Worked Example
Solution of Laplace’s Equation in a 3D Half-Space

We wish to solve V2® = 0 in the half-space z > 0 of R?, with ® = f(y,2) on the
boundary x = 0.

We use the integral solution of Poisson’s equation (with
o = 0) in the half-space, with S being the plane x = 0
(strictly speaking, together with the hemisphere at co):

(I)(XQ):///O'(X) (x;x0 dV—l—//f —dS
/ / [y, 2)5-G(x;%0) dy dz

(because = = —-Z on S). To calculate this we need to
evaluate
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or alternatively (swapping x and xg),
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This is the solution for:

(i) Steady-state temperature distribution with a wall heated to a specified temperature
distribution;

(ii) Steady-state concentration of solute with a wall kept at given concentration;

(iii) Electrostatic potential with a conducting wall held at given potential.
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