Worked Example

Contour Integration: Integrals of Trigonometric Functions

We wish to evaluate

$$I = \int_0^{2\pi} \frac{\mathrm{d}\theta}{a + \cos\theta}$$

where a > 1 (so that the integrand is always finite). Substitute $z = e^{i\theta}$, so that $dz = iz d\theta$ and $\cos \theta = \frac{1}{2}(z+z^{-1})$. As θ increases from 0 to 2π , z moves round the circle C of radius 1 in the complex plane. Hence

$$I = \oint_C \frac{(iz)^{-1} dz}{a + \frac{1}{2}(z + z^{-1})} = -2i \oint_C \frac{dz}{z^2 + 2az + 1}.$$

The integrand has poles at

$$z_{\pm} = -a \pm \sqrt{a^2 - 1},$$

both on the real axis. Note that z_+ is inside the unit circle (check that $a-1 < \sqrt{a^2-1} < a$, so $-1 < z_+ < 0$) whereas z_- is outside it. The integrand is equal to

$$\frac{1}{(z-z_+)(z-z_-)}$$

so the residue at $z=z_+$ is $1/(z_+-z_-)=1/2\sqrt{a^2-1}$. Hence

$$I = -2i\left(\frac{2\pi i}{2\sqrt{a^2 - 1}}\right) = \frac{2\pi}{\sqrt{a^2 - 1}}.$$