
Worked Example
Electrostatics: Using the Integral Solution of Poisson’s Equation

Consider a wire of length 2L carrying a charge density µ per unit length, lying along
the z-axis from z = −L to +L. What is the electric potential Φ?

The charge distribution is ρ(x) = µδ(x)δ(y) for −L 6 z 6 L (and zero for |z| > L).
We shall use the integral solution of Poisson’s equation in the whole of space to obtain
the potential at a point (x0, y0, z0). We need Green’s function, which is simply the
fundamental solution here.
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This is true for arbitrary locations x0, so replacing x0 by x we obtain
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In particular, the potential at a point in the (x, y)-plane is given by
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Note, for completeness, that for very large L, i.e., in the limit as L →∞, it is possible
to check (using sinh−1 x ∼ lnx as x →∞) that
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which verifies an earlier result we obtained for the two-dimensional field around an
infinitely long wire.
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