Worked Example
A Rod Sliding Inside a Wire Loop

A uniform rod of length $2a$ slides around the inside of a smooth circular wire loop mounted in a vertical plane, with its end-points attached to the loop. Denote by X the centre of the rod, and by O the centre of the loop. Show that

$$
\dot{\theta}^2 = \frac{6gb}{a^2 + 3b^2} (\cos \theta - \cos \alpha)
$$

where b is the length OX, θ is the angle between OX and the vertical and α is the maximum value of θ. Find also the frequency of small oscillations about the stable equilibrium.

The moment of inertia of the rod about its mid-point X is $I = \frac{1}{12}M(2a)^2 = \frac{1}{3}Ma^2$, where M is the mass of the rod. The kinetic energy of the rod is therefore

$$
\frac{1}{2}M(b\dot{\theta})^2 + \frac{1}{2}\left(\frac{1}{3}Ma^2\right)\dot{\theta}^2,
$$

because the speed of the centre of mass X is $b\dot{\theta}$ and the kinetic energy relative to X is $\frac{1}{2}I\dot{\theta}^2$. (Note that, relative to the centre of mass, the rod is simply rotating in a vertical plane with θ being the angle between the rod and the horizontal.) The potential energy is $-Mgb\cos \theta$ (taking O as the zero of potential energy). Combining these results,

$$
\frac{1}{2}\left(\frac{1}{3}a^2 + b^2\right)\dot{\theta}^2 - gb\cos \theta = \frac{E}{M}
$$

where E, the total energy, is constant. Evaluating E at $\theta = \alpha$ (where $\dot{\theta} = 0$ since it is a maximum of θ) we obtain $E/M = -gb\cos \alpha$. The result follows.

Differentiating (1) with respect to time and dividing by $\dot{\theta}$ we obtain

$$
2\ddot{\theta} = -\frac{6gb}{a^2 + 3b^2} \sin \theta.
$$

Equilibrium points (where $\ddot{\theta} = 0$) are therefore, as expected, at $\theta = 0$ and π, which are obviously stable and unstable respectively. For small oscillations in which $\theta \ll 1$, we approximate $\sin \theta$ by θ, so that

$$
\ddot{\theta} + \frac{3gb}{a^2 + 3b^2}\theta = 0;
$$

the (angular) frequency of oscillations is therefore

$$
\sqrt{\frac{3gb}{a^2 + 3b^2}}.
$$