A hoop of wire in the shape of a circle of radius \(a \) is mounted vertically and rotates at constant angular speed \(\omega \) about a vertical axis through its centre. A bead moves smoothly on the wire. Find the equilibrium positions.

Let \(m \) be the mass of the bead, \(\mathbf{x} \) be its position vector relative to the centre of the hoop, \(\theta \) be the angle between \(\mathbf{x} \) and the downwards vertical, and \(\mathbf{e}_r, \mathbf{e}_\theta \) be unit radial and tangential vectors respectively. In the rotating frame \(S' \) of the wire, the bead simply moves in a circle of radius \(a \), and therefore using standard results,

\[
\mathbf{x} = a\mathbf{e}_r, \quad \left(\frac{d\mathbf{x}}{dt} \right)_{S'} = a\dot{\theta}\mathbf{e}_\theta, \quad \left(\frac{d^2\mathbf{x}}{dt^2} \right)_{S'} = -a\ddot{\theta}\mathbf{e}_r + a\dddot{\theta}\mathbf{e}_\theta.
\]

The forces on the bead are gravity and a normal reaction force \(\mathbf{N} \) from the wire.

Letting \(\mathbf{\omega} \) be the angular velocity vector (vertically upwards with magnitude \(\omega \)), the equation of motion in the rotating frame is

\[
m\mathbf{g} + \mathbf{N} = m\left\{ \left(\frac{d^2\mathbf{x}}{dt^2} \right)_{S'} + 2\mathbf{\omega} \times \left(\frac{d\mathbf{x}}{dt} \right)_{S'} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{x}) \right\} = m\{ -a\ddot{\theta}\mathbf{e}_r + a\dddot{\theta}\mathbf{e}_\theta + 2\mathbf{\omega} \times a\theta\mathbf{e}_\theta + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{a}_r) \}
\]

\[
= m\{ -a\ddot{\theta}\mathbf{e}_r + a\dddot{\theta}\mathbf{e}_\theta + 2a\theta\mathbf{\omega} \times \mathbf{e}_\theta + a(\mathbf{\omega} \cdot \mathbf{e}_r)\mathbf{\omega} - a(\mathbf{\omega} \cdot \mathbf{\omega})\mathbf{e}_r \}.
\]

We now wish to eliminate \(\mathbf{N} \): since \(\mathbf{N} \) must be normal to the wire, \(\mathbf{N} \cdot \mathbf{e}_\theta = 0 \). (Note that \(\mathbf{N} \) may have non-zero components both in the \(\mathbf{e}_r \)-direction and perpendicular to the plane of the hoop.) So, dotting the equation of motion with \(\mathbf{e}_\theta \) we obtain

\[
m\mathbf{g} \cdot \mathbf{e}_\theta = m\{ a\dddot{\phi} + a(\mathbf{\omega} \cdot \mathbf{e}_r)(\mathbf{\omega} \cdot \mathbf{e}_\theta) \}
\]

\[
\implies g \cos(\pi + \theta) = a\dddot{\phi} + a(\mathbf{\omega} \cos(\pi - \theta))(\mathbf{\omega} \cos(\pi - \theta))
\]

\[
\implies -g \sin \theta = a\ddot{\phi} - a\omega^2 \sin \phi \cos \phi
\]

\[
\implies \ddot{\theta} = \omega^2 \sin \theta \cos \theta - \frac{g}{a} \sin \theta.
\]

Equilibrium points occur when \(\dot{\theta} = \ddot{\theta} = 0 \), i.e., at \(\theta = 0, \pi \) or \(\pm \theta_0 \) where

\[
\theta_0 = \cos^{-1}\left(\frac{g}{\omega^2 a}\right).
\]

These latter equilibrium points exist only when \(\omega \geq \sqrt{g/a} \). We could examine their stability by making a small perturbation about the equilibrium, for instance setting \(\theta = \theta_0 + \varepsilon \).