Worked Example
A Particle Moving under Gravity with Quadratic Friction

A ball of mass m is thrown vertically upwards at speed V and experiences both gravity
and quadratic air resistance. How high does it go and how long does it take to get
there?

Measure z vertically upwards from the launch point. Then
mi = —mg — k2>
where k is a constant. Let v = 2z be the ball’s speed at time ¢; then

mo = —mg — kv?
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Using the substitution v = \/mg/k tané gives
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where a = \/gk/m and c is a constant of integration. Hence
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and using the initial conditions, ¢ = a=! tan=!(aV/g). So
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The maximum height h occurs when v = 0, i.e., when
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Alternative Method
If the time taken is not required then we can use the chain rule to write
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as before.

Descent

On the way down, the equation of motion is different because the retardation force is
in the opposite direction:

mi = —mg + k2>

(where z still measures distance vertically upwards), so
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We use the substitution v = y/mg/k tanh 6 to obtain

v=-12 tanh a(t — ¢)
o
(using the initial condition v = 0 at ¢t = ¢) and

z=h-— 21ncosha(t—c).
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