
Computational Projects

Lecture 1: Introduction & simple algorithms

Dr Rob Jack, DAMTP

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Moodle: CATAM IA: Lectures and MATLAB Sessions

Overview

• CATAM : Computer-Aided Teaching of All Mathematics

• There are no end-of-year examination questions

• You will work on projects during the academic year
(Parts IB & II)

• You earn marks by submitting project reports
(along with associated computer code)

plan for Part IB

• MATLAB manual (exercises) & introductory project over summer

• Supervision at start of Michaelmas term (organised by colleges)

• 2 core projects due start of Lent term

• 2 additional projects (selection of 4) due start of Easter term

• Maximum credit: 160 tripos marks

• For the average student, CATAM contributes 20-25% of marks

plan for Part II

• Many projects on offer (approx 30)

• Different weights due to differing levels of effort

• Each person submits 3-5 projects (depending on
weights)

• Maximum credit: 150 Tripos marks

plan for Assessment

• you must communicate the results of each project in a
written report

• must be typeset electronically (eg Microsoft Word,
LibreOffice, LaTeX, ...)

• marks:
 40% for computational work,
 50% for mathematics,
 10% for quality of write-up & remarks

Plagiarism will not be tolerated, people who cheat risk getting  
zero marks for the whole CATAM course

Resources

• CATAM webpage (with links to other content)

• MATLAB booklet

• CATAM moodle page

• Part IB and Part II manuals (new one published each
summer, late July-early August)

• These lectures — PDF files and MATLAB code on webpage

• CATAM News (on website) — updates/corrections/FAQ’s

• CATAM helpline: catam@maths.cam.ac.uk

www.maths.cam.ac.uk/undergrad/catam

CATAM aims

• you will learn to use a computer to solve mathematical
problems

• the main focus is on mathematics, but you will also learn
and apply some new skills:

1. algorithms: converting maths to "recipes" that a
computer can follow, and characterising their
efficiency

2. programming: implementing algorithms using a
computer language; testing and debugging

3. communication: writing clear and precise reports

Computers in mathematics
• applied

• integration of ODEs & modelling dynamical systems

• simulations of weather, climate change, fluid flow, materials,
quarks, galaxies...

• applicable
• statistical analyses of “big data”

• modelling financial markets

• pure
• investigating cases to develop hypotheses and conjectures

• large primes, graph colouring, probability, ...

Algorithms

algorithm: a set of rules for carrying out a
mathematical (or other) operation …

… set out in a sufficiently precise way that a
computer can follow them

Like a mathematical proof, an algorithm needs to be
unambiguous: the computer will execute the algorithm
that you give, not the one that you "obviously" meant to
write(!)

Matrix multiplication

A =

✓
a b
c d

◆
B =

✓
p q
r s

◆

C =

✓
ap+ br aq + bs
cp+ dr cq + ds

◆

For example, if

Then

This is all true as mathematics but it is not an algorithm.

Cij =
nX

k=1

AikBkj

Consider 2 n⇥ n matrices A and B
<latexit sha1_base64="MxSPk3ODrQJCYZMZfhs3FqP97/w=">AAACqHicbVHLjtMwFHXCawivAks2Fg0CsaiSColZoYFsWBaJTgY1VWU7N6lV24lsZ4bKypfwZfwIa5xOFnSGK1k6Oue+fC5tBTc2SX4H4Z279+4/OHkYPXr85OmzyfMX56bpNIMla0SjLygxILiCpeVWwEWrgUgqIKe7bNDzS9CGN+q73bewlqRWvOKMWE9tJr+Klmja/HRpymTvosJUFZFc7HFUKLhijZREla7Ist4VktgtI8JlfX+s5vmoUuryQfRNzY63H1obFZrUNZSa11sbZY0yvASN5zhWheUSDFYx9qWaM4/jzzH2HXH8JY76zWSazJJD4NsgHcEUjbHYTP4UZcM6CcoyQYxZpUlr145oy5kAv1ZnoCVsR2pYeaiIH792BxN7/MYzJa4a7Z+y+MD+W+GINGYvqc8cfmpuagP5P23V2ep07bhqOwuKXQ+qOoFtg4eL4JJrYNY7XnLCNPe7YrYlmjDr73Y0ZQviEmyPj0gqB6PSm7bcBufzWZrM0m/z6dmn0bIT9Aq9Ru9Qij6iM/QVLdASsSAI3gZJkIbvw0WYhz+uU8NgrHmJjiKkfwENttFR</latexit><latexit sha1_base64="MxSPk3ODrQJCYZMZfhs3FqP97/w=">AAACqHicbVHLjtMwFHXCawivAks2Fg0CsaiSColZoYFsWBaJTgY1VWU7N6lV24lsZ4bKypfwZfwIa5xOFnSGK1k6Oue+fC5tBTc2SX4H4Z279+4/OHkYPXr85OmzyfMX56bpNIMla0SjLygxILiCpeVWwEWrgUgqIKe7bNDzS9CGN+q73bewlqRWvOKMWE9tJr+Klmja/HRpymTvosJUFZFc7HFUKLhijZREla7Ist4VktgtI8JlfX+s5vmoUuryQfRNzY63H1obFZrUNZSa11sbZY0yvASN5zhWheUSDFYx9qWaM4/jzzH2HXH8JY76zWSazJJD4NsgHcEUjbHYTP4UZcM6CcoyQYxZpUlr145oy5kAv1ZnoCVsR2pYeaiIH792BxN7/MYzJa4a7Z+y+MD+W+GINGYvqc8cfmpuagP5P23V2ep07bhqOwuKXQ+qOoFtg4eL4JJrYNY7XnLCNPe7YrYlmjDr73Y0ZQviEmyPj0gqB6PSm7bcBufzWZrM0m/z6dmn0bIT9Aq9Ru9Qij6iM/QVLdASsSAI3gZJkIbvw0WYhz+uU8NgrHmJjiKkfwENttFR</latexit><latexit sha1_base64="MxSPk3ODrQJCYZMZfhs3FqP97/w=">AAACqHicbVHLjtMwFHXCawivAks2Fg0CsaiSColZoYFsWBaJTgY1VWU7N6lV24lsZ4bKypfwZfwIa5xOFnSGK1k6Oue+fC5tBTc2SX4H4Z279+4/OHkYPXr85OmzyfMX56bpNIMla0SjLygxILiCpeVWwEWrgUgqIKe7bNDzS9CGN+q73bewlqRWvOKMWE9tJr+Klmja/HRpymTvosJUFZFc7HFUKLhijZREla7Ist4VktgtI8JlfX+s5vmoUuryQfRNzY63H1obFZrUNZSa11sbZY0yvASN5zhWheUSDFYx9qWaM4/jzzH2HXH8JY76zWSazJJD4NsgHcEUjbHYTP4UZcM6CcoyQYxZpUlr145oy5kAv1ZnoCVsR2pYeaiIH792BxN7/MYzJa4a7Z+y+MD+W+GINGYvqc8cfmpuagP5P23V2ep07bhqOwuKXQ+qOoFtg4eL4JJrYNY7XnLCNPe7YrYlmjDr73Y0ZQviEmyPj0gqB6PSm7bcBufzWZrM0m/z6dmn0bIT9Aq9Ru9Qij6iM/QVLdASsSAI3gZJkIbvw0WYhz+uU8NgrHmJjiKkfwENttFR</latexit><latexit sha1_base64="MxSPk3ODrQJCYZMZfhs3FqP97/w=">AAACqHicbVHLjtMwFHXCawivAks2Fg0CsaiSColZoYFsWBaJTgY1VWU7N6lV24lsZ4bKypfwZfwIa5xOFnSGK1k6Oue+fC5tBTc2SX4H4Z279+4/OHkYPXr85OmzyfMX56bpNIMla0SjLygxILiCpeVWwEWrgUgqIKe7bNDzS9CGN+q73bewlqRWvOKMWE9tJr+Klmja/HRpymTvosJUFZFc7HFUKLhijZREla7Ist4VktgtI8JlfX+s5vmoUuryQfRNzY63H1obFZrUNZSa11sbZY0yvASN5zhWheUSDFYx9qWaM4/jzzH2HXH8JY76zWSazJJD4NsgHcEUjbHYTP4UZcM6CcoyQYxZpUlr145oy5kAv1ZnoCVsR2pYeaiIH792BxN7/MYzJa4a7Z+y+MD+W+GINGYvqc8cfmpuagP5P23V2ep07bhqOwuKXQ+qOoFtg4eL4JJrYNY7XnLCNPe7YrYlmjDr73Y0ZQviEmyPj0gqB6PSm7bcBufzWZrM0m/z6dmn0bIT9Aq9Ru9Qij6iM/QVLdASsSAI3gZJkIbvw0WYhz+uU8NgrHmJjiKkfwENttFR</latexit>

The matrix elements of their product, C = AB are given by
<latexit sha1_base64="ykzcGcbyG/2tsT4cf6oAZLOogo4=">AAACtnicbVHLbtNAFB2bR4t5NMCSzYgUiQWK7KqIbloK3rAsUtNUikM0Hl/bo8xLM+PQyPIH8Un8CGvGqRek5UojHZ1zX3NurjmzLo5/B+GDh48e7+0/iZ4+e/7iYPTy1ZVVjaEwpYorc50TC5xJmDrmOFxrA0TkHGb5Ku312RqMZUpeuo2GhSCVZCWjxHlqOfqVaWJyddMmCRVdG2W2LIlgfIOjTMJPqoQgsmizNO3aTBBXU8LbtOt21dlsUPO8nfWib2pXTB9rF2WGVBUUhlW1iy5rwD7PsBsMHARIZ7EqsauBGayNKhrqPuDD9PTL10NMDOCKrUHifBN1y9E4nsTbwPdBMoAxGuJiOfqTFYo2/RDKibXzJNZu0RLjGOXgl2wsaEJXpIK5h5IIsIt2a2mH33mmwKUy/kmHt+y/FS0R1m5E7jP7f9u7Wk/+T5s3rjxZtEzqxoGkt4PKhmOncH8fXDAD1Hn/C0aoYX5XTGtiCHX+ijtTauBrcB3eIXPRG5XcteU+uDqaJPEk+X40Pj8bLNtHb9Bb9B4l6BM6R9/QBZoiGhwEH4Oz4HN4Ev4IIaxuU8NgqHmNdiLUfwHpSdgc</latexit><latexit sha1_base64="ykzcGcbyG/2tsT4cf6oAZLOogo4=">AAACtnicbVHLbtNAFB2bR4t5NMCSzYgUiQWK7KqIbloK3rAsUtNUikM0Hl/bo8xLM+PQyPIH8Un8CGvGqRek5UojHZ1zX3NurjmzLo5/B+GDh48e7+0/iZ4+e/7iYPTy1ZVVjaEwpYorc50TC5xJmDrmOFxrA0TkHGb5Ku312RqMZUpeuo2GhSCVZCWjxHlqOfqVaWJyddMmCRVdG2W2LIlgfIOjTMJPqoQgsmizNO3aTBBXU8LbtOt21dlsUPO8nfWib2pXTB9rF2WGVBUUhlW1iy5rwD7PsBsMHARIZ7EqsauBGayNKhrqPuDD9PTL10NMDOCKrUHifBN1y9E4nsTbwPdBMoAxGuJiOfqTFYo2/RDKibXzJNZu0RLjGOXgl2wsaEJXpIK5h5IIsIt2a2mH33mmwKUy/kmHt+y/FS0R1m5E7jP7f9u7Wk/+T5s3rjxZtEzqxoGkt4PKhmOncH8fXDAD1Hn/C0aoYX5XTGtiCHX+ijtTauBrcB3eIXPRG5XcteU+uDqaJPEk+X40Pj8bLNtHb9Bb9B4l6BM6R9/QBZoiGhwEH4Oz4HN4Ev4IIaxuU8NgqHmNdiLUfwHpSdgc</latexit><latexit sha1_base64="ykzcGcbyG/2tsT4cf6oAZLOogo4=">AAACtnicbVHLbtNAFB2bR4t5NMCSzYgUiQWK7KqIbloK3rAsUtNUikM0Hl/bo8xLM+PQyPIH8Un8CGvGqRek5UojHZ1zX3NurjmzLo5/B+GDh48e7+0/iZ4+e/7iYPTy1ZVVjaEwpYorc50TC5xJmDrmOFxrA0TkHGb5Ku312RqMZUpeuo2GhSCVZCWjxHlqOfqVaWJyddMmCRVdG2W2LIlgfIOjTMJPqoQgsmizNO3aTBBXU8LbtOt21dlsUPO8nfWib2pXTB9rF2WGVBUUhlW1iy5rwD7PsBsMHARIZ7EqsauBGayNKhrqPuDD9PTL10NMDOCKrUHifBN1y9E4nsTbwPdBMoAxGuJiOfqTFYo2/RDKibXzJNZu0RLjGOXgl2wsaEJXpIK5h5IIsIt2a2mH33mmwKUy/kmHt+y/FS0R1m5E7jP7f9u7Wk/+T5s3rjxZtEzqxoGkt4PKhmOncH8fXDAD1Hn/C0aoYX5XTGtiCHX+ijtTauBrcB3eIXPRG5XcteU+uDqaJPEk+X40Pj8bLNtHb9Bb9B4l6BM6R9/QBZoiGhwEH4Oz4HN4Ev4IIaxuU8NgqHmNdiLUfwHpSdgc</latexit><latexit sha1_base64="ykzcGcbyG/2tsT4cf6oAZLOogo4=">AAACtnicbVHLbtNAFB2bR4t5NMCSzYgUiQWK7KqIbloK3rAsUtNUikM0Hl/bo8xLM+PQyPIH8Un8CGvGqRek5UojHZ1zX3NurjmzLo5/B+GDh48e7+0/iZ4+e/7iYPTy1ZVVjaEwpYorc50TC5xJmDrmOFxrA0TkHGb5Ku312RqMZUpeuo2GhSCVZCWjxHlqOfqVaWJyddMmCRVdG2W2LIlgfIOjTMJPqoQgsmizNO3aTBBXU8LbtOt21dlsUPO8nfWib2pXTB9rF2WGVBUUhlW1iy5rwD7PsBsMHARIZ7EqsauBGayNKhrqPuDD9PTL10NMDOCKrUHifBN1y9E4nsTbwPdBMoAxGuJiOfqTFYo2/RDKibXzJNZu0RLjGOXgl2wsaEJXpIK5h5IIsIt2a2mH33mmwKUy/kmHt+y/FS0R1m5E7jP7f9u7Wk/+T5s3rjxZtEzqxoGkt4PKhmOncH8fXDAD1Hn/C0aoYX5XTGtiCHX+ijtTauBrcB3eIXPRG5XcteU+uDqaJPEk+X40Pj8bLNtHb9Bb9B4l6BM6R9/QBZoiGhwEH4Oz4HN4Ev4IIaxuU8NgqHmNdiLUfwHpSdgc</latexit>

Example: matrix
multiplication

Loop over all the elements of the matrix C  
(ie consider C(i,j) with i=1,2,..n and j=1,2,..n)

 Initially set C(i,j) to 0
 Loop over k, which takes values 1,2,...n

 Increment C(i,j) by A(i,k)*B(k,j);
 end loop over k

end loop over the elements of C

At its very simplest, an algorithm for computing might beC = AB

Note, we use indentation to show which instructions are "inside
the loop" (i.e., which steps get repeated)

Example: matrix
multiplication

for i = 1:n
for j = 1:n

C(i,j) = 0;
for k = 1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j);
end

end
end

“Initialize" Cij matrix element to 0

Summand

“=” is the assignment operator (this is not an equation!)
i.e. the new Cij should take on the old value of Cij ,  
plus this summand

Let i “loop over” integer values 1 to n

In Matlab we can compute by writingC = AB

Example: simple_mult.m

function C = mult(A,B)
%mult function : multiplies two matrices

 % note: there is no output to the screen,
 % we have ; at the end of all commands

 [aRows,aCols] = size(A);
 [bRows,bCols] = size(B);
 C=zeros(aRows,bCols);

 if (aCols ~= bRows)
 error('matrix sizes not consistent with multiplication')
 end

 % we consider the i,j element of the new matrix C
 % this requires two loops, one over i and the other over j
 for i=1:aRows
 for j=1:bCols
 % for each element of C we have to do a sum with n terms
 for k=1:aCols
 C(i,j) = C(i,j) + A(i,k) * B(k,j);
 end
 end
 end

end this box is similar to the algorithm on the last slide,
but now it has been embedded into a MATLAB function

Example: mult.m (on website)

MATLAB functions

In programming, functions are useful because...

They allow complex tasks to be accomplished with
just one line of code

... makes programs more readable

... avoids rewriting similar algorithms several times
(fewer chances to make mistakes)

They can be tested thoroughly at the time of
writing and then reused many times

... helps with debugging

Example: mult_test.m (on website)

Complexity

• Initial assignment of each C(i,j) to zero

• Number of multiplications

• Number of additions

• Number of further assignments

The complexity of an algorithm characterises the number of
operations required:

n2

n3

n3

n3

3n3 + n
2 = O(n3)

+

Suppose we have many matrix multiplications to do...
how long does it take to multiply a pair of large matrices?

Complexity

Complexity

Simple matrix multiplication requires O(n3) operations. So if we
can multiply two 3⇥3 matrices in ⇠ 10�9 seconds then multiplying
two 3000⇥ 3000 matrices will take ⇠ 1 second.

... real-life computer programs (eg for solving partial differential
equations) often need to multiply large matrices and to do this
thousands of times...

... this can be slow, it's important to use efficient methods...

The complexity of the algorithm is O(n3) in this case.

(the numerical prefactors are irrelevant for the complexity)

For and

C = zeros(n,n)

for i = 1:n
for j = i:n

C(i,j) = 0;
for k = i:j

C(i,j) = C(i,j) + A(i,k)*B(k,j);
end

end
end

Triangular matrices

A =

✓
a b
0 d

◆
B =

✓
p q
0 s

◆
C = AB =

✓
ap aq + bs
0 ds

◆

If our matrices are upper triangular, we can save some operations...
Triangular matrices

for i = 1:n
for j = i:n

C(i,j) = 0;
for k = i:j

C(i,j) = C(i,j) + ...
A(i,k)*B(k,j);

end
end

end

⇡ n3

6
=

nX

i=1

nX

j=i

(j � i+ 1)# of multiplications

Triangular matrices

for i = 1:n
for j = i:n

C(i,j) = 0;
for k = i:j

C(i,j) = C(i,j) + ...
A(i,k)*B(k,j);

end
end

end

=
nX

i=1

1
2 (n� i+ 1)(n� i+ 2)

⇡ 1

2

nX

i=1

(n� i)2

⇡ n3

6

=
nX

i=1

nX

j=i

(j � i+ 1)# of multiplications =
nX

i=1

n�i+1X

`=1

`

=
1

2

nX

k=1

(k � 1)2

(last step using a Faulhaber’s formula
approximate equalities are valid at leading

order in n)

Complexity

• Initial assignment of each C(i,j) to zero

• Number of multiplications

• Number of additions

• Number of further assignments

Simple matrix multiplication algorithm:

n2

n3

n3

n3

3n3 + n
2 = O(n3)

+

n2

+

1

6
n3

1

6
n3

1

6
n3

1

2
n
3 + n

2 = O(n3)

General n×n Triangular n×n

Fewer operations, but same complexity... O(n3)

The actual time taken to multiply matrices will depend on computational
details (eg multiplying by zero should be a fast operation...)
... the complexity is a property of the algorithm, it can be analysed

Strassen's algorithm

T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
P

le
as

e
do

no
t

di
st

ri
bu

te
to

st
ud

en
ts

.

We can test how quickly this Matlab code runs with the built-in timing commands tic and toc. We
also need an easy way to generate a matrix; this can be done with the built-in function rand(n), which
generates a n⇥n matrix containing pseudo-random values drawn from the standard uniform distribution
on the open interval(0,1). It is then possible to compare the times of multiplying 500⇥500 and 1000⇥1000
matrices using matmult as follows, where we also compare with the time taken using the Matlab built-in
function *.

>> n= 500; A=rand(n); tic; matmult(A,A); toc
>> n=1000; A=rand(n); tic; matmult(A,A); toc
>> tic; A*A ; toc

Remark. The function matmult has been introduced for educational reasons. The Matlab built-in func-
tion * is far preferable.

1.1.3 Are there better algorithms?

A natural question to ask is whether we could do better than O(n3) operations. To have an inkling why
the answer is yes consider the multiplication of two 2⇥ 2 matrices. Let

M1 = (A11 +A22)(B11 +B22),

M2 = (A21 +A22)B11,

M3 = A11(B12 �B22),

M4 = A22(B21 �B11),

M5 = (A11 +A12)B22,

M6 = (A21 �A11)(B11 +B21),

M7 = (A12 �A22)(B21 +B22).

Then C = AB can be calculated as follows:

C11 = M1 +M4 �M5 +M7,

C12 = M3 +M5,

C21 = M2 +M4,

C22 = M1 �M2 +M3 +M6.

This is Strassen’s algorithm. It requires 7 multiplications and 18 additions, compared with 8 multiplica-
tions and 8 additions by our previous method. This does not look like an improvement until one realises
that multiplications tend to be more expensive for computers than additions.

If this idea is now applied recursively we find that for an n ⇥ n matrix the multiplication cost is
O(nlog2 7) ⇡ O(n2.807) operations. Hence for n � 1 Strassen’s algorithm is much cheaper than the algo-
rithm we first thought of (and is used in ‘black box’ multiplication routines when n is large enough).

There are other algorithms. For instance, the Coppersmith-Winograd algorithm requires O(n2.376)
multiplications, where  is a constant pre-multiplier. Unfortunately  is so large in this case that the
method is not useful for practical values of n.

Remark. There have been recent improvements to the bound by Andrew Stothers (2010) to O(n2.373),
Virginia Williams (2011) to O(n2.3728642), and François Le Gall (2014) to O(n2.3728639). It is an
open question as to whether an O(n2) or O(n2(log n)m) algorithm is possible.01/14

1.1.4 Triangular Matrices

If
A =

✓
a b

0 d

◆
, B =

✓
p q

0 s

◆
,

Mathematical Tripos: IA/IB Computational Projects 1-8 c� S.J.Cowley@maths.cam.ac.uk, Easter 2014

T
hi

s
is

a
su

pe
rv

is
or

’s
co

py
of

th
e

no
te

s.
P

le
as

e
do

no
t

di
st

ri
bu

te
to

st
ud

en
ts

.

We can test how quickly this Matlab code runs with the built-in timing commands tic and toc. We
also need an easy way to generate a matrix; this can be done with the built-in function rand(n), which
generates a n⇥n matrix containing pseudo-random values drawn from the standard uniform distribution
on the open interval(0,1). It is then possible to compare the times of multiplying 500⇥500 and 1000⇥1000
matrices using matmult as follows, where we also compare with the time taken using the Matlab built-in
function *.

>> n= 500; A=rand(n); tic; matmult(A,A); toc
>> n=1000; A=rand(n); tic; matmult(A,A); toc
>> tic; A*A ; toc

Remark. The function matmult has been introduced for educational reasons. The Matlab built-in func-
tion * is far preferable.

1.1.3 Are there better algorithms?

A natural question to ask is whether we could do better than O(n3) operations. To have an inkling why
the answer is yes consider the multiplication of two 2⇥ 2 matrices. Let

M1 = (A11 +A22)(B11 +B22),

M2 = (A21 +A22)B11,

M3 = A11(B12 �B22),

M4 = A22(B21 �B11),

M5 = (A11 +A12)B22,

M6 = (A21 �A11)(B11 +B21),

M7 = (A12 �A22)(B21 +B22).

Then C = AB can be calculated as follows:

C11 = M1 +M4 �M5 +M7,

C12 = M3 +M5,

C21 = M2 +M4,

C22 = M1 �M2 +M3 +M6.

This is Strassen’s algorithm. It requires 7 multiplications and 18 additions, compared with 8 multiplica-
tions and 8 additions by our previous method. This does not look like an improvement until one realises
that multiplications tend to be more expensive for computers than additions.

If this idea is now applied recursively we find that for an n ⇥ n matrix the multiplication cost is
O(nlog2 7) ⇡ O(n2.807) operations. Hence for n � 1 Strassen’s algorithm is much cheaper than the algo-
rithm we first thought of (and is used in ‘black box’ multiplication routines when n is large enough).

There are other algorithms. For instance, the Coppersmith-Winograd algorithm requires O(n2.376)
multiplications, where  is a constant pre-multiplier. Unfortunately  is so large in this case that the
method is not useful for practical values of n.

Remark. There have been recent improvements to the bound by Andrew Stothers (2010) to O(n2.373),
Virginia Williams (2011) to O(n2.3728642), and François Le Gall (2014) to O(n2.3728639). It is an
open question as to whether an O(n2) or O(n2(log n)m) algorithm is possible.01/14

1.1.4 Triangular Matrices

If
A =

✓
a b

0 d

◆
, B =

✓
p q

0 s

◆
,

Mathematical Tripos: IA/IB Computational Projects 1-8 c� S.J.Cowley@maths.cam.ac.uk, Easter 2014

For 2×2 matrix multiplication

Let

For 2n×2n matrices, one can write an algorithm that involves
operations on 2x2 blocks, and use the method above for the
blocks

then

C = AB

The complexity can be shown to be O(nlog2 7) ⇡ O(n2.8)

You might think that all algorithms cost O(n3)...

For nxn matrices, add zeros to make a 2n×2n matrix

[see eg wikipedia]
Scaling...

Question: Is O(n2.8) really better than O(n3)?

Answer 1: As n ! 1, yes it is!

General point... small improvements in complexity are
(often) useful only if n is very large

The Strassen algorithm has lower complexity  
(although it is certainly more complicated....)

Answer 2:
Suppose that the simple method costs 6n3 and the Strassen
method costs An2.8 for some A > 6. . .
Then Strassen is faster for matrices of size n > (A/6)5. If A is
(eg) 60 then the simple method is still faster for matrices of sizes
up to 105 ⇥ 105.

Summary -- Complexity

• The complexity measures how the cost of an algorithm
scales, when a parameter becomes very large (or small)

• Example parameters: size of a matrix, resolution of an
image, accuracy required for the numerical solution to an
equation

• Complexity only measures the scaling, the actual cost
depends on details of the computation. For some fixed
value of the parameter, the best scaling may not be the
least cost...

Next...

... next lecture will be on algorithms for solving equations 
 (root finding)

... directly relevant for the introductory project

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

