Worked Example
The Catenary

Consider a uniform chain of length L, with mass per unit
length p, hanging under gravity between the points (—1,1)
and (1,1). It adopts a form of minimum potential energy,
that is it minimises
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subject to the prescribed length,
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L = Gly] E/ V1+y?de.
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This is equivalent to minimising F' — A\G, i.e., to solving
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The integrand has no explicit z-dependence, so we use the first integral
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where ¢ is a constant, whence

cdy

Making the substitution y = A 4+ ccosh 6 we obtain

x = ccosh™? (y—)\> + x9

€r =

Cc

where zq is an arbitrary constant of integration. Hence the solution is

y:)\+ccosh(x_x0>,

c
which is a catenary.

We have three unknown constants, to be found using the equation for y at each of the
two end-points, together with the constraint equation. We immediately obtain xy = 0
by symmetry (or by solving the end-point equations for (). Now ¢y’ = sinh(x/c) and

hence /1 + 3’2 = cosh(x/c); so

1
L:/ coshgdx

—1 C

1
= 2¢sinh —.
c
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This equation must, in general, be solved numerically for ¢ given L; then A can be found
using the end-point at (1,1),

1
1 =M+ ccosh—.
c

This completes the solution.
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