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Hints and Solutions for Example Sheet 1: Variational Methods

1 If the box has dimensions w× h× d then you need to minimise w(h+ d) + 2hd subject
to whd = V . Using ∇

(
w(h + d) + 2hd − λwhd

)
= 0 you should obtain w = 2h = 2d;

the constraint gives w = 3
√

4V .

2 You must find the stationary values of T both within the sphere and on its surface.
Within the sphere, simply use ∇T = 0 to show that any point with x = 0, y = −z
is stationary; at such a point, T = 0. On the surface of the sphere, use the constraint
x2 + y2 + z2 = 1 together with ∇

(
T − λ(x2 + y2 + z2)

)
= 0 to find four stationary

points, (± 1√
2
, 1

2 ,
1
2 ) and (± 1√

2
,− 1

2 ,−
1
2 ), at which T takes the values ± 1√

2
. Considering

all of the stationary points (both internal and on the surface) together, it is clear that
the minimum temperature is − 1√

2
and the maximum 1√

2
.

(In fact, we will see later in the course that since∇2T = 0, it is not necessary to consider
interior points.)

3 The length of a path is given by
∫ √

1 + a2θ′2 dz if you use a path θ(z); or, equivalently,∫ √
a2 + z′2 dθ if you use a path z(θ). In either case, the analysis is similar to that for

geodesics in the Euclidean plane, and you should find that z and θ are linearly related
(e.g., z = c+ kθ where c and k are constants).

4 The problem is essentially the same as the brachistochrone. Having shown that the
optimal path is a cycloid, you need to find the corresponding value of the integral
which you minimised in the first place; since the cycloid is parameterised by θ (say)
you will need to substitute for x in terms of θ in the integral. To show that the tunnels
are vertical at the end-points, consider dy/dx = (dy/dθ)/(dx/dθ).

5 You need to minimise
∫ √

a− bz
√

1 + z′2 dx: use the first integral. After an elementary
integration you should obtain

z =
a

b
− k2

4
− 1
k2

(x− x0)2,

where k and x0 are arbitrary constants, which is indeed an inverted parabola because it
is of the form (x− x0)2 = 4α(z0− z) for suitable α and z0. Using the hint, its directrix
is z0 − z = α, which gives the required result.



6 The Lagrangian is L = 1
2 (ṙ2 + r2θ̇2)− V (r) and the action is S =

∫
L dt. Using the

Euler–Lagrange equations we obtain

r̈ − rθ̇2 = −V ′(r)

and
r2θ̇ = h,

a constant. These can be interpreted in terms of radial acceleration and angular mo-
mentum respectively.

If r = a sin θ then conservation of energy gives that 1
2a

2θ̇2 + V (r) = E. Hence, using
the second Euler–Lagrange equation, V = E − a2h2/2r4; the result follows.

7 Consider
∫ B

A
df . Note that df = ∇f.dr, and use an inequality for a.b for any two vectors

a and b. To obtain the required condition for equality, recall that ∇f lies orthogonal
to the family of surfaces f = constant.

8 You must minimise
∫ b

−b
2πr

√
1 + r′2 dz, where the soap surface is given by r = r(z). The

problem is effectively the same as the catenary. To show that the boundary condition
has no solution for c if b/a is too large, try making the substitution C = a/c and
plotting appropriate graphs. As b/a is increased from below the critical ratio to above
it, the soap film bursts and no longer joins the two circular wires.

9 You are required to maximise
∫ a

0
y dx subject to

∫ a

0

√
1 + y′2 dx = l. Using a Lagrange

multiplier and the first integral leads to

y′ =

√
λ2 − (y − c)2

y − c

where c is a constant, which is easily integrated to give the equation of a circle. Thus
the required curves are arcs of circles: note that it is not possible to know until you
have finished the problem that your implicit assumptions about the shape of the curve
will be satisfied so long as l < πa but will fail otherwise!

10 Follow the derivation of Euler’s equation in notes, replacing x and y by t and x respec-
tively, and using a function x(t) + δx(t). You will need to perform two integrations by
parts for one of the terms.

For the last part, Euler’s equation is d2

dt2 (t4ẍ) = 0. Solving this differential equation
with the given boundary conditions leads to x(t) = t−2.



11 Remember to put the differential equation into self-adjoint form (trivial in this case).
The Rayleigh quotient is

Λ =

∫ 1

−1
(1 + x2)y′2 dx∫ 1

−1
y2 dx

.

The trial function y1 leads to λ0 6 4; whereas y2 leads to λ0 6 1
3π

2+ 1
2 , which is a better

bound. A further improvement can be obtained by using a trial function y3 = ay1 + by2
and minimising the Rayleigh quotient with respect to both a and b (you are not required
to do this!).

12 Putting the differential equation into standard Sturm–Liouville form (with weight func-
tion w(x) = f(x)) shows that the given ratio is simply the Rayleigh quotient. To esti-
mate the frequency of the fundamental mode, try a suitable trial function: y = sinx is
appropriate and leads to an approximation ω0 ≈ 1/

√
1 + 8/3π.

13 Since Lψ0 = 0, the eigenvalue is λ0 = 0. The Rayleigh quotient is given by

Λ[ψ] =

∫∞
−∞{ψ

′2 + (x2 − 1)ψ2}dx∫∞
−∞ ψ2 dx

and for the given trial function we obtain Λ[ψ̃0] = 5
2a
−2 + 1

7a
2 − 1. Minimising with

respect to a gives the required value of λ̃0 when a = 4
√

35/2. Note that λ̃0−λ0 is strictly
positive, because it is always non-negative (λ0 is the lowest eigenvalue) but could only
be zero if ψ̃0 were identically equal to ψ0.

Comments on or corrections to this problem sheet are very welcome and may be sent to
me at reh10@damtp.cam.ac.uk.


