
Computational Projects

Lecture 8 : programming advice, etc

http://www.maths.cam.ac.uk/undergrad/catam/part-ia-lectures

Dr Rob Jack, DAMTP

What makes a good program?

A good program should do a specific job, reliably and efficiently.

ideally, it should be flexible: it should work in general cases, not
only for simple cases. It should provide output that is easy to
understand.

For any given task, there are would be many possible programs that
can accomplish this

When you write a program, think of it primarily as a work of literature.
You’re trying to write something that human beings are going to read.
Don’t think of it primarily as something a computer is going to follow.
The more effective you are at making your program readable, the more
effective it’s going to be: You’ll understand it today, you’ll understand it
next week, and your successors who are going to maintain and modify
it will understand it.

Donald Knuth

When you write a proof, think of it primarily as a work of literature.
You’re trying to write something that human beings are going to read.
[...] The more effective you are at making your proof comprehensible,
the more effective it’s going to be.

When you write an answer to an exam question, think of it primarily
as a work of literature. You’re trying to write something that human
beings are going to read. [...] The more easily the examiner can see
what you meant, the more effective it's going to be.

When you write a CATAM report, think of it primarily as a work of
literature. You’re trying to write something that human beings are going
to read. [...] The more easily the assessor can see what you meant, the
more effective it's going to be.

Like a mathematical proof, an algorithm needs to be unambiguous: the
computer will execute the algorithm that you give, not the one that you
"obviously" meant to write(!)

From first lecture

Examiners [and CATAM project assessors] will only mark the work
that you submit : we can't give credit for things that you "obviously"
understood but never wrote down

(this is particularly relevant when giving partial credit)

Standard programming advice

Give names to your variables and functions that make your program
easy to read

In the old days there were reasons to use short variable names
and people often used single letters, i,j,k etc
... no longer a good idea...

Include plenty of comments

Don't be tempted to do "something clever" unless you are really sure
that it makes your program more efficient (... keep it simple)

Use functions sensibly, avoid copy-pasting similar sections of code...

something clever: Recursion

function [y] = recursiveFactorial(x)
%recursiveFactorial compute x factorial

 % check x>=0, else we can get stuck in an infinite loop
 if x < 0
 error('factorials of positive numbers only')
 end

 if x <= 1
 y = 1;
 else
 y = x * recursiveFactorial(x-1);
 end

end

A recursive function is a function whose definition includes the function
itself

compute the factorial of x-1

"to understand recursion, you must first understand recursion"

something clever(?): Recursion

function [y] = simpleFactorial(x)
%simpleFactorial compute x factorial

 if x < 0
 error('factorials of positive numbers only')
 end

 y=1;
 for k=1:x
 y = y*k;
 end

end

... keep it simple

... easier to understand, just as efficient

(Also, recursive functions are often harder to debug and test; they can
be useful in some situations but caution is advised...)

Debugging

As you practise programming, you will find that sometimes your
programs don't work as you hoped...

The process of fixing the problems ("bugs") is called debugging

Most people agree that debugging is the hardest and most
frustrating aspect of programming...

The best way to help with debugging is:  
write programs with fewer bugs in the first place

... but there are other useful strategies...

Avoiding bugs

Keep it simple

Break the problem into functions and test each function separately  
(make sure that you know what will happen if a function gets an
unexpected input... consider adding a check)

Sometimes you can solve the problem by breaking it into
several parts and combining them together at the end...
... when combining, it will help a lot if you have used sensible
variable names and you have included comments.

Add comments to your program as you write it, don't think of this
as something to do at the end (... once it's working)

Debugging

There is no perfect debugging method but a good plan is:
Try to guess what might be wrong, and test this hypothesis

A classical method is to print out the values of variables that might
be wrong, and check them

Eg for LU decomposition, maybe you want to find a simple example,
print out all the matrices A(k), and check that the first k rows and
columns are indeed full of zeros

<latexit sha1_base64="pPaiZB10Gl1cAn+9Wo/aXY6isE0=">AAADLXicbVJNb9NAEF2brxK+UjhyYESDVKQoshESnFBRhMSBQ5FIU6kO1Xg9TlbZ9Vq767bB8hX4MUic4Myf4ICEuPIPOLNOeiAtc9nRe29mdt9sWkphXRT9CMILFy9dvrJxtXPt+o2bt7qbt/esrgynEddSm/0ULUlR0MgJJ2m/NIQqlTRO58OWHx+RsUIXb9yipInCaSFywdF56HAzuJeUaFJ9UscxV03dSWyeoxJyAZ2koGOulcIiq5PhsKkThW7GUdbDpllnx+NTNk3rcUv6pnYuysel6yQGp1PKjJjOXOfFFHJtoPdq1IOMfH2prWiv0geFi5RgoSs4xsKB05CLIgMEK1QpCegE27MPpRGe15UDlBLcjHypM4KThd7zt/X2/GHT64O/F/AZ8blXoFvKcmGsg968B0Yf25VCy0oVPjcEfhpRBnnlu+oc3pHRtjnsbkWDaBlwPolPk62d4ccP3xhju4fdP0mmeaWocFyitQdxVLpJjcYJLslbU1kqkc9xSgc+LVCRndTLTTbwwCPZ0qFc+zcu0X8ralTWLlTqla3b9izXgv/jDiqXP53UoigrRwVfDfIPbV1uvwVkwhB3fuuZQG78Rrg3Dw1y5z/P2pQZySNyDayBqWqNis/acj7ZezSIo0H82jv2jK1ig91l99k2i9kTtsNesl02Yjx4H3wKvgRfw8/h9/Bn+GslDYPTmjtsLcLffwENCQfY</latexit><latexit sha1_base64="n1gIGPVxxnYu2M+bSkJT4f2nifg=">AAADLXicbVI9bxNBEN07voL5SqCkYESMFCQrukNIUKEgC4mCIkg4jpQz1tzenL3y7u1pdy+JOV0L/BgkKqgR/4ECCdHSUlGzZ6fACdPs6L03M7tvNi2lsC6KvgfhufMXLl5au9y5cvXa9RvrGzf3rK4MpwHXUpv9FC1JUdDACSdpvzSEKpU0TGf9lh8ekrFCF6/cvKSRwkkhcsHReWi8EdxJSjSpPq7jmKum7iQ2z1EJOYdOUtAR10phkdVJv9/UiUI35SjrftOsssPhCZum9bAlfVM7E+XD0nUSg5MJZUZMpq7zbAK5NtB9MehCRr6+1Fa0V+mBwnlKMNcVHGHhwGnIRZEBghWqlAR0jO3Zg9IIz+vKAUoJbkq+1BnByUL36et6a3a/6fbA3wv4lPjMK9AtZLkw1kF31gWjj+xSoWWlCp8bAj+NKIO88l11Dm/IaNuM1zej7WgRcDaJT5LNnf77d1/Zl9+74/U/SaZ5pahwXKK1B3FUulGNxgkuyVtTWSqRz3BCBz4tUJEd1YtNNnDPI9nCoVz7Ny7QfytqVNbOVeqVrdv2NNeC/+MOKpc/HtWiKCtHBV8O8g9tXW6/BWTCEHd+65lAbvxGuDcPDXLnP8/KlCnJQ3INrICpao2KT9tyNtl7sB1H2/FL79gTtow1dpvdZVssZo/YDnvOdtmA8eBt8CH4FHwOP4bfwh/hz6U0DE5qbrGVCH/9BY0PCYo=</latexit><latexit sha1_base64="n1gIGPVxxnYu2M+bSkJT4f2nifg=">AAADLXicbVI9bxNBEN07voL5SqCkYESMFCQrukNIUKEgC4mCIkg4jpQz1tzenL3y7u1pdy+JOV0L/BgkKqgR/4ECCdHSUlGzZ6fACdPs6L03M7tvNi2lsC6KvgfhufMXLl5au9y5cvXa9RvrGzf3rK4MpwHXUpv9FC1JUdDACSdpvzSEKpU0TGf9lh8ekrFCF6/cvKSRwkkhcsHReWi8EdxJSjSpPq7jmKum7iQ2z1EJOYdOUtAR10phkdVJv9/UiUI35SjrftOsssPhCZum9bAlfVM7E+XD0nUSg5MJZUZMpq7zbAK5NtB9MehCRr6+1Fa0V+mBwnlKMNcVHGHhwGnIRZEBghWqlAR0jO3Zg9IIz+vKAUoJbkq+1BnByUL36et6a3a/6fbA3wv4lPjMK9AtZLkw1kF31gWjj+xSoWWlCp8bAj+NKIO88l11Dm/IaNuM1zej7WgRcDaJT5LNnf77d1/Zl9+74/U/SaZ5pahwXKK1B3FUulGNxgkuyVtTWSqRz3BCBz4tUJEd1YtNNnDPI9nCoVz7Ny7QfytqVNbOVeqVrdv2NNeC/+MOKpc/HtWiKCtHBV8O8g9tXW6/BWTCEHd+65lAbvxGuDcPDXLnP8/KlCnJQ3INrICpao2KT9tyNtl7sB1H2/FL79gTtow1dpvdZVssZo/YDnvOdtmA8eBt8CH4FHwOP4bfwh/hz6U0DE5qbrGVCH/9BY0PCYo=</latexit><latexit sha1_base64="KtBEs09FTOraGKRBU/fL0JtCcXg=">AAADLXicbVJNixNBEJ0Zv9b4sVk9erAwEVYIYUYEPclKEDx4WMFsFjIx1PTUJE26p4funs3GYa7+GsGT/hMPgnj1H3i2J8nB7FqXLt57VdX9qpNCcGPD8IcfXLl67fqNvZutW7fv3N1vH9w7MarUjIZMCaVPEzQkeE5Dy62g00ITykTQKFkMGn50Rtpwlb+3q4ImEmc5zzhD66Dpgf8wLlAn6ryKIibrqhWbLEPJxQpacU5LpqTEPK3iwaCuYol2zlBUg7reZUejLZsk1aghXVOz4MWzwrZijbMZpZrP5rb1egaZ0tB9O+xCSq6+UIY3V+mBxFVCsFIlLDG3YBVkPE8BwXBZCAI6x+bsQaG541VpAYUAOydXajVnZKD76kN1uHhSd3vg7gVsTmzhFGjXsoxrY6G76IJWS7NRKFHK3OWawE0jSiErXVeVwUfSytTTdifsh+uAy0m0TTreNo6n7T9xqlgpKbdMoDHjKCzspEJtORPkrCkNFcgWOKOxS3OUZCbVepM1PHZIunYoU+6Na/TfigqlMSuZOGXjtrnINeD/uHFpsxeTiudFaSlnm0HuoY3LzbeAlGti1m095ci02whz5qFGZt3n2ZkyJ3FGtoYdMJGNUdFFWy4nJ0/7UdiP3oWdo5dby/a8B94j79CLvOfekffGO/aGHvM/+Z/9r/634EvwPfgZ/NpIA39bc9/bieD3X5e1BYY=</latexit>

Once you find one thing that is wrong, try to trace things
backwards: where did the first mistake appear?

Debugging
... in a similar vein:
If you are doing something complicated, try to gradually make it
simpler, and see if the problem survives

... if you deal with matrices, is the problem still there if you use a
3x3 matrix, where you can check everything by hand?

... if you do something iteratively, is the problem already there in
the first iteration? At what iteration does it appear?

... can you tie down the problem to one specific function that is
getting 'correct' input but producing 'incorrect' output?  
(try to make a minimal reproducible example of the problem)

minimal reproducible example
function [y] = simpleFactorial(x)
%simpleFactorial : compute x factorial

... write the function here ...

... this function is self-contained  
 (no other function calls inside) ...

end

display(simpleFactorial(4))

If this code produces any output other than 24 then it would be a
minimal reproducible example (MRE) of a bug

-- It is clear what the function should do (and that it fails).

-- No outside information is needed to understand the problem

-- Anyone can check this

Breakpoints, stepping, etc

MATLAB can help you with debugging

The workspace window will tell you the current values of all
variables

You can use "breakpoints" to make scripts stop in the middle, so
that you can check the values of variables

You can "step" through programs, one line at a time, to see what
is happening

In other programming languages you can often get this
functionality through an IDE (integrated development environment)

Debugging summary

If you can come up with easy-to-read programs that do
computations in a clear and logical way then they will be easier to
develop, easier to use, and easier to modify

This sounds easy but the only way to be good at it is to practise!

Bugs are just mistakes, we all make them, the trick is to find them
early, when they are easy to fix...

It helps if you test everything as you are writing it

Programming languages

You can do the CATAM projects in any programming language

The examples in this course used MATLAB

could have used python instead...
... or Julia , C++ , LISP, java , ...

What are the advantages / disadvantages ?

MATLAB vs python

MATLAB and python are similar in many ways
(as long as we use python's numpy and scipy libraries)

Easy and flexible to use, efficient with matrix operations and other
math tasks
(solving ODEs, root finding, finding minima of functions...)

python is free, MATLAB is sold by a private company  
(we have free access)

both are reasonably efficient but neither runs super-fast

what about Julia ?

MATLAB and python are very well-established
... easy to use, lots of help online

a slightly newer development is called Julia

still growing, faster / more efficient than python
... also easy to use, but a bit less help available so far

https://sje30.github.io/catam-julia/

Prof Stephen Eglen's resources on using Julia for CATAM :

the old-fashioned way...

you might hear about "lower-level" languages like C , java,

in these languages, you have to tell the computer more precisely what it
should do
(for example, you have to specify whether each variable is an integer or a
real number or a vector or a matrix, contrary to MATLAB)

in general : this can be good for experts and for difficult problems,
 probably not needed for CATAM etc

... however, you do need to keep track of your variable types
 (getting this wrong is a very common way to generate bugs)

functions as black boxes
"Modern" languages are much more flexible for adapting code

Functions are very important for this :
generally-applicable tools that can be re-used.

... might come from different sources ...

Do we need to know what happens "inside the black box" ?
(Usually, no. But we have seen that sometimes it matters...)

To re-use a function, we often don't care how it works
(it is a "black box") https://en.wikipedia.org/wiki/Black_box

the End

-- Questions / comments / suggestions ?

-- Good luck with exams (now) and CATAM projects (next year) !

