Computational Projects

Lecture 2: Solution of transcendental equations

Dr Rob Jack, DAMTP

Note: this lecture covers material useful for
the introductory project

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Basic idea

Given a continuous function f: R — R, we want to solve

f(@)=0
(the relevant cases are those without any closed form solution,
eg f(z) =e* — 4z, etc...)

Iterative approach: We are going to compute a sequence
To,T1,%2,... sSuch thatas n — oo,

Ty —> T, with flzy) =0

As the algorithm proceeds, we accumulate information, which
can be used in computation of the rest of the sequence.

Eg, in some simple methods z,, = g(x,,—1, z,_2) for some func-
tion g (which is sometimes called the iteration rule).

2

Bisection method -- key idea

(also known as interval halving or binary search)

f(x) changes sign between a and b, and f(z) is continuous, hence
there is a root between a and b (intermediate value thm.)

f(z) changes sign between a and ¢, there is a root between « and ¢

Compute d = %< and repeat. ..

Bisection method -- algorithm

Given: a function f and two numbers a, b such that
f(a)f(b) <0anda < b.

Letag =aand by = b. Let k£ = 0.
Iterate the following loop for k = 0,1,2, ...
There is surely a root in [ag, b]
Compute ¢, = “+% and f(cy).
If f(bg)f(ck) > 0thenlet (aks1,bk+1) = (ak,ck),

otherwise let (ag+1,br+1) = (ck, b)

After n iterations, we know that there is a root in [a,, b,] which is an
interval of size 27" (b — a)

The sequence ¢y, ¢, c2, ... converges to a root of f

4

Bisection method

There is a root =* such that
len, — 2™ < 27(”+1)(b —a)

Efficiency / complexity: to be sure that |¢,, — z.| < (, we insist
that |c,, — z.| < 2=+ (b — a) < ¢, which requires

1 b—a
Loosely speaking, “complexity” is O(In(1/¢)).
... see also rate/order of convergence (later)

Notes: (i) we need a suitable initial pair (ao, by); (ii) we always
find one root but we don’t know about other possible roots

Flowcharts

Before writing your program...
... one way to check that an
algorithm makes sense is to
construct a flow chart

You can see the "loops", and you
can check the possible
sequences of operations that the
algorithm will require

It's often a good idea to check
that the system will not get stuck
in an infinite loop...

Wikipedia’s page on flowcharts

http://en.wikipedia.org/wiki/Flowchart
Package for creating flowcharts in LaTeX

http://www.ctan.org/tex-archive/graphics/pgf/contrib/flowchart

6

Input ag, by

n=0
fa = f(an)
fo=f(bn)

Output
%(ﬂn +by)

Code and pseudocode

Pseudocode is a way to sketch out programs without worrying about
the details of : ; ~=, etc

Pseudocode for bisection MATLAB code

Fix some C and a suitable a,b zeta = le-7;

a=0.0; b 1.0;
loop over n, until 0.5%|b - a| < C:

setc = 0.5%a + b) while abs(b - a)/2 > zeta

if f(b)*f(c) > O c = (a+b)/2;
setb=c if f(b)*f(c) > 0
b =c;
else else
seta=c A= o
end if ond
end loop end

estimate root as 0.5*(a+b) estRoot = (a+b)/2

MATLAB implementation

% set f to be a (mathematical) function
% (not the same as a MATLAB function...)
f = @(x) exp(x)-4*x;

% plot the function

fplot(£, [0,1])

% now we aim to solve exp(x)-4x == 0
% to 6 decimal places

zeta = le-7;

a=0.0; b=1;

while abs(b - a)/2 > zeta
c = (atb)/2;
if £(b)*f(c) > 0
b =c;
else
a = c;
end
end

estRoot = (atb)/2

% check that f(estRoot) is indeed small
display(f(estRoot))

Example: root simple.m

MATLAB function Bisection method

function [root] = binarySearch(func, xlow, xhigh, tol)

$binarySearch method to find root of a function (called func)

the output is root, initial guesses xlow and xhigh Good pOIntS

the tolerance (tol) is such that there is a root between Al . . .
ways finds a root (for any continuous function)

xroot(1l+tol) and xroot(l-tol), this is "relative error"

(see lecture 3) Even for finite n, we know that there is definitely a root in [a,,, b,].

00 00 o0

00

00

Use this to solve exp(x) - 4x == 0 by running
binarySearch(@(x) exp(x)-4*x, 0,1, le-7)

00

Non-good points

asxlow; Requires a suitable initial interval

TR ...can’t find double roots, eg no suitable interval if f(z) = (z — 1)2
while absgb/; a)/2 > tol*abs(a+b)/2 Other methods may converge faster

c = (atb)/2;

if func(b)*func(c) > 0

e b= c; General caveat about root finding
LT We want to solve f(x) = 0.
end % of the "while loop" ...buteven if |z,, — z.| < ¢, we might still have | f(z,,)| quite
root = (a+b)/2; large (especially if f/(x,) is large, or does not exist. . .)
end % of the function Example: binarySearch.m
A note on efficiency Order of convergence
You can see that binarySearch evaluates both f(c) and f(b) in each We want to characterise the efficiency of our algorithms.
iteration Define
At step n, the value of f(b,) has already been calculated (in a previous On = Ty — Tw
step)
Rgplace the while Ic_>op n We say that the order of convergence is p if we can find constants
binarySearch by:
. £b = func(b); p > 1 and c such that
If we keep track of th|S, we while abs(b i a)/2 > tol*abs(at+b)/2 i ‘6n+1| —
can reduce the ¢ = (ath)/2; n—oo |, |P
H fc = func(c);
computational effort. (if p = 1 then we require ¢ < 1)
If evaluating the function f is LE forte > 0
expensive then this can b = fo; . :
reduce the time to find the else The asymptotic error constant is ¢
root by up to a factor of 2 g LG ¢ stays the sane)
end % of the "while loop" Algorithms with larger p converge faster, as long as c is not too

large/small.

Example: binarySearchv2.m , binaryTest.m|

1 12

Order of convergence

An alternative definition is that the order of convergence is p if there is
a sequence yi, y2, . .. such that |4,| < y,, for all n and

oo [yn[P

Using this definition, it is easy to analyse the bisection method: we
have y, = 27" 1(by — ap) so thatp =1 and c = 1/2.

The case p = 1 is called linear convergence, while p = 2 is quadratic
convergence, etc

Order of convergence -- efficiency

Suppose we require |4,,| < ¢. How many iterations are needed?

Assume that |0,,41] < ¢[d,,|P for all n.
(This is a bit stronger than just having order of convergence p.)

For p = 1 we must have ¢ < 1; then |6,,| < ¢™|do].
As before (for bisection) insist that |6,,| < ¢"|do| < ¢

This requires
log(|do| /<)
"7 Tog(1/0)

...can think of this as O(log(1/¢)) but one would usually just quote the
order of convergence (linear in this case).

14

Order of convergence

For p > 1 we have:
n_1 n
6] < €771 [Go|”

Assuming n > 1, we get |0,,| < (1/Q) if

N log(1/¢)
~ Togp ® |1og(1/[%0]) + (p — 1) ' log(L/c)

The number of iterations grows as log log(1/¢) — few iterations are
needed even for very small ¢

Again the order of convergence characterises the efficiency of the
algorithm, this is better than writing O(log log(1/¢))

15

Secant method

An alternative method for root-finding:
Given two points zg, 21 (not necessarily with f(xo)f(z1) < 0):

lterate n = 1,2,... and compute

_ _ Tp — Tp—1
Tt = I T S @) — ()

f(@n)

Unlike bisection, the resulting sequence is not guaranteed to converge
to a root of f

However, for “nice enough” functions f, it does converge to a root. In
this case, the order of convergence is (usually) p = (1 ++/5)/2 ~ 1.6

Secant vs bisection

Good points for bisection
Always finds a root (for any continuous function)

Even for finite n, we know that there is definitely a root in [a,,, b,,].

Good points for secant
Does not require a suitable initial interval
Often converges faster than bisection

Common trade-offs...

Prior information (eg initial interval) helps to guarantee
convergence

Faster methods (eg secant) may not guarantee convergence
but are useful in those cases where they work...

17

Termination criteria

Remember, at stage n, bisection guarantees that a,, < z* <b,

This means that we can specify the tolerance (¢ required for our
estimate, and stop our computation once |b,, — a,,| < ¢

In the secant method, we get an estimate for 2* but we don’t get exact
upper/lower bounds.

How do we know when our estimate is “good enough”?

Mathematics can’t answer this question, we need to define “good
enough”

Typically, one would fix some & and stop when |f(x,,)| < & or
|zpnt1 — x,| < €. Of course, |x,, — 2| might still be large, depending on
the function

Introductory project

* Based on this lecture
* Published online after exams
* Not submitted to Maths Faculty (no marks for it)

» Opportunity to try a full project (computing + write-up) and
get feedback from a supervisor

* Model answer published in Michaelmas term

Now: introduce the main mathematical idea(s)

Fixed point iteration

(or Picard iteration)

As before we want to solve f(x) = 0.

Rewrite this equation as = = g(z) for some g
(of course there are many ways to do this)

Choose some z, iterate n = 1,2,... and compute z,, = g(z,,—1)

If f(z*) = 0then g(z*) = 2* so the root z* is a fixed point of this
iteration scheme. .. can use this method to search for roots

This is a very simple scheme but of course there is no guarantee that
the sequence zg, z1, ... will converge to a fixed point

What would be a sensible choice for ¢g?

20

Newton-Raphson iteration

A nice example is

G
W)= ey
(Clearly f(x) =0 implies g(z) = x)
Hence we can iterate as
f(xn)

Flon) = =)

No guarantee of convergence but for a (sufficiently nice) class of
functions and suitable initial points xy, can prove quadratic
convergence (order p = 2).

21

In-built routines

MATLAB has built-in routines for finding roots

>> help fzero

[...]

>> fzero(@(x) x"2 - cosh(x), 1.0)
ans = 1.621347946103253

>> fsolve(Q@(x) exp(x) - 4*x , 0.0)

[

"In real life", you would always use a built-in routine instead of
writing your own. They are efficient, reliable, etc

However, for CATAM projects, we ask you to write your own code
and not to use built-in routines (unless they have been approved
by CATAM)

22

In-built routines

From the introduction to the project manuals:

. As a rule of thumb, do not use a built-in function if there is no equivalent
MATLAB routine that has been approved for use, or if use of the built-in function
would make the programming considerably easier than intended. For example, use
of a command to test whether an integer is prime would not be allowed in a
project which required you to write a program to find prime numbers. The
CATAM Helpline (see §4 below) can give clarification in specific cases.

The reason is (of course) is that solving relatively simple
problems will help you to learn how to design and implement
computer programs

23

