
Chapter 4

Energy and Stability

4.1 Energy in 1D

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x).

Define the kinetic energy to be

T = 1
2
mẋ2

and the potential energy to be

V (x) = −
∫ x

a

F (x′) dx′

where a is an arbitrary constant. A different choice â would lead to a different potential

energy

V̂ (x) = −
∫ x

â

F (x′) dx′

= −
∫ a

â

F (x′) dx′ + V (x),

in effect just adding a fixed constant on to V . We often choose a = 0 or ∞.

Note that V ′(x) = −F (x), and that this is true regardless of the choice of a.

The dimensions of energy are ML2T−2 (either from [T ] = M(LT−1)2, or from [V ] =

[force]× L = (MLT−2)L). In the SI system, it is measured in Joules (1 J ≡ 1 kg m2/s2).

Examples: a particle moving vertically under gravity has mz̈ = −mg, so the potential

energy is V (z) = −
∫ z

a
(−mg) dz′ = mgz + const.. A particle attached to a spring with

spring constant k has F = −kx, so V (x) = −
∫ x

a
(−kx′) dx′ = 1

2
kx2 + const.
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Multiply the equation of motion, F = mẍ, by ẋ:

mẋẍ = ẋF (x)

= −ẋV ′(x)

= −dx

dt

dV

dx

=⇒ d

dt
(1

2
mẋ2) = −dV

dt

=⇒ T + V = const.

Hence the total energy E = T + V is conserved.

Note that if the forcing F depends on anything other than the position, x, then energy

may not be conserved. For instance, in the damped simple harmonic motion example of

§2.2, where a particle attached to a spring was subject to linear friction, we had

mẍ = −kx− cẋ.

The potential energy resulting from the spring is 1
2
kx2 (+ const.), as above, but it is not

possible to define a potential energy for the damping term cẋ. The total energy (kinetic

and potential) combined is therefore 1
2
mẋ2 + 1

2
kx2, but

d

dt
(1

2
mẋ2 + 1

2
kx2) = mẋẍ + kxẋ

= ẋ(mẍ + kx)

= −cẋ2 6 0.

The damping causes dissipation of energy.

When the potential energy is proportional to the mass of the particle, as is the case for instance in vertical
motion under gravity where V (z) = mgz +const., it is sometimes useful to consider the potential energy
per unit mass, which would here be just Vu(z) = gz + const. The force on a particle of mass m is
then given by F (z) = −mV ′

u(z). This can be a useful definition because it allows us to specify the
gravitational field without having to know in advance the mass of the particle on which gravity will
be acting. However, a major drawback is that there is, unfortunately, no consistent naming convention
for “potential energy per unit mass”: some mathematicians call it the “potential field”, others just the
“potential”, even though yet others use the word “potential” as a shorthand for “potential energy”. The
potential confusion is great.

Using the Energy Integral

From

1
2
mẋ2 + V (x) = E,
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the “energy integral”, we deduce

ẋ = ±
√

2(E − V )

m
.

(We have to decide the sign on a case-by-case basis using physical considerations.) So

dt

dx
= ±

√
m

2(E − V )

=⇒ t =

∫
dt

dx
dx = ±

∫ √
m

2(E − V )
dx.

Example: what is the period of finite (i.e., non-infinitesimal) oscillations of a simple

pendulum? Suppose that we release a pendulum bob from rest at θ = θ0. Multiply (2.4),

mlθ̈ = −mg sin θ,

by θ̇/m and integrate:

lθ̇θ̈ = −gθ̇ sin θ

=⇒ 1
2
lθ̇2 = g(cos θ − cos θ0)

=⇒ θ̇ = ±
√

2g

l
(cos θ − cos θ0).

To determine the period τ we consider a quarter-period in which θ increases from 0 to θ0:∫ 1
4
τ

0

dt =

∫ θ0

0

dθ

θ̇
=⇒ τ =

√
8l

g

∫ θ0

0

dθ√
cos θ − cos θ0

.

This is a “complete elliptic integral of the first kind”.

In fact, τ = 4
√

l/g K(sin 1
2θ0) where K is the appropriate elliptic function.

4.2 Equilibria and Small Oscillations in 1D

A system has an equilibrium at x = x0 if F (x0) = 0, because then x(t) = x0 ∀t is a

solution of the equation of motion. Hence the equilibrium points are the critical points

of V , i.e., where V ′(x0) = 0.

Consider a disturbance around an equilibrium point, x = x0 +ξ(t), where ξ is initially

small. Then

mẍ = F (x) = −V ′(x0 + ξ)

=⇒ mξ̈ = −V ′(x0)− ξV ′′(x0) + O(ξ2), (Taylor series)
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so that

ξ̈ +
V ′′(x0)

m
ξ = 0

to first order.

If V ′′(x0) < 0 then the solution for ξ is

ξ = Aeαt + Be−αt

where α =
√
−V ′′(x0)/m. Hence ξ grows larger as t increases (unless A = 0, which is

only true for very special initial conditions), and so the solution does not necessarily stay

in a small neighbourhood of x0. Such a point is called an unstable equilibrium.

If V ′′(x0) > 0 then instead ξ executes shm with angular frequency

ω =

√
V ′′(x0)

m
;

hence ξ stays small and the solution stays in a small neighbourhood of x0. Such a point

is a stable equilibrium.

Hence a local maximum of V is an unstable point, while a minimum is stable. (A

point at which V ′′(x0) = 0 would require more detailed investigation, taking more terms

in the Taylor series.)

Example: a particle on a spring. Here V (x) = 1
2
kx2, so since V ′(0) = 0 and V ′′(0) =

k > 0, there is a stable equilibrium at x = 0. The frequency of oscillations is ω =
√

k/m

and the period is 2π
√

m/k, as previously found in §2.2.

4.3 Shape of the Potential Energy Function

Consider a graph of V (x) as shown. We know that

T +V = E, so V = E− 1
2
mẋ2 6 E. Hence the particle

is restricted to regions where V (x) 6 E.

Consider a particle at rest at the equilibrium point

x0 shown, where V has a local minimum; then E =

E0 ≡ V (x0). Suppose that the particle is now given

a small disturbance. Such a disturbance will change the value of E, say to E1 as shown.

Then the particle is able to move, but is restricted to the region [x1, x2]; i.e., it must

remain in a neighbourhood of x0. This is an alternate way of showing that local minima

of V are stable.
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Now suppose that the particle is at another equilibrium point x′
0 which is a local

maximum of V . A small change in E, to E ′
1 say, does not restrict the motion of the

particle to points near x′
0. So this is an unstable equilibrium.

Suppose that the particle is at x0. What initial speed v (> 0) must we impart to it

if it is to travel towards +∞ and keep going? We need to ensure that E > E ′
0 ≡ V (x′

0),

because otherwise the particle will not be able to reach x′
0; so

1
2
mv2 + V (x0) > V (x′

0) =⇒ v >

√
2
(
V (x′

0)− V (x0)
)

m
.

Once it has reached x′
0 it can keep going for ever.

4.4 Energy in 3D

Work

In 3D, the kinetic energy of a particle is given by

T = 1
2
m|ẋ|2 = 1

2
mẋ . ẋ.

A force F acting on a particle which moves through δx is said to do work δW = F.δx.

The total work done by the force on a particle which moves from A to B is

W =

∫ B

A

F . dx

where the integral follows the path taken by the particle. It is obvious that in general W

depends on the path taken.

The power is the rate of doing work, i.e., P = Ẇ . In a time interval δt,

P =
δW

δt
=

F . δx

δt
=⇒ P = F . ẋ

(in the limit δt → 0). Note that from N II,

F = mẍ

=⇒ F . ẋ = mẋ . ẍ

=
d

dt
(1

2
mẋ . ẋ)

=
dT

dt
,
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so the power is the rate at which kinetic energy increases.

Forces which are normal to a particle’s path do no work: this is because a particle’s

velocity ẋ is (by definition) tangential to its path, so F . ẋ = 0 and hence P = 0, i.e., the

rate of doing work vanishes. For example, a magnetic field does no work on a charged

particle, because F = qv × B is perpendicular to v, and the field therefore neither

increases nor decreases the particle’s kinetic energy. Similarly, the tension in the string

of a simple pendulum does no work on the bob.

Conservative Forces

A force field F(x) is said to be conservative iff the work done by the force on a particle

moving from any point A to any other point B is independent of the path taken: i.e.,

iff
∫ B

A
F . dx is path-independent. We know from the Vector Calculus course that this is

equivalent to saying that F is conservative iff

F = −∇V

for some function V (x), called the potential energy. (This is the 3D equivalent of F =

−V ′(x) in 1D; in 1D all force fields F (x) are conservative.)

But in 3D, not all force fields are conservative, because (as shown in the Vector Calculus course) the
value of a line integral

∫ B

A
F . dx depends, in general, on the path taken.

What is the work done in moving a particle from a starting point A round a closed
path back to the starting point? For a conservative force, the answer must be path-
independent and must therefore be zero. But for a non-conservative force this does not
apply and the force may have to do work just to get the particle back to where it started.
This non-zero work done is generally dissipated, for example as heat.

For a conservative force, the work done is

W =

∫ B

A

F . dx = −
∫ B

A

∇V . dx = −
∫ B

A

dV = −
[
V (x)

]B

A
,

i.e., equal to the decrease in potential energy. We can also prove that the total energy

E = T + V is conserved:

dE

dt
=

d

dt
(1

2
mẋ . ẋ) +

d

dt
V (x)

= mẋ . ẍ +
∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt

= ẋ . F +∇V . ẋ

= 0.
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Note that, just as in 1D, a local minimum of V (x) is a stable equilibrium, and a local maximum is
unstable — we can see this by considering the shape of V (x) as in §4.3. (Quite easy to do in 2D; but
almost impossible in 3D!) A saddle point of V is also unstable because the particle can move “downhill”
from the saddle.

Examples of Potential Energy Functions in 3D

The force due to gravity on a particle of mass m near the Earth’s surface is F = mg. But

g =
(

0
0
−g

)
= ∇(−gz),

so V (x) = mgz + const.: exactly the same answer as for 1D vertical motion.

A spring with spring constant k and natural length l attached

to a fixed point O, but otherwise free to move in any direction in

3D, exerts a force

F(r) = −k(r − l)êr

towards O, where r = |r| and êr = r/r is the unit radial vector. We note that

∇{1
2
(r − l)2} = (r − l)êr

so

V (r) = 1
2
k(r − l)2 + const.,

the same as the 1D potential energy 1
2
kx2 (+ const.) where x is the extension.

A uniform electric field E acting on a charge q produces a force qE. But

∇(E . x) = ∇(E1x1 + E2x2 + E3x3) = (E1, E2, E3)
T = E,

so the potential energy is −qE . x.

The gravitational force on a particle of mass m2 with position

vector r2 due to a particle of mass m1 at r1 is

F = −Gm1m2

|r|2
êr

from §1.5.1, where r = r2 − r1 is the relative position vector and êr = r/|r|. So

V (r) = −Gm1m2

|r|
(4.1)

(where we choose the arbitrary constant so that V = 0 at infinity). In particular, the

gravitational potential energy produced by the Earth (a mass M at the origin) acting on

a particle of mass m at r is

V (r) = −GMm

r
(4.2)

where r = |r|.
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In (4.1) we can consider the potential V to be a function of two variables r1, r2:

V (r1, r2) = −Gm1m2

|r2 − r1|
.

The force on the second particle due to the first is then given by −∇2V where ∇2 denotes the gradient
operator taken with respect to r2 (keeping r1 fixed), i.e.,

∇2 ≡


∂

∂(r2)1
∂

∂(r2)2
∂

∂(r2)3

 .

The same potential function also gives us the force on the first particle due to the second, which is −∇1V ;
the symmetry in r1 and r2 ensures that the forces are equal and opposite. This idea can be extended to
a system of n particles, with a potential function V (r1, . . . , rn) that depends on all of the interparticle
distances rij = |ri − rj |. The total force on the ith particle due to the others is then given by −∇iV .

4.5 Escape Velocity

The escape velocity is the minimum initial speed that would need to be imparted to a

particle in a gravitational field to enable it to get arbitrarily far away.

For example, consider the potential energy (4.2) for a

particle moving in the Earth’s gravitational field, −GMm/r,

as shown in the diagram. If the particle’s total energy is

E1 < 0, then it is restricted to

r 6 r1 =
GMm

−E1

;

if its total energy is instead E2 > 0 then its motion is unre-

stricted and the particle can escape to ∞.

If the particle starts from r = r0 with speed v then

E = 1
2
mv2 − GMm

r0

.

The escape velocity, i.e., the minimum value of v required to ensure that E > 0, is

vescape =

√
2GM

r0

.

If a space ship starts on the surface of the Earth at r = R, then using g = GM/R2

(from §1.5.1) we obtain an escape velocity of√
2gR ≈ 11.2 km/s

required to clear the Earth’s gravitational field.
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4.6 Motion with One Degree of Freedom

A particle may follow a trajectory in three dimensions which can be

described by a single parameter q(t). For example, the location of

a bead moving along a wire can either be described by its position

vector r in 3D, or instead by the scalar variable s defined as the

arc-length measured along the wire from a fixed point. So long as

we know the shape of the wire, the single variable s tells us everything we need to know

about the bead’s position. Such a system is known as having one degree of freedom, and

we can treat it as being effectively one-dimensional.

For such a system, described by a parameter q(t), we can apply all the methods of

§§4.1–4.3 for motion in 1D, but we first need to obtain an equation of motion in the form

mq̈ = F ∗(q)

for some function F ∗(q) (which is not necessarily the actual force). Then, just as in

§4.1, we can define a (pseudo-)kinetic energy T ∗ = 1
2
mq̇2 and a (pseudo-)potential energy

V ∗ = −
∫ q

a
F ∗(q′) dq′, and deduce that

T ∗ + V ∗ = E∗

is constant. Note however that T ∗ and V ∗ may well not be equal to the true kinetic and

potential energies of the system.

For example, consider a simple pendulum swinging in a plane. This system has one

degree of freedom, because the bob’s position in 3D is specified completely by θ(t). We

therefore have a choice of approaches:

• Treat the pendulum as a system with one degree of freedom. Starting from the

equation of motion (2.4) in the appropriate form,

mθ̈ = −mg

l
sin θ ≡ F ∗(θ),

define T ∗ = 1
2
mθ̇2 and

V ∗ = −
∫ θ

a

F ∗(θ′) dθ′ =
mg

l

∫ θ

a

sin θ′ dθ′ = −mg

l
cos θ + const.

Ignoring the arbitrary constant, we therefore have that

E∗ = T ∗ + V ∗ = 1
2
mθ̇2 − mg

l
cos θ

is constant. This approach is most useful when we are able to write down the

equation of motion straight away but we do not know the true energy E of the

system; it allows us to find an conserved quantity (namely E∗). Small oscillations

can be investigated using the results of §4.2
(
including the formula for the frequency,

ω =
√

V ∗′′(q0)/m
)

directly.
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• Use the full 3D system. The speed of the bob is lθ̇, so the

(true) kinetic energy of the system is T = 1
2
ml2θ̇2. The bob is

at a height l cos θ below the point of suspension O, so the (true)

potential energy is V = −mgl cos θ. We therefore deduce that

E = 1
2
ml2θ̇2 −mgl cos θ

is constant. To obtain the equation of motion, differentiate with respect to time:

0 = ml2θ̇θ̈ + mglθ̇ sin θ =⇒ θ̈ = −g

l
sin θ.

This approach is most useful when we cannot intially write down the equation of

motion of the system, but we can calculate its energy instead; the steps above then

lead us to the equation of motion. To calculate the frequency of small oscillations

about stable equilibria, it is necessary to consider a small disturbance and expand

the equation of motion using Taylor Series as in §4.2: the formula given there for

the frequency cannot be applied directly.

These two approaches are entirely consistent, because E and E∗ differ only by a constant

factor: E∗ = E/l2.

A general system with one degree of freedom has x = x(q), so that

ẋ =
dx
dq

dq

dt
= x′q̇

where a prime denotes differentiation with respect to q. The (true) kinetic energy is therefore

T = 1
2m|ẋ|2 = 1

2m|x′|2q̇2 = |x′|2T ∗.

Thus the factor relating T to T ∗ is |x′|2.

In the case of a pendulum, it is obvious that |x′| = |dx/dθ| = l, and the factor relating T to T ∗ is l2 as
found above.
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