Worked Example

Contour Integration: Inverse Fourier Transforms

Consider the real function

$$f(x) = \begin{cases} 0 & x < 0 \\ e^{-ax} & x > 0 \end{cases}$$

where a > 0 is a real constant. The Fourier Transform of f(x) is

$$\widetilde{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

$$= \int_{0}^{\infty} e^{-ax - ikx} dx$$

$$= -\frac{1}{a + ik} \left[e^{-ax - ikx} \right]_{0}^{\infty}$$

$$= \frac{1}{a + ik}.$$

We shall verify the Inverse Fourier Transform by evaluating

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{f}(k) e^{ikx} \, \mathrm{d}k.$$

In the complex k-plane, let C_0 be the contour from -R to R on the real axis, C_R be the semicircle of radius R in the upper half plane and C'_R be the semicircle of radius R in the lower half plane. Let C be C_0 followed by C_R (this is known as closing in the upper half plane), and let C' be C_0 followed by C'_R (closing in the lower half plane).

Now $\widetilde{f}(k)$ has only one pole, at k = ia, which is simple, so

$$\oint_C \widetilde{f}(k)e^{ikx} dk = 2\pi i \operatorname{res}_{k=ia} \frac{e^{ikx}}{i(k-ia)} = 2\pi e^{-ax},$$

whereas

$$\oint_{C'} \widetilde{f}(k)e^{ikx} \, \mathrm{d}k = 0.$$

(Note that C' is traversed in a negative sense, so if there had been any poles within C' we would have had to introduce a minus sign.)

Now, if x > 0, we can apply Jordan's Lemma (with $\lambda = x$) to C_R to show that $\int_{C_R} \widetilde{f}(k) e^{ikx} dk \to 0$ as $R \to \infty$, since $\widetilde{f}(k) = O(1/k)$ as $|k| \to \infty$. Hence for x > 0,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{f}(k)e^{ikx} \, \mathrm{d}k = \frac{1}{2\pi} \lim_{R \to \infty} \int_{C_0} \widetilde{f}(k)e^{ikx} \, \mathrm{d}k$$

$$= \frac{1}{2\pi} \lim_{R \to \infty} \left(\oint_C \widetilde{f}(k)e^{ikx} \, \mathrm{d}k - \int_{C_R} \widetilde{f}(k)e^{ikx} \, \mathrm{d}k \right)$$

$$= e^{-ax}.$$

For x < 0 we close in the lower half plane instead, and the same analysis applies to C':

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{f}(k)e^{ikx} dk = \frac{1}{2\pi} \lim_{R \to \infty} \left(\oint_{C'} \widetilde{f}(k)e^{ikx} dk - \int_{C'_R} \widetilde{f}(k)e^{ikx} dk \right)$$
$$= 0.$$

Hence, combining the above results, we obtain

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{f}(k)e^{ikx} \, \mathrm{d}k = \begin{cases} 0 & x < 0 \\ e^{-ax} & x > 0 \end{cases}$$

as expected.

Note that by taking real and imaginary parts of this equality we can deduce the values of particular real integrals. The imaginary part gives

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{a \sin kx - k \cos kx}{a^2 + k^2} \, \mathrm{d}k = 0,$$

which is obvious anyway as the integrand is an odd function of k. But the real part gives

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{a\cos kx + k\sin kx}{a^2 + k^2} \, \mathrm{d}k = \begin{cases} 0 & x < 0\\ e^{-ax} & x > 0 \end{cases}$$

and in particular

$$\int_{-\infty}^{\infty} \frac{a\cos\theta + \theta\sin\theta}{a^2 + \theta^2} d\theta = 2\pi e^{-a}.$$