Worked Example

Electrostatics: Using the Integral Solution of Poisson's Equation

Consider a wire of length 2L carrying a charge density μ per unit length, lying along the z-axis from z = -L to +L. What is the electric potential Φ ?

The charge distribution is $\rho(\mathbf{x}) = \mu \delta(x) \delta(y)$ for $-L \leq z \leq L$ (and zero for |z| > L). We shall use the integral solution of Poisson's equation in the whole of space to obtain the potential at a point (x_0, y_0, z_0) . We need Green's function, which is simply the fundamental solution here.

$$\Phi(\mathbf{x}_0) = \iiint_{\mathbb{R}^3} \frac{\rho(\mathbf{x})}{4\pi\epsilon_0 |\mathbf{x} - \mathbf{x}_0|} \, dV$$

$$= \int_{-L}^{L} \frac{\mu}{4\pi\epsilon_0 |(0, 0, z) - \mathbf{x}_0|} \, dz$$

$$= \frac{\mu}{4\pi\epsilon_0} \int_{-L}^{L} \frac{dz}{\sqrt{x_0^2 + y_0^2 + (z - z_0)^2}}$$

$$= \frac{\mu}{4\pi\epsilon_0} \left[\sinh^{-1} \frac{z - z_0}{\sqrt{x_0^2 + y_0^2}} \right]_{-L}^{L}$$

$$= \frac{\mu}{4\pi\epsilon_0} \left\{ \sinh^{-1} \frac{L - z_0}{\sqrt{x_0^2 + y_0^2}} + \sinh^{-1} \frac{L + z_0}{\sqrt{x_0^2 + y_0^2}} \right\}.$$

This is true for arbitrary locations \mathbf{x}_0 , so replacing \mathbf{x}_0 by \mathbf{x} we obtain

$$\Phi(x, y, z) = \frac{\mu}{4\pi\epsilon_0} \left\{ \sinh^{-1} \frac{L - z}{\sqrt{x^2 + y^2}} + \sinh^{-1} \frac{L + z}{\sqrt{x^2 + y^2}} \right\}.$$

In particular, the potential at a point in the (x, y)-plane is given by

$$\Phi(x, y, 0) = \frac{\mu}{2\pi\epsilon_0} \sinh^{-1}(L/\sqrt{x^2 + y^2}).$$

Note, for completeness, that for very large L, i.e., in the limit as $L \to \infty$, it is possible to check (using $\sinh^{-1} x \sim \ln x$ as $x \to \infty$) that

$$\Phi \to -\frac{\mu}{2\pi\epsilon_0} \ln \sqrt{x^2 + y^2} + \text{constant},$$

which verifies an earlier result we obtained for the two-dimensional field around an infinitely long wire.