Worked Example Calculating Residues

Example: e^z/z^3

By expanding e^z as a Taylor series, we see that $f(z) = e^z/z^3$ has a Laurent expansion about z = 0 given by

$$z^{-3} + z^{-2} + \frac{1}{2}z^{-1} + \frac{1}{3!} + \cdots$$

Hence the residue is $\frac{1}{2}$ (the coefficient of z^{-1}).

Alternatively, we note that f has a pole of order 3 at z = 0, so we can use the general formula for the residue at a pole:

$$\operatorname{res}_{z=0} f(z) = \lim_{z \to 0} \left\{ \frac{1}{2!} \frac{\mathrm{d}^2}{\mathrm{d}z^2} (z^3 f(z)) \right\} = \frac{1}{2} \lim_{z \to 0} \left\{ \frac{\mathrm{d}^2}{\mathrm{d}z^2} e^z \right\} = \frac{1}{2}.$$

Example: $e^{z}/(z^{2}-1)$

We have already calculated the Laurent expansion of $g(z) = e^{z}/(z^2 - 1)$ at z = 1:

$$\frac{e^z}{z^2 - 1} = \frac{e}{2} \left(\frac{1}{z - 1} + \frac{1}{2} + \cdots \right),$$

so the residue is e/2.

Alternatively, we use the formula for the residue at a simple pole:

$$\operatorname{res}_{z=1} g(z) = \lim_{z \to 1} \frac{(z-1)e^z}{z^2 - 1} = \lim_{z \to 1} \frac{e^z}{z+1} = e/2.$$

Example: $1/(z^8 - w^8)$

For any complex constant w, $h(z) = (z^8 - w^8)^{-1}$ has 8 simple poles, at $z = we^{n\pi i/4}$ (n = 0, 1, ..., 7). The residue at z = w, say, could be evaluated by factorizing $z^8 - w^8$ into its eight linear factors, but is most easily calculated using L'Hôpital's Rule:

$$\operatorname{res}_{z=w} h(z) = \lim_{z \to w} \frac{z - w}{z^8 - w^8} = \lim_{z \to w} \frac{1}{8z^7} = 1/8w^7$$

Example: $1/\sinh \pi z$

 $1/\sinh \pi z$ has a simple pole at z = ni for all integers n (because the zeros of $\sinh z$ are at $n\pi i$ and are simple). We could use the Taylor series for $\sinh \pi z$, or the general residue formula: again using L'Hôpital's Rule, the residue is

$$\lim_{z \to ni} \frac{z - ni}{\sinh \pi z} = \lim_{z \to ni} \frac{1}{\pi \cosh \pi z} = \frac{1}{\pi \cosh n\pi i} = \frac{1}{\pi \cos n\pi} = (-1)^n / \pi.$$

Mathematical Methods II Natural Sciences Tripos Part IB

Example: $1/\sinh^3 z$

We have seen that $\sinh^3 z$ has a zero of order 3 at $z = \pi i$, with Taylor series

$$\sinh^3 z = -(z - \pi i)^3 - \frac{1}{2}(z - \pi i)^5 + \cdots$$

Therefore

$$1/\sinh^{3} z = -(z-\pi i)^{-3}(1+\frac{1}{2}(z-\pi i)^{2}+\cdots)^{-1}$$
$$= -(z-\pi i)^{-3}(1-\frac{1}{2}(z-\pi i)^{2}+\cdots)$$
$$= -(z-\pi i)^{-3}+\frac{1}{2}(z-\pi i)^{-1}+\cdots.$$

The residue is therefore $\frac{1}{2}$.