Worked Example
A Particle Moving Under a Central Force

A particle of mass \(m \) is attached to one end of a massless spring with spring constant \(k \) and natural length \(l \) on a smooth horizontal table. The other end of the spring is fixed to a point \(O \) on the table. Initially, the spring is straight and at its natural length; the particle is then given a velocity of magnitude \(v \) at right angles to the spring. Starting from the equation of motion, obtain the energy equation.

What choice of \(v \) ensures that in the subsequent motion the spring reaches a length of \(2l \) but no more?

The spring is always straight and connected to \(O \). It is clear that this is therefore a central force problem, and we use polar coordinates centred at \(O \), so that the length of the spring is \(r \). The force produced by the spring has magnitude \(k(r - l) \) directed towards \(O \). Using standard results for acceleration in polar coordinates, the equation of motion is

\[
-k(r - l) = m(\ddot{r} - r\dot{\theta}^2),
\]

\[
0 = m(2\dot{r}\dot{\theta} + r\ddot{\theta}) = \frac{m}{r} \frac{d}{dt}(r^2\dot{\theta}).
\]

Hence \(r^2\dot{\theta} \) is a constant, \(h \) say; substituting \(\dot{\theta} = h/r^2 \) into (*) gives

\[
-k(r - l) = m\left(\ddot{r} - \frac{h^2}{r^3}\right).
\]

To obtain the energy equation, we multiply by \(\dot{r} \) and integrate with respect to time:

\[
-k(r - l)\dot{r} = m\left(\dddot{r} - \frac{h^2}{r^3}\dot{r}\right)
\]

\[
\implies -\frac{1}{2}k(r - l)^2 = m\left(\frac{1}{2}\dot{r}^2 + \frac{h^2}{2r^2}\right) + \text{const.,}
\]

from which we obtain

\[
\frac{1}{2}m\left(\dot{r}^2 + \frac{h^2}{r^2}\right) + \frac{1}{2}k(r - l)^2 = E
\]

where \(E \), the total energy, is constant.

We note that initially \(r = l, \dot{r} = 0 \) and \(r\dot{\theta} = v \); hence \(h = lv \) and \(E = \frac{1}{2}mv^2 \). The maximum value of \(r \) occurs when \(\dot{r} = 0 \); we want this to be at \(r = 2l \). Hence from the energy equation,

\[
\frac{1}{2}m\left(\frac{(lv)^2}{(2l)^2}\right) + \frac{1}{2}kl^2 = \frac{1}{2}mv^2,
\]

i.e., \(v = \sqrt{4kl^2/(3m)} \).