Computational Projects

Lecture 5:
Gaussian Elimination / LU decomposition

Dr Rob Jack, DAMTP

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Motivation

So far we considered algorithms that correspond to very short
MATLAB programs, eg the main part of Euler's method is simply

xX(1l) = xstart;
y(l) = ystart;

for i=1l:n
yprime
y(i+l)
X(i+1)
end

x(i)*y(i)"2;
y(i) + h*yprime;
x(i) + h;

If we want to do something more complicated, we need to
understand how to build up a longer program, based on simple
ingredients.

In the next 2 lectures, we discuss an extended example of this

The problem

Given an n x n matrix A and an n-vector b (both with real-valued
elements), we want to solve Az = b to obtain z = A~'b

If the inverse does not exist then our method should notice and return
an error

Our method will also work if b is a matrix of size n x m. If we set b to be
the identity then we obtain = = A~ (if it exists).

You might remember that this can be done by a method called
Gaussian elimination. The method that we use is almost equivalent, it
is called LU decomposition.

LU decomposition

Our method is based on a trick, which is to write A = LU
...where L is a lower triangular matrix and U is upper triangular

DN s

We assume (for now) that this is possible. In fact we assume that it is
possible with L;; = 1 for all <.

...cases where this is not possible are discussed later.

Solving Ax =b

Suppose Az = LUx = b. Lety = Uz. Then Ly = .

It turns out to be easy to invert triangular matrices. So if we know L
and U then we can obtain y as L~'b and then = as U~ 'y.

Plan for writing our program to solve Az = b.

1. Assume that L, U, b are given and write functions for obtaining
y=L 'bandz =U"1y.

2. Assume that A is given and write a function for obtaining L and U.

3. Deal with cases where A can’t be written as LU (“pivoting”)

General plan: split a big task into pieces and deal with them one at
atime. It's good if the pieces correspond to MATLAB functions

5

Algorithm for inverting L and U

L1 0 - . 0 Y1 by

Loy Lo 0 . 0 Ya by

Ly = b means that E : =
Ln—lJ . e Ln—Ln—l 0 : .

Lnl o o o er, Yn bn

First row: y; = b1/L11
Second row: i3 = (ba — Lo1y1)/ Lo

...Since we already know y; we can compute y-
. k—1
kth row: Y = (bk — Zj:l ijyj) /ka
...we already know y; ... yx_1 SO can compute y
We can use a loop to compute y1,ys, - - ., Yn

[if Ly, = 0 for some k then L~ does not exist and this (usually) fails]

6

MATLAB function

k—1
1
Y Y Len ;_1: 3 Yj

function [y] = Lsolve(L,b)
$Lsolve: solve Ly = b (for y) where L is lower triangular and b is a vector
% note: it is not checked that L is actually lower triangular

[bRows,bCols] = size(b);
[LRows,LCols] = size(L);
if LRows ~= LCols || bRows ~= LRows || bCols ~= 1

error('Either L or b is the wrong size.')
end
if any(diag(L) == 0)

error('There are zeros on the diagonal of L')
end

y = b;
for k = 1:LRows
for j = 1:k-1
y(k) = y(k) - L(k,3)*y(J);
end
y(k) = y(k)/L(k,k);
end

end

. Example: Lsolve.m

Testing

A key advantage of breaking up the complex task into functions
is that we can test each function separately

Tests for the various functions that we write here are given in
LUtest.m

It's a good idea to test some easy cases, but also to check what
happens in nasty cases (eg if L and b don't have the right size, or
L is a singular matrix).

Similar algorithm for U

You might imagine that there is a similar method that works for U. ..

We solve Ux = y (for x)

We consider the rows in turn, but now starting from the last (nth) row

Last row: Upnxy = yn

kth row: Upkr = yr — D 5—p i1 Ui

...we know z; for j > k so we can compute zy.

Again, use a loop to compute z1, s, ..., T,

9

Matlab translation

n

Ur=y Tk =Yk — E Ujz;
j=k+1

function [x] = Usolve(U,y)
%Usolve: solve Ux = y (for x) where U is upper triangular
% note: it is not checked that U is actually upper triangular

[yRows,yCols] = size(y);

[URows,UCols] = size(U);

if URows ~= UCols || yRows ~= URows || yCols ~= 1

error('Either L or b is the wrong size.')
end
if any(diag(u) == 0)

error('There are zeros on the diagonal of U')
end

n = URows;
X =y
for k = n:-1:1 % loop downwards from n to 1
for j = k+l:n
x(k) = x(k) - U(k,J)*x(3);
end
x(k) = x(k)/U(k,k);
end

end . Example: Usolve.m

Combining ingredients

LUz =b Writey =Uxsoxz=U"'yandy =L~ 'b

...we have done the hard part so this is easy now(!). ..

function [x] = LUsolve(L,U,b)
%LUsolve: solve LUx=b where U is upper triag and L is lower triag
y = Lsolve(L,b);

x = Usolve(U,y);
end Example: LUsolve.m

... this is the “philosophy of structured programming”

... break the task into functions and write each one separately, then
stick them together at the end

We will see later how to improve our Lsolve and Usolve functions,
but the first job is usually to get something simple that works

1

LU decomposition

Given an n x n matrix A, we want to find upper and lower triangular
matrices such that A = LU, with L;; = 1 for all ¢

Assume that this is possible: A;; = >~} LixUy;

Fork =0,1,2,...,n — 1, define rank-one matrices M (%) with elements

M = L js1 Uit

)

The first k& rows of M (*) are full of zeros, as are the first k£ columns
(by the triangular structure of L and U)

Define also A®*) = 4 — Zle M@ with A® = 4; also A™ =0

LU decomposition

M (0) M) M(n—1)
k% * % %
A= + + +

* indicates a non-zero element

The first row of M () is equal to the first row of 4, and similarly for the
first column

Since Ly; = 1, the first row of M9 is the first row of U
(since Ml(;)) = L11U1j)

Similarly the first column of L is U;; times the first column of M (),
and Uy, has already been computed.

13

LU decomposition

From previous slide, we know the first column of L and the first row of
U. Hence we can compute all elements of M (¥ (as Mi(jp) = LyUyj)

M@ M (n—1)

AL = A4 - MO0 = . + +

AW is a known matrix, and its second row is the same as the second
row of M. .. and similarly the second column.

Similar to previous slide, the second row of A1) is the second row
of U, and we can also compute the second column of L

14

LU algorithm - summary

In this way, we can work out all elements of L and U:
Let A =A

lterate k=1,2,...,n

kth row of U: Up; = Ay j=k....n
kth columnof L: Ly = AF1 4k i=k,....n

subtract M (F=1): Agf) = Af-ffl) — LixUp; 6,2k

What can go wrong?

This all works (and the decomposition exists) if A,(jjl) =0 for all k,
otherwise it fails (see later)

Matlab
function [L,U] = LUdecomp(A)

%LUdecomp: decompose square matrix A as A=LU

% where L is lower triag and U is upper triag
[m, n]=size(A);
if m ~= n, error('Input must be a square matrix.'), end
L=zeros(n); U=zeros(n);

% remember A" (0) is A
AofK = A;
for k = 1:n
% at this point AofK is A" (k-1)
for j = k:n
U(k,j) = BofK(k,3j);

end
% check that we don't divide by zero...
if U(k,k) == 0
error('** A" (k-1) {k,k}==0 in LU decomp')
end

for i = k:n
L(i, k) = RofK(i,k)/U(k,k);

end
% now modify AofK so that we can use it in the
% next iteration
for i = k:n

for j = k:n

RofK(i,]j) = RofK(i,]) - L(i,k)*U(k,3);

end Example: Ludecomp.m

All together Complexity

function [x] = Asolve(A,b)
$Asolve: solve Ax=b by LU decomposition
[L,U] = LUdecomp(A) LU decomposition: we loop over k = 1,2,...n and for each k we
y = Lsolve(L,b); k . .
X = Usolve(U,y); need to compute the elements AZ(.j), which requires (n — k)?
end , , , , multiplication operations
| function [L,U] = LUdecomp(A)
$LUdecomp: decompose square matrix A as A=LU
% where L LSIIO\-JSI triag and U is upper triag
unction [y | = Lsolve(%, b) o e Inpuc must be a square macrix.'), end The total number of multiplications in this step is
$Lsolve: Sf ve Ly=| .\-nere L is lower triangular jeros (n) ; n 2 3 . . 2
[n/m) - size(b);) Y p_1(n —k)* = O(n?), the other steps in the algorithm are O(n°)
function [x] = Usolve(U, y)
%Usolve: solve Ux=y where U is upper triangular m-=1)
[n,m] = size(y); is the wrong size.') L otk (k. 5) s
s = size(U); . - . .
. _ Given L and U, solving for z is easily checked to be O(n?).
if any(s 7=‘[r?'xv]]v) L| m :=r1 o } = RofK(i,k)/U(k,k);
end error(ipither U ory i3 the wrong size-) AofK so that we can use it in the
*y(1l:k-1); ation
X =y;
Pfor 3 2 i e (175) - Botk(s,3) - L 00Kk 55 The complexity of solving Az = b by this method is O(n?), and the
ena)M T IO - dominant cost is the LU decomposition.
x(k) = x(k)/U(k,k); en
ond end end
17 18
Tests... Improvements

Once we have a method that works, we can think about how to
improve it

Eg, currently we can solve Ax = b where b is a vector, but it should
be easy to generalise to n x m matrices b.

. see LUtest.m

We only need to modify Lsolve and Usolve

Eg, to solve Ly = b we must now compute

k—1
1
Ykm = I brm — Zijyjm
i=1

20

Improvements

Option 1 : use an extra loop to deal with the columns of b

Improvements

Option 2 : use the fact that MATLAB can deal with whole rows in
a simple way (this is sometimes called an "implicit loop")

(improved)

(main part of Lsolve, original version) vy = b;
y = b; for m = 1:bCols
for k = l:Lrows for k = l:Lrows

for j = 1:k-1 for j = 1:k-1

y(k) = y(k) - L(k,3)*y(J); y(k,m) = y(k,m) - L(k,j)*y(3,m);

end end

y(k) = y(k)/L(k,k); y(k,m) = y(k,m)/L(k,k);
end end

end

(original) (improved)

y = b; y = b;
for k = l:Lrows for k = l:Lrows

for j = 1l:k-1 for j = 1l:k-1

y(k) = y(k) - L(k,J)*y(3); y(k,:) = y(k,2) - L(k,J)*y(3,2);

end end

y(k) = y(k)/L(k,k); y(k,2) = y(k,:)/L(k,k);
end end

Note the complexity of this part is now O(n?m) where m is the number
of columns in b. We expect m < n so the LU decomposition is likely
still to be the dominant cost.

21

Option 3 (only for the brave...): use another implicit loop

(improved)
y = b;
for k = l:Lrows
y(k,:) = y(k,:) - L(k, 1:k-1) * y(1l:k-1, :);
y(k,:) = y(k,:)/L(k,k);
end

22

... hext lecture

What can we do about ((1) é) r=0507

What other improvements might be useful to consider?

23

