Worked Example

A Particle Moving under Gravity with Quadratic Friction

A ball of mass m is thrown vertically upwards at speed V and experiences both gravity and quadratic air resistance. How high does it go and how long does it take to get there?

Measure z vertically upwards from the launch point. Then

$$m\ddot{z} = -mq - k\dot{z}^2$$

where k is a constant. Let $v = \dot{z}$ be the ball's speed at time t; then

$$m\dot{v} = -mg - kv^{2}$$

$$\implies m \int \frac{\mathrm{d}v}{mg + kv^{2}} = -\int \mathrm{d}t.$$

Using the substitution $v = \sqrt{mg/k} \tan \theta$ gives

$$\frac{1}{\alpha}\tan^{-1}\left(\frac{\alpha v}{g}\right) = c - t$$

where $\alpha \equiv \sqrt{gk/m}$ and c is a constant of integration. Hence

$$v = \frac{g}{\alpha} \tan \alpha (c - t),$$

and using the initial conditions, $c = \alpha^{-1} \tan^{-1}(\alpha V/g)$. So

$$z = \frac{g}{\alpha} \int_0^t \tan \alpha (c - t) dt$$
$$= \frac{g}{\alpha^2} \left[\ln \cos \alpha (c - t) \right]_0^t$$
$$= \frac{g}{\alpha^2} \ln \frac{\cos \alpha (c - t)}{\cos \alpha c}.$$

The maximum height h occurs when v = 0, i.e., when

$$t = c = \sqrt{\frac{m}{qk}} \tan^{-1} \left(\sqrt{\frac{k}{mq}} V \right),$$

and so

$$h = \frac{g}{\alpha^2} \ln \sec \alpha c$$

$$= \frac{g}{\alpha^2} \ln \sqrt{1 + \tan^2 \alpha c}$$

$$= \frac{m}{2k} \ln \left(1 + \frac{kV^2}{mg} \right).$$

Alternative Method

If the time taken is not required then we can use the chain rule to write

$$\dot{v} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}z}{\mathrm{d}t}\frac{\mathrm{d}v}{\mathrm{d}z} = v\frac{\mathrm{d}v}{\mathrm{d}z}.$$

Then

$$mv \frac{\mathrm{d}v}{\mathrm{d}z} = -mg - kv^{2}$$

$$\implies \int_{0}^{h} \mathrm{d}z = -\int_{V}^{0} \frac{mv \, \mathrm{d}v}{mg + kv^{2}}$$

$$\implies h = -\left[\frac{m}{2k}\ln(mg + kv^{2})\right]_{V}^{0}$$

$$= \frac{m}{2k}\ln(mg + kV^{2}) - \frac{m}{2k}\ln(mg)$$

$$= \frac{m}{2k}\ln\left(1 + \frac{kV^{2}}{mg}\right),$$

as before.

Descent

On the way down, the equation of motion is different because the retardation force is in the opposite direction:

$$m\ddot{z} = -mq + k\dot{z}^2$$

(where z still measures distance vertically upwards), so

$$m \int \frac{\mathrm{d}v}{-mq + kv^2} = \int \mathrm{d}t.$$

We use the substitution $v = \sqrt{mg/k} \tanh \theta$ to obtain

$$v = -\frac{g}{\alpha} \tanh \alpha (t - c)$$

(using the initial condition v = 0 at t = c) and

$$z = h - \frac{g}{\alpha} \ln \cosh \alpha (t - c).$$