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Hints and Solutions for Example Sheet 2: Poisson’s Equation

1 Use methods from Part IA. You should obtain a series in which sinnπx, but not cos nπx,
appears; you must therefore treat this as a Fourier sine series, for which the formulae
are slightly different from those for a standard Fourier series. The solution is

Φ(x, y) =
∞∑

n=1
n odd

8
n3π3

sinnπx e−nπy.

Substituting this infinite sum into the integral gives∫ 1

0

∂Φ
∂y

∣∣∣∣
y=0

dx = −16
π3

∑
n odd

1
n3

.

2 Use the general axisymmetric solution in spherical polar coordinates, and retain only
relevant Pn. Note that Φ must be finite at the origin. The solution is Φ(r, θ) = 4

3 +
(r/a) cos θ + (r2/a2)(cos2 θ − 1

3 ).

3 Use the general solution in cylindrical polars in the region r < a, and note that Φ must
be finite at the origin. The boundary condition is that n . (−k∇Φ) = F cos 2θ on r = a;
write this in a simpler form. On r = a, you can use the fact that Fourier series are
unique to work out the constants An and Bn very quickly. The solution is

Φ = A0 −
Fr2 cos 2θ

2ka
.

To answer the last part of the question, you may like to consider the total flux passing
through the boundary of the cylinder.

4 Use the general solution in its less concise form; this is a standard Fourier series (albeit
with complicated coefficients of cos nθ and sinnθ which depend on r). On r = b, all
the Fourier coefficients must vanish. On r = a, you can evaluate them by finding the
Fourier series of the given boundary condition. This should enable you to solve for A0,
C0, An, Bn, Cn and Dn simultaneously. The solution is

Φ(r, θ) =
ln(r/b)

2 ln(a/b)
+

∞∑
n=1

n odd

2
nπ

(b/r)n − (r/b)n

(b/a)n − (a/b)n
sinnθ.



5 Use the general solution twice, with different coefficients in r < a and r > a, and use the
conditions as r → 0 and r → ∞ to eliminate some terms. Use the final two equations
to relate the two infinite series at r = a; remember that you can equate coefficients of
cos nθ, etc. (Why?) The solution is

T =


A0 + 2G(1 + β)−1r cos θ r < a,

A0 + G

(
r +

1− β

1 + β

a2

r

)
cos θ r > a.

The final equation given in the question results from considering heat flux at r = a.

6 Write down Poisson’s equation ∇2Φ = −ρ/ε0, and let Φ(r, θ) = R(r)Θ(θ). In this case,
you can pick a particular form for Θ so that each term in Poisson’s equation contains
exactly the same function of θ; hence Θ cancels throughout. This leaves you with the
ordinary differential equation for R(r) given in the hint, with α = −1/ε0 in r < a and
zero in r > a. (The solution of this differential equation, as given in the hint, can be
obtained using the method of “complementary function plus particular integral”; you
may need to use the substitution u = ln r to obtain the particular integral.)

Note that there are different values of A and B in r < a and r > a. In r < a, B = 0
in order that the potential is finite at the origin. In r > a, A = 0 in order that the
potential should tend to zero as r → ∞. Use continuity of R and R′ at r = a to find
the values of the two remaining arbitrary constants.

The solution is

Φ(r, θ) =
{ (

1− 3 ln(r/a)
)
r cos θ/9ε0 r < a

a3 cos θ/9ε0r
2 r > a

[Two notes for advanced students. Firstly, although ρ has a singularity at r = 0, the
total charge in any given volume is in fact finite, because a volume integral in spherical
polars must include the Jacobian r2 sin θ. Hence we do expect the potential at the
origin to be finite. Secondly, as r →∞, you should think about what it would mean if
you did not insist on the potential tending to zero: it would lead to the existence of a
constant electric field far from the charges, which is quite possible, but which would not
be caused by the charges themselves and should therefore be ignored unless specified
otherwise in the question. Ask your supervisor if either of these notes doesn’t make
sense!]

7 The method required is, in each case, almost identical to that used in lectures to prove
uniqueness for Poisson’s equation with Dirichlet boundary conditions.

8 The equation is ∇2T = −(Q/k)δ(x− x0) in x > 0, y > 0, subject to T = T0 on x = 0
and ∂T/∂n = 0 on y = 0. You will need 3 image sources, one with positive strength
and two with negative strength. The solution is

T = T0 −
Q

2πk
ln
|x− x0||x− x1|
|x− x2||x− x3|

where x1 = (x0,−y0), x2 = (−x0, y0) and x3 = (−x0,−y0). To find the heat flux,
calculate −k ∂T/∂n on the y-axis. To calculate the total heat radiated, either integrate
the given expression for the heat flux over the wall, or use the Divergence Theorem
appropriately, to obtain the answer Q.



9 (i) Use the inverse point and the corresponding Green’s function mentioned in lec-
tures. To show that this function vanishes on r = a, use, for example, the identity
|x− x1|2 = |x|2 − 2x . x1 + |x1|2. The solution, complete with the correct value of
the constant which was not specified in lectures, is

G(x;x0) =
1
2π

ln
a|x− x0|
|x0||x− x1|

where x1 = (a2/|x0|2)x0.

(ii) Using two extra image points we obtain

G(x;x0) =
1
2π

ln
|x− x0||x− x′1|
|x− x′0||x− x1|

where x′0 and x′1 are the reflections of x0 and x1 in the x-axis.

10 The equivalent statement in 2D is exactly the same, but with V replaced by S and S
by C.

The particular case given is similar to a worked example; the solution is

u(x0, y0) =
y0

π

∫ 1

−1

dx

(x− x0)2 + y2
0

=
1
π

{
tan−1

(
1− x0

y0

)
+ tan−1

(
1 + x0

y0

)}
.

11 The density is proportional to δ(z); use plane polars on the plane z = 0 to evaluate the
“volume” integral which arises from the integral solution of Poisson’s equation in all
space. The solution in cylindrical polars is

Φ(0, z) = −2GM

a2
(
√

z2 + a2 − |z|).

The expansion for |z| � a is then

−GM |z|
(

1
z2
− a2

4z4
+

a4

8z6

)
+ O

(
a6

|z|7

)
.

Compare with the general axisymmetric solution in spherical polars (rs, θs, φs) on the
axis (where θs = 0); the coefficients must match. The solution valid off the axis is

Φ(rs, θs) = GM

(
− 1

rs
+

a2

4r3
s

P2(cos θs)−
a4

8r5
s

P4(cos θs)
)

+ O

(
a6

r7
s

)
.

12 The version of Green’s identity required is simply the normal version with V replaced
by S and S by C. Write x, x0, x1 in terms of 2D polar coordinates, and calculate
|x− x0|, etc., in order to obtain an expression for G. Then derive the integral solution
of Poisson’s equation (in 2D) just as normal: you will need to calculate ∂G

∂r

∣∣
r=a

.



13 For each part, choose a suitable function Ψ and work out what the solution for Φ must
be by inspection (using uniqueness). Then apply the formula derived in the previous
question.

Comments on or corrections to this problem sheet are very welcome and may be sent to
me at reh10@damtp.cam.ac.uk.


