Worked Example
Geodesics on the Surface of a Sphere

Recall that in orthogonal curvilinear coordinates (g1, g2, q3),
dr = hy dg; e; + ha dge €2 + h3 dgs es.
In spherical polar coordinates,
dr =dre, +rdfes+rsinfdpe,.

Without loss of generality, we may take the sphere to be of
unit radius: the length of a path from A to B is then

B
L:/ |dr|
A

B
= / \/d62 + sin2 0 d¢? [since dr = 0]
A

0B
= v/ 1+ sin2 6 ¢'2 d6

0a
where the path is described by the function ¢(#). Using Euler’s equation,
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is a constant, ¢ say. Hence
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and the problem reduces to integrating this with respect to 6.

Substitute u = cot 8 so that du = — cosec? 6 dd. Then
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where ¢q is a constant of integration. Hence the geodesic path is given by

cot 6 = acos(¢p — ¢p)

and the arbitrary constants a and ¢g must be found using the end-points. This is a
great circle path.
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