
Worked Example
A Particle Moving under Gravity with Quadratic Friction

A ball of mass m is thrown vertically upwards at speed V and experiences both gravity
and quadratic air resistance. How high does it go and how long does it take to get
there?

Measure z vertically upwards from the launch point. Then

mz̈ = −mg − kż2

where k is a constant. Let v = ż be the ball’s speed at time t; then

mv̇ = −mg − kv2

=⇒ m

∫
dv

mg + kv2
= −

∫
dt.

Using the substitution v =
√

mg/k tan θ gives
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where α ≡
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gk/m and c is a constant of integration. Hence
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α
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and using the initial conditions, c = α−1 tan−1(αV/g). So
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The maximum height h occurs when v = 0, i.e., when
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√
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)
,

and so
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.



Alternative Method

If the time taken is not required then we can use the chain rule to write

v̇ =
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dt
=

dz

dt

dv

dz
= v

dv

dz
.

Then

mv
dv
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= −mg − kv2

=⇒
∫ h

0

dz = −
∫ 0
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,

as before.

Descent

On the way down, the equation of motion is different because the retardation force is
in the opposite direction:

mz̈ = −mg + kż2

(where z still measures distance vertically upwards), so

m

∫
dv

−mg + kv2
=

∫
dt.

We use the substitution v =
√

mg/k tanh θ to obtain

v = − g

α
tanh α(t− c)

(using the initial condition v = 0 at t = c) and

z = h− g

α
ln coshα(t− c).


