Worked Example A Bead on a Rotating Wire Hoop

A hoop of wire in the shape of a circle of radius a is mounted vertically and rotates at constant angular speed ω about a vertical axis through its centre. A bead moves smoothly on the wire. Find the equilibrium positions.

Let m be the mass of the bead, \mathbf{x} be its position vector relative to the centre of the hoop, θ be the angle between \mathbf{x} and the downwards vertical, and $\hat{\mathbf{e}}_r$, $\hat{\mathbf{e}}_\theta$ be unit radial and tangential vectors respectively. In the rotating frame S' of the wire, the bead simply moves in a circle of radius a, and therefore using standard results,

$$\mathbf{x} = a\hat{\mathbf{e}}_r, \qquad \left(\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}\right)_{S'} = a\dot{\theta}\hat{\mathbf{e}}_{\theta}, \qquad \left(\frac{\mathrm{d}^2\mathbf{x}}{\mathrm{d}t^2}\right)_{S'} = -a\dot{\theta}^2\hat{\mathbf{e}}_r + a\ddot{\theta}\hat{\mathbf{e}}_{\theta}.$$

The forces on the bead are gravity and a normal reaction force N from the wire.

Letting ω be the angular velocity vector (vertically upwards with magnitude ω), the equation of motion in the rotating frame is

$$m\mathbf{g} + \mathbf{N} = m \left\{ \left(\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} \right)_{S'} + 2\mathbf{\omega} \times \left(\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \right)_{S'} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{x}) \right\}$$

$$= m \{ -a\dot{\theta}^2 \hat{\mathbf{e}}_r + a\ddot{\theta}\hat{\mathbf{e}}_\theta + 2\mathbf{\omega} \times a\dot{\theta}\hat{\mathbf{e}}_\theta + \mathbf{\omega} \times (\mathbf{\omega} \times a\hat{\mathbf{e}}_r) \}$$

$$= m \{ -a\dot{\theta}^2 \hat{\mathbf{e}}_r + a\ddot{\theta}\hat{\mathbf{e}}_\theta + 2a\dot{\theta}\mathbf{\omega} \times \hat{\mathbf{e}}_\theta + a(\mathbf{\omega} \cdot \hat{\mathbf{e}}_r)\mathbf{\omega} - a(\mathbf{\omega} \cdot \mathbf{\omega})\hat{\mathbf{e}}_r \}.$$

We now wish to eliminate \mathbf{N} : since \mathbf{N} must be normal to the wire, $\mathbf{N} \cdot \hat{\mathbf{e}}_{\theta} = 0$. (Note that \mathbf{N} may have non-zero components both in the $\hat{\mathbf{e}}_r$ -direction and perpendicular to the plane of the hoop.) So, dotting the equation of motion with $\hat{\mathbf{e}}_{\theta}$ we obtain

$$m\mathbf{g} \cdot \hat{\mathbf{e}}_{\theta} = m\{a\ddot{\theta} + a(\mathbf{\omega} \cdot \hat{\mathbf{e}}_{r})(\mathbf{\omega} \cdot \hat{\mathbf{e}}_{\theta})\}$$

$$\Rightarrow g\cos(\frac{\pi}{2} + \theta) = a\ddot{\theta} + a(\omega\cos(\pi - \theta))(\omega\cos(\frac{\pi}{2} - \theta))$$

$$\Rightarrow -g\sin\theta = a\ddot{\theta} - a\omega^{2}\sin\theta\cos\theta$$

$$\Rightarrow \ddot{\theta} = \omega^{2}\sin\theta\cos\theta - \frac{g}{a}\sin\theta.$$

Equilibrium points occur when $\dot{\theta} = \ddot{\theta} = 0$, i.e., at $\theta = 0$, π or $\pm \theta_0$ where

$$\theta_0 = \cos^{-1}\left(\frac{g}{\omega^2 a}\right).$$

These latter equilibrium points exist only when $\omega \geqslant \sqrt{g/a}$. We could examine their stability by making a small perturbation about the equilibrium, for instance setting $\theta = \theta_0 + \varepsilon$.