Computational Projects

Lectures 5 & 6:
Gaussian Elimination / LU decomposition

Dr Rob Jack, DAMTP

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Motivation
So far we considered algorithms that correspond to very short
MATLAB programs, eg the main part of Euler's method is simply

x(1)
y(1)

xstart;
ystart;

for i=1l:n
yprime = x(i)*y(i)"2;
y(i+l) = y(i) + h*yprime;
x(i+1l) = x(i) + h;

end

If we want to do something more complicated, we need to

understand how to build up a longer program, based on simple
ingredients.

In the next 2 lectures, we discuss an extended example of this

The problem

Given an n x n matrix A and an n-vector b (both with real-valued
elements), we want to solve Az = b to obtain z = A~'b

If the inverse does not exist then our method should notice and return
an error

Our method will also work if b is a matrix of size n x m. If we set b to be
the identity then we obtain x = A~ (if it exists).

You might remember that this can be done by a method called
Gaussian elimination. The method that we use is almost equivalent, it
is called LU decomposition.

LU decomposition

Our method is based on a trick, which is to write A = LU
...where L is a lower triangular matrix and U is upper triangular

0 Lij = 0 for i > j
B x 0 [hj =0 for ¢ <:j

We assume (for now) that this is possible. In fact we assume that it is
possible with L;; = 1 for all 4.

...cases where this is not possible are discussed later.

Solving Ax=b

Suppose Az = LUx =b. Lety = Ux. Then Ly = b.

It turns out to be easy to invert triangular matrices. So if we know L
and U then we can obtain y as L~'b and then xz as U~ !y.

Plan for writing our program to solve Az = b.

1. Assume that L, U, b are given and write functions for obtaining
y=L"'bandxz = U"1y.

2. Assume that A is given and write a function for obtaining L and U'.

3. Deal with cases where A can’t be written as LU (“pivoting”)

General plan: split a big task into pieces and deal with them one at
atime. It's good if the pieces correspond to MATLAB functions

Algorithm for inverting L and U

L1y o - aE 0 i by

Lgl L22 0 0 Y2])2

Ly = b means that : : =
Ln—l,l Ln—l,n—l 0 .

S e Lun/ \yn bn

First row: y; = b1/L11
Second row: yo = (by — L21y1)/Laa

...since we already know y; we can compute o
kth row: y, = (bk - Z;:ll ijyj> / Lk

...we already know %1 ...yr_1 SO can compute yy,
We can use a loop to compute y1,ya, ..., Yn

[if L, = 0 for some k then L~! does not exist and this (usually) fails]

MATLAB function

1
Ly=1b =—b —E Li:vys
Y Yk Lin k < kjYj

function [y] = Lsolve(L,b)
¢Lsolve: solve Ly = b (for y) where L is lower triangular and b is a vector
% note: it is not checked that L is actually lower triangular

[bRows,bCols] = size(b);
[LRows,LCols] = size(L);
if LRows ~= LCols || bRows ~= LRows || bCols ~= 1

error('Either L or b is the wrong size.')
end
if any(diag(L) == 0)

error('There are zeros on the diagonal of L')
end

y = b;
for k = 1l:LRows
for j = 1:k-1
y(k) = y(k) - L(k,3)*y(3);
end
y(k) = y(k)/L(k,k);
end

end

Example: Lsolve.m

Testing

A key advantage of breaking up the complex task into functions
is that we can test each function separately

Tests for the various functions that we write here are given in
LUtest.m

It's a good idea to test some easy cases, but also to check what
happens in nasty cases (eg if L and b don't have the right size, or
L is a singular matrix).

Similar algorithm for U

You might imagine that there is a similar method that works for U. ..

We solve Uz = y (for)

We consider the rows in turn, but now starting from the last (nth) row

Last row: U2, = yn

kth row: Ugrzr = yr — Z;‘L:k-f—l Uijj

...we know z; for j > k so we can compute xj,.

Again, use a loop to compute x1,xs, ..., xy

Matlab translation

1 n
Ur =y i > Ukja
Kk j=k+1

function [x] = Usolve(U,y)
$Usolve: solve Ux =y (for x) where U is upper triangular
% note: it is not checked that U is actually upper triangular

[yRows,yCols] = size(y);
[URows,UCols] = size(U);
if URows ~= UCols || yRows ~= URows || yCols ~= 1

error('Either L or b is the wrong size.')
end
if any(diag(u) == 0)

error('There are zeros on the diagonal of U')
end

n = URows;
X =Yi
for k = n:-1:1 ¢ loop downwards from n to 1
for j = k+l:n
x(k) = x(k) - U(k,J)*x(J);
end
x(k) = x(k)/U(k,k);
end

end Example: Usolve.m

Combining ingredients

LUz =b Writey = Uz soxz =U"'yandy = L~'b

...we have done the hard part so this is easy now(!). ..

function [x] = LUsolve(L,U,b)
$LUsolve: solve LUx=b where U is upper triag and L is lower triag
y = Lsolve(L,b);

x = Usolve(U,y); i
end Example: LUsolve.m

... this is the “philosophy of structured programming”

... break the task into functions and write each one separately, then
stick them together at the end

We will see later how to improve our Lsolve and Usolve functions,
but the first job is usually to get something simple that works

LU decomposition

Given an n x n matrix A, we want to find upper and lower triangular
matrices such that A = LU, with L;; = 1 for all

Assume that this is possible: A;; = >~} LixUy;

Fork=0,1,2,...,n — 1, define rank-one matrices M (*) with elements
Mi(f) = Li k+1Uk+1,5

The first k& rows of M%) are full of zeros, as are the first k columns
(by the triangular structure of L and U)

Define also A®) = A — S F71 (), with A©) = A; also A™ =0

LU decomposition

M) M M (n—1)

* % * * * *

* indicates a non-zero element

The first row of M) is equal to the first row of A, and similarly for the
first column

Since Ly; = 1, the first row of M (9 is the first row of U
(since Ml(?) = L11U1j)

Similarly the first column of L is Uy, times the first column of A7),
and Uy, has already been computed.

LU decomposition

From previous slide, we know the first column of L and the first row of
U. Hence we can compute all elements of M (¥ (as Mi(f) = LUy)

M@

A — 4 p0) — . + o+

M(n—1)

AW is a known matrix, and its second row is the same as the second

row of M), .. and similarly the second column.

Similar to previous slide, the second row of M (") is the second row
of U, and we can also compute the second column of L

LU algorithm - summary

In this way, we can work out all elements of L and U:
Let AD =A

lterate k=1,2,...,n

kth row of U: U = A,(;;_l) j=k,....n
kthcolumnof L: Ly = ALY /4% i=k,...,n

subtract M (k=1 Agf) = Al(f_l) — LU 4,J2k

What can go wrong?

This all works (and the decomposition exists) if A,(C’Z_l) =+ 0 for all k,

otherwise it fails (see later)

Matlab
function [L,U] = LUdecomp(A)

%LUdecomp: decompose square matrix A as A=LU
% where L is lower triag and U is upper triag
[m, n]=size(A);

if m ~= n, error('Input must be a square matrix.'), end

L=zeros(n); U=zeros(n);

% remember A" (0) is A
AofK = A;
for k = 1:n
% at this point AofK is A" (k-1)
for j = k:n
U(k,j) = BofK(k,J);

end
% check that we don't divide by zero...
if U(k,k) == 0
error('** A" (k-1)_{k,k}==0 in LU decomp')
end

for i = k:n
L(i,k) = RofK(i,k)/U(k,k);

end
% now modify AofK so that we can use it in the
% next iteration
for i = k:n

for j = k:n

AofK(i,j) = AofK(i,3) - L(i,k)*u(k,3);

end Example: LUudecomp.m

All together

func

tion [x] = Asolve(A,b)

Complexity

$Asolve: solve Ax=b by LU decomposition
[L,U] = LUdecomp(A) LU decomposition: we loop over k = 1,2,...n and for each k we
y = Lsolve(L,b); (k) ; H 2
% = Usolve(U,y); need to compute the elements A;;”, which requires (n — k)
end multiplication operations
function [L,U] = LUdecomp(A)
$LUdecomp: decompose square matrix A as A=LU
% where L 1s.lower triag and U is upper triag
function [y) = Leolve(L, b) (' Input muse be a square matrix.’), end The total number of multiplications in this step is
$Lsolve: solve Ly=b where L is lower triangular eros(n); n 2 3 . . 2
(n/m) = size(b);) Y re1(n—k)? = O(n?), the other steps in the algorithm are O(n*)
function [x] = Usolve(U, y)
3Usolve: solve Ux=y where U is upper triangular m =1)
[n,m] = size(y); is the wrong size.') L pofR(k,3)s
s = size(U);
. i i _ Given L and U, solving for z is easily checked to be O(n?).
if any(s -= [n,n]) || m~= ‘1 ‘ = AofK(i,k)/U(k,k);
end erroml EiEher Uony is the wrong size-) y AofK so that we can use it in the
*y(l:k-1); ation
X =y;
e T (13) = BOER(L,5) - L0450, 315 The complexity of solving Az = b by this method is O(n?), and the
gt T AR dominant cost is the LU decomposition.
x(k) = x(k)/U(k,k); end
end end
end
Tests... Improvements

. see LUtest.m

Once we have a method that works, we can think about how to
improve it

Eg, currently we can solve Ax = b where b is a vector, but it should
be easy to generalise to n x m matrices b.

We only need to modify Lsolve and Usolve

Eg, to solve Ly = b we must now compute

1 k—1

= — |b — Li:s
Ykm ka km]Z_:l kjYjim

Improvements

Option 1 : use an extra loop to deal with the columns of b

(improved)

(main part of Lsolve, original version) v = b;
y = b; for m = 1:bCols
for k = l:Lrows for k = l:Lrows

for j = 1:k-1 for j = 1:k-1

y(k) = y(k) - L(k,3)*y(3); y(k,m) = y(k,m) - L(k,3)*y(3,m);

end end

y(k) = y(k)/L(k,k); y(k,m) = y(k,m)/L(k,k);
end end

end

Note the complexity of this part is now O(n?m) where m is the number
of columns in b. We expect m < n so the LU decomposition is likely
still to be the dominant cost.

Improvements

Option 2 : use the fact that MATLAB can deal with whole rows in
a simple way (this is sometimes called an "implicit loop")

(original) (improved)

y = b; y = b;
for k = l:Lrows for k = l:Lrows

for j = 1l:k-1 for j = 1l:k-1

y(k) = y(k) - L(k,J)*y(3); y(k,:) = y(k,2) - L(k,3)*y(3,2);

end end

y(k) = y(k)/L(k,k); y(k,2) = y(k,:)/L(k,k);
end end

Option 3 (only for the brave...): use another implicit loop

(improved)
y = b;
for k = 1l:Lrows
y(k,:) = y(k,2) - L(k, 1:k-1) * y(1:k-1, :);
y(k,2) = y(k,:)/L(k,k);
end

next steps...

We coded up a method for solving Az = b by writing A = LU where L
and U are triangular matrices

Suppose we want to solve Az = b with
0 1 2
=@ o) =)

Clearly z = g but our method can’t solve this,

because it is not possible to write A = LU

Can we implement a method that works for all non-singular matrices?

General idea: we started with a simple algorithm, now we
(gradually) improve it

Beyond LU

The solution to our problem is to write
A=P'LU
where P is a permutation matrix
A permutation matrix is a square matrix where each row and each

column contain exactly one '1’ and all other entries are zero. They
are easy to invert because P! = PT,

This means that PA = LU, where PA is the same as A, but with
the rows in a different order.

If Ais non-singular then the decomposition A = P~'LU always
exists

Beyond LU

If we can obtain A = P~'LU then we can write Az = b as
LUx = Pb, which is easy to solve by our original method.

=(9)

has no LU decomposition, but

a0)€)=)

has a (trivial) LU decomposition where L is the identity

Example:

This is called pivoting, but how do we find a suitable P?

LU algorithm with pivot

Let A = A, Let P = I (identity). Set L =0and U = 0.

Iterate the following for k = 1,2,...n

(kfl)‘

Find the row ry of A~ that maximises |4,

(new steps)

Let P(*~1) be the permutation matrix that swaps row k with row .
(We always have ry, > k, if r, = k then P*—1 = 1))

Replace A%~ by p(—1 A(k=1): replace L by P*~V L; replace P by P*~D P,
This ensures that A%~ £ 0, except if the k column of A=) is all zeros.
(In fact it ensures Aﬁj}:l) # 0 whenever A is non-singular.)

Let Uy; = A,(;;*l) forj=k...n.
Let Ly, = A1 /4% Viorj = k...n.

Let A = ANV LUy forij=k...n. (same as regular LU)

As long as A is non-singular, we have finally PA = LU where P is a permutation, L
is lower triangular, and U is upper triangular.

Does this work?

To show that this method is valid requires some effort
There is some discussion in IB numerical analysis...
... the following 3 slides have an overview

Our main concern here is how to do the programming, not the
proof that the algorithm is valid

mathematical formulation of LU algorithm

Let A = A. We compute matrices A*) with elements

(k=1) 4(k=1)
AW _ 400 A Ay
]] k—1
A
Then the first k rows of A(%) are all zeros, as are the first k columns. Compute L and U with elements
k-1 k-1 k—1
Lix = Agk)/Agck), Ukj = Aicj)

Then A = LU, where L is lower triangular and U is upper triangular.

To see that A = LU note that A = 0 (all rows are zero) so that

(n—1) 4(n—1)
0= AM _ gn=1) _ Ain Ay
ij ij A0=D
(n=2) 4(n—2) (n=1) 4(n—1) &
— g2 _ AzzflAnll,j _ AL An; N
= Ay A(n—‘Z) A(n—l) N
n—1,n—1 nn N\
R
— ... &
n g(k—1) 4(k—1) N
_ A(U) _ Z Azk Ak_] ‘6\0
=4 20D A
k=1 kk X
&L

Hence A\ = 37| LiyUj 50 A= LU

LU with pivot

Notation: if A, B are matrices then (AB);; indicates element i;j of the matrix AB.

Fork=1,2,...n, let P%*~1) be a permutation matrix that swaps row k with some row r;, > k.
Let A© = PO A, Also let P(") = I, the identity.
For 1,2,...n, compute matrices A*) with elements

(P(mA(k-q))Y_kAil;—l)

() _ (pk) g(k=1)y.
A = (P®) gD, =
kk

Then the first & rows of A®*) are all zeros, as are the first k columns. Compute L and U with elements

p 1 .

o (n—1) p(n—2) (k) g(k—1)) (k—1)

Lix = (P P - PWA)ik X~y Ukj = Akj .
Ap,

Finally, let P = p(»=1) p(»=2)... p(0) Then PA = LU, also L is lower triangular and U is upper

triangular. (see next slide)

This method is valid for any choice of the row indices 71,72, ...,r,, as long as r; > k, and A;‘;‘” #0

for all k. We can choose 1y, at the same time as we compute A*~1), aiming to ensure that Ai’}j” #0.

LU with pivot -- check

To check that PA = LU, follow the same method as before: note that A = 0 (all rows are zero), and
use our formula for A®*) repeatedly: then

n) A(n— n—1)
- (P A 1))m,4§1j
i AGTY
(P(n)P(u—l)A(n—Z)) A("*Q) (P(")A("’_l))' A(n‘—l)
inin;

_ P(n)qu)A(an)) _ : in—1n-1j
(i AT AGTY

0= Ai;‘) = (p('n)A<n—1))

n (PO P(=1 pn=2) .. p) (=D A%

i k—1
R A;ck)

- (p(")p(n*l) . p(O)A)

Hence from the formulae for L, U, P, we have (PA);; = >_;_, LixrUxj S0 PA = LU

We should also check that the first & rows (and columns) of A(*) are always zero. This can be done, it
relies on the fact that row & of P(®) A(*~1) is the same as row k of A*~1),

... writing the program

The algorithm is not too simple, can we write the program?

Break up the problem into manageable pieces...

Write a function to swap two rows of a matrix
(this is the same as multiplying from the left by some P)

Write a function that finds the largest element in a given
column, and outputs the row in which that element
appears.

(this is needed to work out r)

Test these functions carefully before combining them into our
program

... finally

function [P,L,U] = PALUdecomp(A)

$PALUdecomp decompose A = P"{-1}LU
[m, n]=size(A);
if m ~= n, error('Input must be a square matrix.'), end
P=eye(n); L=zeros(n); U=zeros(n);

% remember A" (0) is A
RofK = A;

for k = l:n ... the only new part...

% this is the new part, do the pivot...

rk = findLargestinCol(AofK, k);
rk = findLargestinCol (AofK,k);

if Tk ~= k / if rk ~= k
RAofK = swapRows(AofK, rk, k); AofK = swapRows(AofK, rk, k);
L = swapRows(L, rk, k); _ .
® - swaprows(B, rk, k)1 L = swapRows(L, rk, k);
end P = swapRows(P, rk, k);
end
% from here it is the same as the OLD algorithm
for j = k:n
U(k,3) = BofK(k,3);
end
% check that we don't divide by zero(!)
if U(k,k) == 0
error('** A”(k-1)_{k,k}==0 in PALU decomp')
end

for i = k:n
L(i, k) = RofK(i,k)/U(k,k);
end
for i = k:n
for j = k:n
RofK(i,j) = RofK(i,j) - L(i,k)*U(k,3);
end

end
end % of the loop over k

Example: PAL.Udecomp.m,
also pivotTest.m

end % of the function

... finally

function [rk] = findLargestinCol(A,k)
¢ findLargestinCol: find the row index of the large element in column k
% (of some matrix A)

[value,index] = max(abs(A(:,k))); & max is built-in for matlab
% don't forget to take absolute
% value
rk = index;
end
function [A] = swapRows(A,u,v)
$swapRows: swap rows u and v of matrix A and send the answer as output
storeMe = A(v, :); % store row v of A
A(v, :)=A(u, :); % copy row u of A into row v of A
A(u , :) = storeMe; % copy the stored row into row u of A

end

findLargestinCol.m , swapRows.m

round-off (again)

The problematic part of (normal) LU decomposition was
(k=1) 4(k—1)
A0 _ qeny A Ay
j j A(k—l)
kk

when A,(JZ_” =0.

If our matrices are not specially constructed to be “nasty” we might
expect this to be rare. ..

... but if A;’;—” is a small number, we can expect large numbers to
start appearing in our matrices. . .

...this is not so rare, and it can cause round-off problems when we

start taking differences of these large numbers. ..

pivotTest.m

“More general” algorithm (with pivot) is also more accurate. . .

further improvement...

Now we have a working program, we can solve equations...

However, there are still a few things that we can think about,
especially if we want to work with large matrices
Can we make our program more flexible?

(eg can we get solutions where b is nx m? ... see earlier)

Can we make our program run faster?
(eg can we reduce the total number of operations?)

also, does our program use up a lot of memory?

"Efficiency"

Our current algorithm keeps track of a permutation matrix P.

This is an n x n matrix in which there are n ones and all other
elements are zero.

...perhaps it would be more efficient to just keep track of the ones,
and let the zeros look after themselves. . .

If we do this, we can store all information about the matrix by keeping
track of n integers, instead of n? real numbers.

(Eg, for row j, keep keep track of the position x; of the “one” that
appears in that row.)

compact version

$ main body of PALUdecompV2

L=zeros(n); U=zeros(n);
P = 1:n; % P starts as a vector with elements 1,2,... n

% remember A" (0) is A
AofK = A;
for k = 1:n

% this is the new part, do the pivot...
rk = findLargestinCol(AofK,k);
if rk ~= k
AofK = swapRows(AofK, rk, k);
L = swapRows(L, rk, k);
% swap two elements of P (instead of swapping rows)
storeMe = P(rk);
P(rk) = P(k);
P(k) = storeMe;
end

% from here it is the same as the OLD algorithm
[snipped to save space]

end % of the loop over k

Example: PALUdecompV2.m

compact version

... Pis not stored as a matrix, how do | compute (for example) PA?

function [A] = PTimesMat(P,M)
% compute P.M where P is a "permutation vector" and M is a matrix

[Mrows,Mcols] = size(M);
A = zeros(Mrows,Mcols);

% should check here that P is vector of size Mrows

for i=1l:Mrows
A(i,:) = M(P(i),:);
end
end

...afurther advantage is that this “matrix multiplication” is now an
O(n?) operation, instead of O(n?)

Lesson from P matrix

If we think carefully about the "information content" of our data,
we can reduce the amount of data that we store

This can also help to reduce the number of operations in our
computation, although our code might be a bit more complicated

In addition, the computer has a finite amount of memory: by
storing less data, we reduce the demand on resources, this
helps when solving large problems...

Saving more memory

For LU decomposition, our final output is an upper triangular matrix
and a lower triangular matrix (with 1s on the diagonal)

You can see that there are only n? non-trivial numbers that we have to
compute...in fact we scan store all of these in one n x n matrix,
instead of two

It is possible to do LU decomposition (with pivot) in which we end up
with a final matrix A(™) whose elements are those of L and U (instead
of zeros)

If you really care about speed and memory usage, this is a good idea.
But always remember: if you just want something that works, the
simplest method can still be best. ..

Memory -- one last thing

MATLAB is very good at dealing with vectors, which we can use to
make lists

However, dealing with very large lists (millions or billions of entries) can
be slow

It's good to ask: do | really need to store every element in the list?

Eg, for ODE solving, we computed and stored the whole sequence of
yn- But if the step h is small then for any practical purpose (eg plotting
a graph), we can just as well store every 10th point, or every 100th

If you keep this in mind, it will help to avoid “bad programming habits”

... today

we showed how to build up a reasonably complicated
algorithm (LU decomposition with pivot)

started to think about what makes a "good program"

... hext lecture

programs that use random numbers
(in particular for computing high-dimensional integrals)

