Chapter 4

Energy and Stability

4.1 Energy in 1D

Consider a particle in 1D at position z(t), subject to a force F(x), so that m& = F(x).

Define the kinetic energy to be

and the potential energy to be

where a is an arbitrary constant. A different choice a would lead to a different potential

energy

_ / P dr + V().

in effect just adding a fixed constant on to V. We often choose a = 0 or oo.
Note that V'(z) = —F(z), and that this is true regardless of the choice of a.

The dimensions of energy are M L*T~? (either from [T] = M(LT~')?, or from [V] =
[force] x L = (MLT~2)L). In the SI system, it is measured in Joules (1J = 1kgm?/s?).

Examples: a particle moving vertically under gravity has mz = —mg, so the potential
energy is V(z) = — [7(—mg) dz’ = mgz + const.. A particle attached to a spring with

spring constant k has F = —kz, so V(z) = — [ (—ka') da’ = $ka* + const.
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Multiply the equation of motion, F' = mi, by x:

mii = tF(x)

= —1V'(2)
__deav
 dt dx
d , .5 B dVv
— T +V = const.

Hence | the total energy £ =T + V is conserved.

Note that if the forcing F' depends on anything other than the position, x, then energy
may not be conserved. For instance, in the damped simple harmonic motion example of

§2.2, where a particle attached to a spring was subject to linear friction, we had
mi = —kx — cx.

The potential energy resulting from the spring is %ka (4 const.), as above, but it is not
possible to define a potential energy for the damping term ci. The total energy (kinetic

and potential) combined is therefore $mi? + $kz?, but

d

E(%mi’z + $ka?) = mid + kad
= &(mi + k)
= —ci* < 0.

The damping causes dissipation of energy.

When the potential energy is proportional to the mass of the particle, as is the case for instance in vertical
motion under gravity where V' (z) = mgz + const., it is sometimes useful to consider the potential energy
per unit mass, which would here be just V,(z) = gz + const. The force on a particle of mass m is
then given by F(z) = —mV,(z). This can be a useful definition because it allows us to specify the
gravitational field without having to know in advance the mass of the particle on which gravity will
be acting. However, a major drawback is that there is, unfortunately, no consistent naming convention
for “potential energy per unit mass”: some mathematicians call it the “potential field”, others just the
“potential”, even though yet others use the word “potential” as a shorthand for “potential energy”. The
potential confusion is great.

Using the Energy Integral

From

imi® +V(z) = E,
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the “energy integral”, we deduce

=4+ M
m

(We have to decide the sign on a case-by-case basis using physical considerations.) So

dt m
S
dz \ 2(E—V)
dt / m

Example: what is the period of finite (i.e., non-infinitesimal) oscillations of a simple

pendulum? Suppose that we release a pendulum bob from rest at § = 6. Multiply (2.4),
mlf = —mgsin 6,
by 6/m and integrate:
106 = — gé sin 6

= %192 = g(cosf — cos b))

. 2
= QZﬂ:\/Tg(COSQ—COSQO).

To determine the period 7 we consider a quarter-period in which 6 increases from 0 to 6y:

/ T /"0 dé 81 /90 dé
0 o 0 g Jo +/cosf — cosby

This is a “complete elliptic integral of the first kind”.

Ll

In fact, 7 = 44/1/g K (sin %60) where K is the appropriate elliptic function.

4.2 Equilibria and Small Oscillations in 1D

A system has an equilibrium at x = o if F(z9) = 0, because then x(t) = xy Vt is a
solution of the equation of motion. Hence the equilibrium points are the critical points
of V, i.e., where V'(zq) = 0.

Consider a disturbance around an equilibrium point, x = x¢+£(t), where £ is initially
small. Then

mi = F(z) = —=V'(xg+ &)

= m&=-V'(x) — &V"(x0) + O(£?), (Taylor series)
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so that
V/I (.CCO)

£+ £=0

to first order.

If V"(x9) < 0 then the solution for £ is
£ = Ae® + Be™™

where o = /—V"(xy)/m. Hence & grows larger as t increases (unless A = 0, which is
only true for very special initial conditions), and so the solution does not necessarily stay

in a small neighbourhood of zy. Such a point is called an unstable equilibrium.

If V"(x¢) > 0 then instead £ executes SHM with angular frequency

L V”(ZL“());
m

hence £ stays small and the solution stays in a small neighbourhood of xy. Such a point

is a stable equilibrium.

Hence a local maximum of V' is an unstable point, while a minimum is stable. (A
point at which V" (zq) = 0 would require more detailed investigation, taking more terms

in the Taylor series.)

Example: a particle on a spring. Here V(z) = 1ka?, so since V'(0) = 0 and V"(0) =
k > 0, there is a stable equilibrium at = 0. The frequency of oscillations is w = \/k/m

and the period is 2m+y/m/k, as previously found in §2.2.

4.3 Shape of the Potential Energy Function

Consider a graph of V(z) as shown. We know that
T+V = E,s0oV = E—imi? < E. Hence the particle

is restricted to regions where V(z) < E.

Consider a particle at rest at the equilibrium point
o shown, where V' has a local minimum; then £ =
Ey = V(zp). Suppose that the particle is now given
a small disturbance. Such a disturbance will change the value of F, say to F; as shown.
Then the particle is able to move, but is restricted to the region [z, z5]; i.e., it must
remain in a neighbourhood of xy. This is an alternate way of showing that local minima
of V' are stable.
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Now suppose that the particle is at another equilibrium point z; which is a local
maximum of V. A small change in E, to E] say, does not restrict the motion of the

particle to points near xj. So this is an unstable equilibrium.

Suppose that the particle is at xo. What initial speed v (> 0) must we impart to it
if it is to travel towards +o0o0 and keep going? We need to ensure that £ > E| = V (),

because otherwise the particle will not be able to reach z{; so

2(V (wh) ~ V(w0))

m

mw? + V(zo) > V(x) — v > \/
Once it has reached xj, it can keep going for ever.
4.4 Energy in 3D

Work

In 3D, the kinetic energy of a particle is given by

T =im|x]* = imx . x.

A force F acting on a particle which moves through 6x is said to do work éW = F.jx.

The total work done by the force on a particle which moves from A to B is

B
W:/ F.dx
A

where the integral follows the path taken by the particle. It is obvious that in general W

depends on the path taken.

The power is the rate of doing work, i.e., P = . In a time interval ot

oW  F.ox
P==%r="%

(in the limit 6¢ — 0). Note that from A II

P=F.x

F=mx

- F.x=mx.x%x
d

_&(

dT
dt’

TmMX . X)
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so the power is the rate at which kinetic energy increases.

Forces which are normal to a particle’s path do no work: this is because a particle’s
velocity X is (by definition) tangential to its path, so F.% = 0 and hence P = 0, i.e., the
rate of doing work vanishes. For example, a magnetic field does no work on a charged
particle, because F = ¢qv x B is perpendicular to v, and the field therefore neither
increases nor decreases the particle’s kinetic energy. Similarly, the tension in the string

of a simple pendulum does no work on the bob.

Conservative Forces

A force field F(x) is said to be conservative iff the work done by the force on a particle
moving from any point A to any other point B is independent of the path taken: i.e.,
iff ff F . dx is path-independent. We know from the Vector Calculus course that this is

equivalent to saying that F is conservative iff

F=-VV

for some function V'(x), called the potential energy. (This is the 3D equivalent of F' =
—V'(z) in 1D; in 1D all force fields F(z) are conservative.)

But in 3D, not all force fields are conservative, because (as shown in the Vector Calculus course) the
value of a line integral ff F . dx depends, in general, on the path taken.

What is the work done in moving a particle from a starting point A round a closed
path back to the starting point? For a conservative force, the answer must be path-
independent and must therefore be zero. But for a non-conservative force this does not
apply and the force may have to do work just to get the particle back to where it started.
This non-zero work done is generally dissipated, for example as heat.

For a conservative force, the work done is

B B B B
W:/ F.dx:—/ vv.dx:—/ av =-[v(x)]},
A A A

i.e., equal to the decrease in potential energy. We can also prove that the total energy
E =T +V is conserved:

dE_d, . .. . d
e gl OV OV oV
B ) Or dt Oy dt 0z dt
=x.F+VV.x
= 0.
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Note that, just as in 1D, a local minimum of V(x) is a stable equilibrium, and a local maximum is
unstable — we can see this by considering the shape of V(x) as in §4.3. (Quite easy to do in 2D; but
almost impossible in 3D!) A saddle point of V' is also unstable because the particle can move “downhill”
from the saddle.

Examples of Potential Energy Functions in 3D

The force due to gravity on a particle of mass m near the Earth’s surface is F = mg. But

0
g= (,Og) = V(=g2),
so V(x) = mgz + const.: exactly the same answer as for 1D vertical motion.

A spring with spring constant k& and natural length [ attached
to a fixed point O, but otherwise free to move in any direction in
3D, exerts a force

F(r) = —k(r —1)é,

towards O, where r = |r| and &, = r/r is the unit radial vector. We note that
V{02 = (- D8,
S0

V(r) = Lk(r — 1)* + const.,

the same as the 1D potential energy +kx? (4 const.) where z is the extension.

1
2
A uniform electric field E acting on a charge ¢ produces a force ¢E. But
V(E.x) = V(E\2, + Eyry + Esxs) = (By, By, B3)" = E,
so the potential energy is —qE . x.

The gravitational force on a particle of mass my with position

vector ro due to a particle of mass m; at ry is

Gmimgy

F = |r|2 é,

from §1.5.1, where r = ry — r; is the relative position vector and &, = r/|r|. So

Gm1m2

]

V(r)=— (4.1)

(where we choose the arbitrary constant so that V' = 0 at infinity). In particular, the
gravitational potential energy produced by the Earth (a mass M at the origin) acting on

a particle of mass m at r is
GM
V()= ——" (4.2)

r

where 7 = |r|.
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In (4.1) we can consider the potential V' to be a function of two variables ry, ra:

Gm1m2
V(rl, I'Q) = —m

The force on the second particle due to the first is then given by —VoV where V, denotes the gradient
operator taken with respect to ro (keeping ry fixed), i.e.,

9

6(!‘2)1
— o]

VQ = d(ra)2
9

O(rz)s

The same potential function also gives us the force on the first particle due to the second, which is —V;V;
the symmetry in r; and ro ensures that the forces are equal and opposite. This idea can be extended to
a system of n particles, with a potential function V(ry,...,r,) that depends on all of the interparticle
distances 7;; = |r; — r;|. The total force on the i*" particle due to the others is then given by —V;V.

4.5 Escape Velocity

The escape velocity is the minimum initial speed that would need to be imparted to a

particle in a gravitational field to enable it to get arbitrarily far away.

For example, consider the potential energy (4.2) for a
particle moving in the Earth’s gravitational field, —GMm//r,
as shown in the diagram. If the particle’s total energy is
FE, <0, then it is restricted to

GMm
B,

r<r; =

if its total energy is instead E5 > 0 then its motion is unre-

stricted and the particle can escape to oo.

If the particle starts from r = rq with speed v then

GMm
E = L1my? — .
5 MU "

The escape velocity, i.e., the minimum value of v required to ensure that £ > 0, is

2GM

To

Vescape =

If a space ship starts on the surface of the Earth at » = R, then using ¢ = GM/R?

(from §1.5.1) we obtain an escape velocity of

V2R~ 11.2km/s
required to clear the Earth’s gravitational field.
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4.6 Motion with One Degree of Freedom

A particle may follow a trajectory in three dimensions which can be
described by a single parameter ¢(t). For example, the location of
a bead moving along a wire can either be described by its position
vector r in 3D, or instead by the scalar variable s defined as the
arc-length measured along the wire from a fixed point. So long as
we know the shape of the wire, the single variable s tells us everything we need to know
about the bead’s position. Such a system is known as having one degree of freedom, and

we can treat it as being effectively one-dimensional.

For such a system, described by a parameter ¢(t), we can apply all the methods of

§64.1-4.3 for motion in 1D, but we first need to obtain an equation of motion in the form
mg = F*(q)

for some function F*(q) (which is not necessarily the actual force). Then, just as in
§4.1, we can define a (pseudo-)kinetic energy 7™ = %mcf and a (pseudo-)potential energy
V*=—[TF*(¢')dq, and deduce that

is constant. Note however that 7" and V* may well not be equal to the true kinetic and

potential energies of the system.

For example, consider a simple pendulum swinging in a plane. This system has one
degree of freedom, because the bob’s position in 3D is specified completely by 6(t). We

therefore have a choice of approaches:

e Treat the pendulum as a system with one degree of freedom. Starting from the

equation of motion (2.4) in the appropriate form,
mé = —? sinf = F*(0),
define T* = %m92 and
0 0
V= —/ F* (') do = g/ sin@' d’ = —? cos 0 + const.

Ignoring the arbitrary constant, we therefore have that

Ef=T"4+V"= %m@é—?(:osﬁ

is constant. This approach is most useful when we are able to write down the
equation of motion straight away but we do not know the true energy E of the
system; it allows us to find an conserved quantity (namely E*). Small oscillations

can be investigated using the results of §4.2 (including the formula for the frequency,

w = +/V*(qo)/m) directly.
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e Use the full 3D system. The speed of the bob is 10, so the
(true) kinetic energy of the system is T' = %ml292. The bob is
at a height [ cos 6 below the point of suspension O, so the (true)
potential energy is V = —mgl cos . We therefore deduce that

E= %ml292 — mgl cos @
is constant. To obtain the equation of motion, differentiate with respect to time:

0 = ml®00 + mglé sin 0 — 0 = —% sin 6.

This approach is most useful when we cannot intially write down the equation of
motion of the system, but we can calculate its energy instead; the steps above then
lead us to the equation of motion. To calculate the frequency of small oscillations
about stable equilibria, it is necessary to consider a small disturbance and expand
the equation of motion using Taylor Series as in §4.2: the formula given there for

the frequency cannot be applied directly.

These two approaches are entirely consistent, because F and E* differ only by a constant
factor: E* = E/I2.

A general system with one degree of freedom has x = x(q), so that

X_dj@_x"
Tagar 1

where a prime denotes differentiation with respect to g. The (true) kinetic energy is therefore

T = im|x> = Imx/|?¢* = |x/|*T".
Thus the factor relating T to T* is |x'|2.

In the case of a pendulum, it is obvious that |x’| = |dx/df| = [, and the factor relating T to T* is [2 as
found above.
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