Hints and Solutions for Example Sheet 1: Variational Methods

- If the box has dimensions $w \times h \times d$ then you need to minimise w(h+d) + 2hd subject to whd = V. Using $\nabla (w(h+d) + 2hd \lambda whd) = \mathbf{0}$ you should obtain w = 2h = 2d; the constraint gives $w = \sqrt[3]{4V}$.
- You must find the stationary values of T both within the sphere and on its surface. Within the sphere, simply use $\nabla T = \mathbf{0}$ to show that any point with x = 0, y = -z is stationary; at such a point, T = 0. On the surface of the sphere, use the constraint $x^2 + y^2 + z^2 = 1$ together with $\nabla (T \lambda(x^2 + y^2 + z^2)) = \mathbf{0}$ to find four stationary points, $(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2})$ and $(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2}, -\frac{1}{2})$, at which T takes the values $\pm \frac{1}{\sqrt{2}}$. Considering all of the stationary points (both internal and on the surface) together, it is clear that the minimum temperature is $-\frac{1}{\sqrt{2}}$ and the maximum $\frac{1}{\sqrt{2}}$.

(In fact, we will see later in the course that since $\nabla^2 T = 0$, it is not necessary to consider interior points.)

- 3 The length of a path is given by $\int \sqrt{1+a^2\theta'^2} \,dz$ if you use a path $\theta(z)$; or, equivalently, $\int \sqrt{a^2+z'^2} \,d\theta$ if you use a path $z(\theta)$. In either case, the analysis is similar to that for geodesics in the Euclidean plane, and you should find that z and θ are linearly related (e.g., $z=c+k\theta$ where c and k are constants).
- 4 The problem is essentially the same as the brachistochrone. Having shown that the optimal path is a cycloid, you need to find the corresponding value of the integral which you minimised in the first place; since the cycloid is parameterised by θ (say) you will need to substitute for x in terms of θ in the integral. To show that the tunnels are vertical at the end-points, consider $dy/dx = (dy/d\theta)/(dx/d\theta)$.
- 5 You need to minimise $\int \sqrt{a-bz} \sqrt{1+z'^2} dx$: use the first integral. After an elementary integration you should obtain

$$z = \frac{a}{b} - \frac{k^2}{4} - \frac{1}{k^2}(x - x_0)^2,$$

where k and x_0 are arbitrary constants, which is indeed an inverted parabola because it is of the form $(x-x_0)^2 = 4\alpha(z_0-z)$ for suitable α and z_0 . Using the hint, its directrix is $z_0 - z = \alpha$, which gives the required result.

6 The Lagrangian is $\mathscr{L} = \frac{1}{2}(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$ and the action is $\mathscr{S} = \int \mathscr{L} dt$. Using the Euler–Lagrange equations we obtain

$$\ddot{r} - r\dot{\theta}^2 = -V'(r)$$

and

$$r^2\dot{\theta} = h$$
,

a constant. These can be interpreted in terms of radial acceleration and angular momentum respectively.

If $r = a \sin \theta$ then conservation of energy gives that $\frac{1}{2}a^2\dot{\theta}^2 + V(r) = E$. Hence, using the second Euler-Lagrange equation, $V = E - a^2h^2/2r^4$; the result follows.

- 7 Consider $\int_A^B df$. Note that $df = \nabla f \cdot d\mathbf{r}$, and use an inequality for $\mathbf{a} \cdot \mathbf{b}$ for any two vectors \mathbf{a} and \mathbf{b} . To obtain the required condition for equality, recall that ∇f lies orthogonal to the family of surfaces f = constant.
- 8 You must minimise $\int_{-b}^{b} 2\pi r \sqrt{1 + r'^2} \, \mathrm{d}z$, where the soap surface is given by r = r(z). The problem is effectively the same as the catenary. To show that the boundary condition has no solution for c if b/a is too large, try making the substitution C = a/c and plotting appropriate graphs. As b/a is increased from below the critical ratio to above it, the soap film bursts and no longer joins the two circular wires.
- 9 You are required to maximise $\int_0^a y \, dx$ subject to $\int_0^a \sqrt{1 + y'^2} \, dx = l$. Using a Lagrange multiplier and the first integral leads to

$$y' = \frac{\sqrt{\lambda^2 - (y - c)^2}}{y - c}$$

where c is a constant, which is easily integrated to give the equation of a circle. Thus the required curves are arcs of circles: note that it is not possible to know until you have finished the problem that your implicit assumptions about the shape of the curve will be satisfied so long as $l < \pi a$ but will fail otherwise!

10 Follow the derivation of Euler's equation in notes, replacing x and y by t and x respectively, and using a function $x(t) + \delta x(t)$. You will need to perform two integrations by parts for one of the terms.

For the last part, Euler's equation is $\frac{d^2}{dt^2}(t^4\ddot{x}) = 0$. Solving this differential equation with the given boundary conditions leads to $x(t) = t^{-2}$.

11 Remember to put the differential equation into self-adjoint form (trivial in this case). The Rayleigh quotient is

$$\Lambda = \frac{\int_{-1}^{1} (1+x^2)y'^2 \, \mathrm{d}x}{\int_{-1}^{1} y^2 \, \mathrm{d}x}.$$

The trial function y_1 leads to $\lambda_0 \leq 4$; whereas y_2 leads to $\lambda_0 \leq \frac{1}{3}\pi^2 + \frac{1}{2}$, which is a better bound. A further improvement can be obtained by using a trial function $y_3 = ay_1 + by_2$ and minimising the Rayleigh quotient with respect to both a and b (you are not required to do this!).

- Putting the differential equation into standard Sturm-Liouville form (with weight function w(x) = f(x)) shows that the given ratio is simply the Rayleigh quotient. To estimate the frequency of the fundamental mode, try a suitable trial function: $y = \sin x$ is appropriate and leads to an approximation $\omega_0 \approx 1/\sqrt{1+8/3\pi}$.
- 13 Since $\mathcal{L}\psi_0 = 0$, the eigenvalue is $\lambda_0 = 0$. The Rayleigh quotient is given by

$$\Lambda[\psi] = \frac{\int_{-\infty}^{\infty} \{\psi'^2 + (x^2 - 1)\psi^2\} dx}{\int_{-\infty}^{\infty} \psi^2 dx}$$

and for the given trial function we obtain $\Lambda[\widetilde{\psi}_0] = \frac{5}{2}a^{-2} + \frac{1}{7}a^2 - 1$. Minimising with respect to a gives the required value of $\widetilde{\lambda}_0$ when $a = \sqrt[4]{35/2}$. Note that $\widetilde{\lambda}_0 - \lambda_0$ is strictly positive, because it is always non-negative (λ_0 is the lowest eigenvalue) but could only be zero if $\widetilde{\psi}_0$ were identically equal to ψ_0 .

Comments on or corrections to this problem sheet are very welcome and may be sent to me at reh10@damtp.cam.ac.uk.