at x0 with velocity

v0 and is subject to no other forces then

ma = F = mg =⇒ dv

dt
= g

=⇒ v = v0 + gt

=⇒ x = x0 + v0t + 1
2
gt2.

We often write g = (0, 0,−g)T when the z-axis is measured vertically upwards from

the Earth’s surface.

Note that a body’s weight is the force on it due to gravity, so is measured in Newtons,

and is not the same as its mass measured in kilograms.

1.5.2 Electrostatics

Between any two particles with charges q1 and q2 at r1 and r2 respectively there is an

attractive or repulsive force. Using the same notations r and êr as in §1.5.1, the force on
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the first particle is

− q1q2

4πε0|r|2
êr or, equivalently, − q1q2

4πε0|r2 − r1|3
(r2 − r1)

(which is towards the second particle iff q1 and q2 have opposite signs); here 1/4πε0

is a universal constant, approximately 8.99 × 109 N m2/C2. This Coulomb force is akin

to gravity in many ways (it is inverse-square, and proportional to the product of the

particles’ charges) but instead may be repulsive.

Note that the electrostatic force is typically much stronger than gravity; for two

electrons the ratio is around 4× 1042.

1.5.3 Electromagnetics

If a particle of charge q moves at velocity v in an electric field E and a magnetic field B

then it experiences a force (called the Lorentz force)

q(E + v ×B).

What is the origin of these fields? A fixed charge Q at the origin produces an electric field given by
E = (Q/4πε0|r|3)r, so the qE term is simply the Coulomb force. If Q moves, it creates an electric
current, and currents produce magnetic fields.

1.6 Macroscopic Forces

1.6.1 Elasticity

Normal materials deform by . 1% before breaking (though, for example, rubber can

deform by 400%); however, clever construction can amplify this greatly, as in a coiled

spring.

Hooke’s law (a linear approximation) applies to a spring

extended a distance x:

F = −kx

is the force restoring the spring to its “natural length” l. Here k is the spring constant

(with units N m−1 ≡ kg s−2). Hooke described this relationship for “any springy body”

and indeed it holds for elastic materials of many types, such as rubber bands and elastic

strings.

k is related to the modulus of elasticity λ by k = λ/l.
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The value of k depends on many variables, such as the temperature. Real materials have nonlinear force
laws:

1.6.2 Friction

“Dry” Friction (a.k.a. “Coulomb friction”)

This typically applies to one solid body in contact with another.

Let N be the normal reaction and F the external applied force;

then there will be a frictional force R opposing the motion that

would otherwise occur. In fact, R = −F so long as |F| 6 µ|N| where µ is the coefficient

of static friction (typically around 0.3). If this limit is exceeded, however, the body will

start to move; when this occurs,

|R| = µ′|N|

where µ′ is the coefficient of dynamic friction (typically slightly less than µ). The frictional

force will oppose the body’s motion, so

R = −µ′|N| v

|v|
.

Quadratic Friction

A good model for a solid body moving through still liquid or gas (e.g., air), rather than

sliding against another solid body, is

|R| ∝ |v|2;

i.e.,

R = −k|v|v

where k is a constant (depending on the density and viscosity of the fluid).
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Linear Friction

At very low speeds a linear model may be more appropriate, i.e.,

R = −k′v.

1.6.3 Tension

In a string (or wire, rope, rod, etc.) placed under tension, every

part of the string experiences tensional forces of magnitude T , say,

pulling in opposite directions along the string. At the ends of the

string, therefore, byN III there must also be forces of magnitude T

pulling on whatever the string is attached to (a wall, particle, etc.).

Normally we do not need to consider the internal forces in the string,

but only the resulting forces on the end-points.

The tensional force need not in fact be of uniform magnitude along the length of the string: indeed,
for a string of total mass m hanging vertically downwards, the tension at the top of the string must be
greater by mg than the tension at the bottom of the string in order to support the string itself. We
usually consider only light strings, i.e., mathematically ideal strings with zero mass; to move such a
string requires zero force, so the tension must be constant along its length even if the string is moving.

A string passing over a pulley or similar arrangement will exert

forces on each side of the pulley, with magnitudes T1 and T2 say. If

the pulley is both light and smooth (so that no force is required to

turn it, and no frictional forces are present) then the forces on each

side must balance exactly, so T1 = T2.

Note that if the tension appears to become negative then the string in fact becomes

slack and exerts no force. This is not true of a rod, which can exert “negative tension”

known as thrust.

1.6.4 Constraints

A particle moving along a wire experiences a constraint force N,

known as the normal reaction, which is perpendicular to the wire.

The only effect of this force is to ensure that the particle follows the

constrained path. (There may well be other forces, e.g. friction R,

which are not perpendicular to the wire.)
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The same applies to a particle moving on a surface (e.g., the out-

side of a sphere). Note that N always points away from the surface;

if calculations ever show it pointing inwards then the particle will

actually have flown off.

A particle attached by a rod to a fixed point O experiences a

tension force T, directed along the rod, constraining it to stay a

fixed distance from O. The tension is therefore a constraint force.

In all three cases, note that the constraint force is always normal to the particle’s

velocity v.

For two (or more) particles, the constraint forces are not neces-

sarily perpendicular to their individual velocities. Suppose that two

particles connected by a rigid rod of length l have position vectors

r1, r2 and velocities v1, v2. Then

|r2 − r1| = l =⇒ (r2 − r1) . (r2 − r1) = l2;

so, by differentiation with respect to time,

2(r2 − r1) . (ṙ2 − ṙ1) = 0,

i.e.,

(v1 − v2) . r = 0

where r = r2 − r1 is the relative position vector. Since T is parallel to r, we see that the

constraint force is normal to the relative velocity, but not necessarily to either individual

velocity.
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