
Natural Sciences Tripos Part IA

Mathematics III (B course)

Easter 2006

Professor R.R. Horgan

May 22, 2006

Contents

1 Linear Algebra 3

1.1 Linear vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Definition of a linear vector space . . . . . . . . . . . . . . . . 3

1.1.2 Examples of vector spaces . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Linear combinations and linear spans . . . . . . . . . . . . . . 5

1.1.4 Linear independence . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Dimension and basis . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.6 Examples of bases . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.7 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.8 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Algebra of matrices . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Some definitions and properties . . . . . . . . . . . . . . . . . 10

1.2.3 Inner or scalar product . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Relevance to linear equations . . . . . . . . . . . . . . . . . . 14

1.2.5 Summation convention . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



CONTENTS 2

1.3.2 Minors and cofactors . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 General rule for calculating a determinant . . . . . . . . . . . 16

1.3.4 Permutations and determinants . . . . . . . . . . . . . . . . . 17

1.3.5 Properties of determinants . . . . . . . . . . . . . . . . . . . . 21

1.4 Inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Uniqueness of inverse . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.2 Existence and construction of inverse . . . . . . . . . . . . . . 24

1.4.3 Orthogonal matrices . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Cramer’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 Uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Real symmetric matrices . . . . . . . . . . . . . . . . . . . . . 34

1.6.2 Diagonalization of real symmetric matrices . . . . . . . . . . . 35



1 LINEAR ALGEBRA 3

1 Linear Algebra

1.1 Linear vector spaces

The idea of a linear vector space is central to the analysis of many problems in

physics and mathematics and it is the basic object of study in linear algebra. In

particular, it applies to the study of

• linear simultaneous equations. This involves the study of matrices and their

properties;

• the solutions to linear partial (and ordinary) differential equations abbreviated

to PDE (ODE).

Physical problems that can be tackled include

• the harmonic vibrations of a system about an equilibrium and the natural fre-

quencies of oscillation. E.g., molecules and vibrational frequencies of absorption

of radiation;

• waves in various media;

• problems in diffusion;

• the electrostatic potential of charge distributions;

• Fourier series;

• quantum mechanics.

In the first part of this course we will concentrate on linear algebra applied to

matrices but it is important to understand that we are discussing a particular kind

of realization, or representation, of a linear vector space and that there are many

others. For this reason, it is important to give a formal definition.

1.1.1 Definition of a linear vector space

Notation:

V : a set of elements denoted by bold letters: x, y, u, v etc..
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K: a field consisting of elements called scalars, denoted by unbold letters: a, b, c, k

etc.. For us these will be real or complex numbers.

Rules:

• addition: This is a binary operation denoted ”+”. To any x, y ∈ V this rule

assigns an element z ∈ V : z = x + y.

• scalar multiplication: To any a ∈ K and x ∈ V this rule assigns an element

z ∈ V : z = ax.

Definition. V is called a vector space over K, and the elements of V are called

vectors, if the following axioms hold:

A1 For any vectors u, v, w ∈ V , (u + v) + w = u + (v + w). (Associativity.)

A2 For any vectors u, v ∈ V , u + v = v + u. (Commutativity.)

A3 There is a vector in V denoted 0, called the zero vector for which u + 0 = u

∀ u ∈ V .

A4 For each vector u ∈ V there is a vector in V denoted −u for which u+(−u) = 0.

(Inverse.)

A5 For any a ∈ K and any u, v ∈ V , a(u + v) = au + av.

A6 For any a, b ∈ K and any u ∈ V , (a + b)u = au + bu.

A7 For any a, b ∈ K and any u ∈ V , (ab)u = a(bu).

A8 For the unit scalar 1 ∈ K and any u ∈ V , 1u = u.

Other results follow from these axioms. E.g.,

0u = 0, a0 = 0, (−a)u = −au, au = 0 =⇒ a = 0 or u = 0.

1.1.2 Examples of vector spaces

i) Let K be an arbitrary field. A vector space is the set of all n-tuples of elements

of K with vector addition and scalar multiplication defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) ,

k(a1, a2, . . . , an) = (ka1, ka2, . . . , kan) ,

where ai, bi, k ∈ K. This space is denoted Kn.
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ii) The set of all n-tuples of real numbers (u1, . . . , un), denoted Rn, is a vector space

over the field R. This follows as an example of i). Likewise, the set of all n-tuples

of complex numbers (z1, . . . , zn), denoted Cn, is a vector space over the field C.

Examples of vectors in R3 are

(1, 2, 5) , (−0.5, 6.3, 234.8) , (0, 0, 0) .

The last of these is the zero, or null, vector 0.

iii) V is the set of all polynomials in t of degree ≤ n

a0 + a1t + a2t
2 + . . . + ant

n ,

with coefficients ai from a field K. V is a vector space over K with respect to the

usual operations of addition of polynomials and multiplication by a constant.

1.1.3 Linear combinations and linear spans

Let v1, . . . , vm ∈ V and a1, . . . , am ∈ K and let

x = a1v1 + . . . + amvm .

Then x is called a linear combination of v1, . . . , vm.

The set of all such linear combinations of v1, . . . , vm is a subspace, S, of V . In

other words, S contains all vectors of the form of x above that are generated by

all possible choices of a1, . . . , am ∈ K. This is written

S = {a1v1 + . . . + amvm : ai ∈ K, i = 1, 2, . . . , m} .

Then we say that the subspace S is spanned or generated by the v’s, and that

the v’s span or generate S.

1.1.4 Linear independence

Suppose that for some a1, . . . , am ∈ K we have

a1v1 + . . . + amvm = 0 ,

Then the vectors v1, . . . , vm are said to be linearly independent if the only solu-

tion is ai = 0, ∀i.

Conversely, if there is a solution with at least one of the a’s non-zero then the vectors

are linearly dependent. Note, that if any of the v’s is the zero vector, 0, then the

vectors are linearly dependent.



1 LINEAR ALGEBRA 6

1.1.5 Dimension and basis

A vector space V is said to be of finite dimension n or to be n-dimensional,

written dim V = n, if there exist linearly independent vectors e1, e2, . . . , en which

span V . That is, every v ∈ V can be written as a linear combination of the e’s.

The sequence {e1, e2, . . . , en} is then called a basis of V .

Note that a set of vectors might span V but they do not necessarily form a basis

since they might not be linearly independent. However, given such a set we can

systematically reduce the number of elements until we do have an independent set

which then will form a basis.

The definition of dimension is well defined because it can be shown that every basis

of V has the same number of elements.

1.1.6 Examples of bases

1. A basis for K3 over the field K is

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

An alternative basis is

w1 = (1, 1, 0) , w2 = (1, 0, 1) , w3 = (0, 1, 1) .

2. Let W be the vector space of polynomials in t of degree ≤ n. The set {1, t, t2, . . . , tn}
is linearly independent and spans W . Thus it is a basis of W and so dim W =

n + 1. A different basis when, e.g., n = 3 is {1 + 2t2, t + t2, t2 − 1}.

1.1.7 Coordinates

Given a basis {e1, . . . , en} for V , then any vector v ∈ V can be expressed as

v = x1e1 + . . . + xnen , xi ∈ K .

Then the n-tuple x = (x1, . . . , xn) are the coordinates of v with respect to the

given basis. If we change the basis the coordinates will change but, of course, v is

still the same vector:

v = y1w1 + . . . + ynwn , yi ∈ K ,
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with coordinates y = (y1, . . . , yn).

Note that x, y are themselves vectors since x, y ∈ Kn. Kn is a vector space over

the field K defined earlier.

1.1.8 Linear maps

A mapping A of a vector space V into a vector space U assigns to any vector x ∈ V

another vector y ∈ U . We write either

A : x → y, or Ax = y.

There might be an inverse (does not always exist), A−1 defined by

x = A−1y .

A

A
-1

V

U

y

x

The map is linear if it satisfies the following properties

(i) A(x1 + x2) = Ax1 + Ax2 for every x1, x2 ∈ V .

(ii) A(αx) = αAx for every x ∈ V and every scalar α in K.

Examples of linear maps

• Ax = ax.

• For position vectors in 3D: Ax = a ∧ x, a a constant vector, (where “∧” is

vector product).

• For position vectors in 3D: Ax = a ·x, a a constant vector, (where “·” is scalar,

or dot, product). Note that here A maps V = R3 into U = R.

Examples of non-linear maps

(i) Ax = x + a. (|x| is the length of x.)

(ii) For position vectors in 3D: Ax = a|x|x.
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1.2 Matrices

A matrix is a rectangular array of real or complex numbers. We shall mainly use

real numbers in this course but complex matrices are central to many applications.

Examples are

(

1 2 3

4 5 6

) (

3.6 2.4

9.3 −4.5

)









1

3

7

9









(

1 3 7 9
)

.

Notation

An m × n matrix has m rows and n columns. The matrix is usually denoted by a

bold upper case letter, A, say, and then aij will denote the jth entry in the ith row:

A = (aij), (A)ij = aij , A =















a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

...
...

...
...

...
...

ai1 ai2 · · · aij · · · ain

...
...

...
...

...
...

am1 am2 · · · amj · · · amn















Notes

i) An m × m matrix is called a square matrix.

ii) An m × 1 matrix is a column vector:

v =










v1

v2

...

vm










.

iii) A 1 × n matrix is a row vector:

w =
(

w1 w2 · · · wn

)

.

In what follows it is often useful to understand a general statement by working

through the most simple non-trivial example. E.g., choose the smallest matrices to

illustrate the point.
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1.2.1 Algebra of matrices

For given n, m the set of all real (complex) n×m matrices form a vector space over

R (C). We need a rule of addition (+) and multiplication by a scalar which we make

explicit in (a) and (b) below.

(a) Addition of matrices

Let A and B be n × m matrices. Their sum C is an n × m matrix defined by

C = A + B with cij = aij + bij .

E.g.,
(

1 2 3

4 5 6

)

+

(

7 8 9

10 11 12

)

=

(

8 10 12

14 16 18

)

(b) Multiplication by a scalar

Let A and B be n × m matrices.

B = λA means bij = λaij i = 1 . . .m, j = 1 . . . n.

The statement of equality of matrices follows if we set λ = 1:

B = A means bij = aij i = 1 . . .m, j = 1 . . . n.

(c) Multiplication of matrices

Matrices A and B can only be multiplied if A is m × n and B is n × p. Then

C = AB

is defined by

cij =

n∑

k=1

aikbkj i = 1 . . .m, j = 1 . . . p,

and the product matrix C is m × p.

An important fact is that the product of two square matrices does not commute.

Suppose A and B are both m × m. Then in general AB 6= BA. If this is the

case we say that A and B do not commute. The commutator is defined by:

C = [A, B] ≡ AB − BA .

Of course, C is also m × m.
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Examples of multiplication

(

1 4 −2
)







6

4

1







=
(

20
)







6

4

1







(

1 4 −2
)

=







6 24 −12

4 16 −8

1 4 −2







(

1 2

3 4

)(

5 6

7 8

)

=

(

19 22

43 50

)

,

(

5 6

7 8

)(

1 2

3 4

)

=

(

23 34

31 46

)

Note the 2 × 2 matrices here do not commute.







9 8 6

4 3 2

1 2 3













6

−4

1







=







28

14

1







(

6 −4 1
)







9 8 6

4 3 2

1 2 3







=
(

39 38 31
)

1.2.2 Some definitions and properties

(a) Transpose

The transpose of an m × n matrix M is the n × m matrix denoted MT given

by the interchange of the rows and columns of M :

(MT )ij = (M)ji , for all i, j.

Note that

(i) (MT )T = M .
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(ii)

(AB)T = BT AT

(i, j) element:
∑

k

ajkbki =
∑

k

bkiajk =
∑

k

(BT )ik(A
T )kj

This result generalizes: (ABC)T = CT BT AT etc.

(b) Symmetric and anti-symmetric matrices

We define a symmetric matrix S to be a square matrix which satisfies ST = S.

Thus

sij = sji.

We define an anti-symmetric (or skew-symmetric) matrix A to be a square

matrix which satisfies AT = −A. Thus

aij = −aji.

Given an general m × m matrix B we can construct its symmetric and anti-

symmetric parts given, respectively, by S and A to be

S =
1

2
(B + BT ) , A =

1

2
(B − BT ) .

Conversely, we may always decompose B as the sum of a symmetric matrix and

an anti-symmetric matrix: B = S + A.

(c) Diagonal matrix

A square matrix A with non-zero entries only on the diagonal: aij = 0 i 6= j.

E.g., 





1.2 0 0

0 −3.4 0

0 0 7.6







(d) Unit matrix

A diagonal matrix denoted 1 or I with elements denoted δij , called the Kroneka

delta, where δii = 1, δij = 0 i 6= j. E.g., for n = 3






1 0 0

0 1 0

0 0 1







For any matrix A we have IA = AI = A.
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(e) Orthogonal matrix

A square matrix O which satisfies OOT = OT O = I. E.g.,

R(θ) =

(

cos θ sin θ

−sin θ cos θ

)

More on this soon.

(f) Complex conjugation

If A = (aij) then the complex conjugate is A∗ = (a∗
ij).

(g) Hermitian conjugation

If A = (aij) then the hermitian conjugate is A† = (AT )∗ = (A∗)T = (a∗
ji).

An hermitian matrix satisfies A† = A (c.f. symmetric matrix) and is important

in quantum mechanics.

(h) Trace

The trace of a matrix is defined for square matrices. For A, m × m, we have

trace(A) =
m∑

i=1

aii .

It is the sum of the elements on the main diagonal of the matrix.

Some properties of trace are:

(i)

trace(AB) = trace(BA)

m∑

i=1

n∑

j=1

aijbji =
n∑

j=1

m∑

i=1

bjiaij

Sufficient that A is m × n and B is n × m.

(ii)

trace(ABC) = trace(CAB)

∑

ijk

aijbjkcki =
∑

kij

ckiaijbjk
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(iii) This result can be generalized and holds for any cyclic permutation of the order

of multiplication. For example

trace(A1A2A3A4) = trace(A3A4A1A2) = etc.

A cyclic permutation shifts all elements by a given amount with those elements

shifted off one end being inserted at the other. E.g., 12345 → 45123). (It’s like

moving the numbers around a clockface.)

1.2.3 Inner or scalar product

Can introduce a product of two vectors x, y called the inner or scalar product. (It

can be defined for many kinds of vector space but it not part of the axioms defining

them; it is an extra optional property.) Give well-known examples:

• For column vectors x, y real

x · y =

n∑

i=1

xiyi = xT y .

• For column vectors x, y complex

x · y =

n∑

i=1

x∗
i yi = x†y .

Note: in this case x · y = (y · x)∗.

Then x · x =
∑

i |xi|2 is real and positive.

We define the magnitude of x to be ||x|| =
√

x · x.

(i) If x · y = 0 then x and y are orthogonal.

(ii) A basis e1, · · · , en which satisfies ei · ei = 1, ei · ej = 0, i 6= j is orthonormal.

Write as

ei · ej = δij .

E.g., in 2D

e1 = (1, 0), e2 = (0, 1) .
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1.2.4 Relevance to linear equations

The system of linear algebraic equations

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

...

am1x1 + am2x2 + · · · + amnxn = ym

can be written compactly using matrix notation as

Ax = y .

1. The equations relate an n-dim column vector x to an m-dim column vector y.

2. They may be viewed as defining a linear transformation from an n-dimensional

vector space Vn to an m-dimensional vector space Vm.

The problem of solving the equations can be viewed as finding the vector x ∈ Vn

which is mapped under the transformation A to the vector y ∈ Vm. This may

not always be possible or there may not always be unique solution for x. Usually

m = n but the interpretation applies more generally.

1.2.5 Summation convention

It is often convenient to employ the summation convention which is that the

appearance of any repeated suffix in a formula automatically implies summation

over that suffix. Thus,

n∑

k=1

aikbkj is written just as aikbkj .

A more complicated example would be

QijPjkklRlm ≡
∑

j

∑

k

∑

l

QijPjkklRlm .

It is important that no suffix occurs more than twice.

This convention will not be used in these lectures so that, for example, aii will mean

a11 or a22 etc., and not (a11 + a22 + · · · ).
Whatever convention we use, we call the sum over pairs of indices a contraction

of the indices.
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1.3 Determinants

1.3.1 Definition

The solution of the linear equations

a11x1 + a12x2 = y1

a21x1 + a22x2 = y2

can be written

x1

y1a22 − y2a12

=
x2

y2a11 − y1a21

=
1

a11a22 − a12a21

(provided no denominator vanishes), or more neatly as

x1
∣
∣
∣
∣
∣

y1 a12

y2 a22

∣
∣
∣
∣
∣

=
x2

∣
∣
∣
∣
∣

a11 y1

a21 y2

∣
∣
∣
∣
∣

=
1

∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣

,

where the determinant is defined as
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
= ad − bc .

Similarly, for 3 equations in 3 unknowns:

x1
∣
∣
∣
∣
∣
∣
∣
∣

y1 a12 a13

y2 a22 a23

y3 a32 a33

∣
∣
∣
∣
∣
∣
∣
∣

=
x2

∣
∣
∣
∣
∣
∣
∣
∣

a11 y1 a13

a21 y2 a23

a31 y3 a33

∣
∣
∣
∣
∣
∣
∣
∣

=
x3

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 y1

a21 a22 y2

a31 a32 y3

∣
∣
∣
∣
∣
∣
∣
∣

=
1

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
∣
∣

.

Spot the rule. The denominator of xi is the determinant got by replacing the i-th

column of (aij) by y.

The 3 × 3 determinant is defined by

∣
∣
∣
∣
∣
∣
∣
∣

a b c

d e f

g h i

∣
∣
∣
∣
∣
∣
∣
∣

= a

∣
∣
∣
∣
∣

e f

h i

∣
∣
∣
∣
∣
− b

∣
∣
∣
∣
∣

d f

g i

∣
∣
∣
∣
∣
+ c

∣
∣
∣
∣
∣

d e

g h

∣
∣
∣
∣
∣

.

The general rule is defined recursively and to do this we first define minors and

cofactors.
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1.3.2 Minors and cofactors

Consider the square n × n matrix A = (aij). Let M ij be the (n − 1) × (n − 1)

submatrix of A obtained by deleting its ith row and jth column.

The determinant |M ij| is called the minor of the element aij of A.

The cofactor of aij , denoted Aij is the “signed” minor:

Aij = (−1)i+j|M ij| .

The “signs” (−1)i+j form chess-board pattern with +’s on the main diagonal:








+ − + − · · ·
− + − + · · ·
+ − + − · · ·

etc.









The matrix with the cofactors as its elements is called the classical adjoint of A

denoted adjA. It is defined by (adjA)ij = Aji:

adjA =















A11 A21 · · · Aj1 · · · An1

A12 A22 · · · Aj2 · · · An2

...
...

...
...

...
...

A1i A2i · · · Aji · · · Ani

...
...

...
...

...
...

A1m A2m · · · Ajm · · · Anm















1.3.3 General rule for calculating a determinant

Given the square n×n matrix A then the determinant of A, denoted |A| or det A,

is defined by

|A| =

n∑

j=1

aijAij for any fixed value of i,

or

|A| =

n∑

i=1

aijAij for any fixed value of j.

Examples

Let

A =







1 2 3

−1 4 5

2 7 8







.
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Choosing to fix i = 1 then

|A| = a11A11 + a12A12 + a13A13

= 1 ·
∣
∣
∣
∣
∣

4 5

7 8

∣
∣
∣
∣
∣
− 2 ·

∣
∣
∣
∣
∣

−1 5

2 8

∣
∣
∣
∣
∣
+ 3 ·

∣
∣
∣
∣
∣

−1 4

2 7

∣
∣
∣
∣
∣

= 1[32 − 35] − 2[−8 − 10] + 3[−7 − 8] = − 12

Or fixing j = 2 get

|A| = a12A12 + a22A22 + a32A32

= −2 ·
∣
∣
∣
∣
∣

−1 5

2 8

∣
∣
∣
∣
∣
+ 4 ·

∣
∣
∣
∣
∣

1 3

2 8

∣
∣
∣
∣
∣
− 7 ·

∣
∣
∣
∣
∣

1 3

−1 5

∣
∣
∣
∣
∣

= −2[−8 − 10] + 4[8 − 6] − 7[5 + 3] = − 12

The neat way is to pick a row or column with the most zeros.

A =







1 0 3

−1 0 5

2 7 8







.

Then choose j = 2 and get

|A| = − 7 ·
∣
∣
∣
∣
∣

1 3

−1 5

∣
∣
∣
∣
∣

= − 56 .

More work if you choose j = 3 for instance.

A notion central to understanding determinants is the idea of a permutation.

1.3.4 Permutations and determinants

A permutation of the numbers {1, 2, 3, · · · , n} is a rearrangement or a sorting of

the numbers into a different order. So

123456 → 562341

is a permutation. We can denote this permutation as

σ =

(

1 2 3 4 5 6

5 6 2 3 4 1

)

or simply σ = 562341 .
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In general, the notation is

σ = j1j2 · · · jn with ji = σ(i) .

There are n! different permutations of n numbers or objects; the permutations simply

specify the different orders in which they can be laid out.

Consider a given permutation σ = j1j2 · · · jn. We say σ is even or odd according

to whether there is an even or odd number of pairs (i, k) for which

i > k but i precedes k in σ .

Then define the parity of σ to be

Pσ =

{

1 if σ is even

−1 if σ is odd

So for σ = 562341 the pairs that satisfy the criterion above are

(5, 2) (5, 3) (5, 4) (5, 1) (6, 2) (6, 3) (6, 4) (6, 1) (2, 1) (3, 1) (4, 1)

There are 11 pairs and so Pσ = −1.

Another and very useful way to understand the meaning of Pσ is to count the number

of pairwise interchanges of neighbours that get you back to 12345 · · ·n. If this is

even(odd) Pσ = 1(−1). In our example,

562341 → 156234 → 152346 → 123456

5 3 3

There are 11 pairwise interchanges (cannot be fewer than other method), and so

Pσ = −1.

In particular, Pσ clearly changes sign upon interchange of any pair of neighbours

but also under interchange of any pair of j’s:

P123 = 1 P132 = −1, P321 = −1 .

We now define an important object. This called variously the Levi-Cevita tensor

or the epsilon tensor. It is defined to be

εj1j2···jn
=







0 if any pair of j1j2 · · · jn are equal

Pj1j2···jn
otherwise
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Thus

ε123 = 1, ε321 = −1, ε112 = 0, ε111 = 0

ε1234 = 1, ε2143 = 1, ε2413 = −1, ε1232 = 0 .

The important result is the following.

|A| =
∑

all permutations

Pj1j2···jn
a1j1a2j2 · · ·anjn

=
∑

j1j2···jn

εj1j2···jn
a1j1a2j2 · · ·anjn

=
∑

i1i2···in

εi1i2···inai11ai22 · · ·ainn .

The second sum is over ji = 1, 2, · · ·n for each ji and in the third sum similarly over

the i’s.

Remarks

• The result is easily checked for n = 2, 3 and the general result can be established

by induction.

• The sum on RHS consists of n! terms, corresponding to the number of permuta-

tions, each of which is a product of n elements from (aij); each term has exactly

one element from each row and column.

To get a feel for this expression we illustrate with n = 3.

1. let a, b, c be 3-dimensional vectors. Then the well-known vector product given

by a = b ∧ c (written also as b × c) has elements

ai = εijkbjck :

a1 = b2c3 − b3c2 , a2 = b3c1 − b1c3 , a3 = b1c2 − b2c1 .

Then by construction we clearly have

b · (b ∧ c) =
∑

i

bi

(
∑

jk

εijkbjck

)

=
∑

ijk

εijkbibjck = 0 .

The last result follows because εijk = −εjik; it is anti-symmetric under i ↔ j

whereas bibj is obviously symmetric under this interchange. Similarly, c·(b∧c) =

0.
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3. Consider

A =







a1 a2 a3

b1 b2 b3

c1 c2 c3







Then

|A| =
∑

ijk

εijkaibjck = a · (b ∧ c) ,

the determinant of a 3 × 3 matrix is the scalar triple product of its rows (or

columns) treated as vectors.

4. The important general result is that if the same vector occurs twice anywhere in

the sum involving the ε-tensor (i.e., in the contraction of vectors with ε) then

the answer is zero.
∑

jkjl

εj1j2···jn
vjk

vjl
= 0 .

The result follows because the permutation needed for jk ↔ jl is always odd;

εj1···jn
is anti-symmetric under interchange of any pair of indices.

It also follows immediately that if a matrix has any two rows (or columns) equal

then its determinant is zero.

5. Consider the 3 × 3 matrix A = (aij). Then the cofactors Aij are given by

A1j =
∑

j2j3

εjj2j3a2j2a3j3 = (a2 ∧ a3)j ,

A2j =
∑

j1j3

εj1jj3a1j1a3j3 = (a3 ∧ a1)j ,

A3j =
∑

j1j2

εj1j2ja1j1a2j2 = (a1 ∧ a2)j .

Here ai = (ai1, ai2, ai3) – the i-th row of A written as a (row) vector. It is easy

to verify that for each j these are the correct “signed” sub-determinants. Also,

we see that, for example,

|A| =
∑

j1j2j3

εj1j2j3a1j1a2j2a3j3 =
∑

j1

a1j1A1j1 .

which recovers our earlier expression for |A|.

[Not lectured but for completeness the general expression for Aij is

Aij =
∑

j1···ji−1ji+1···jn

εj1···ji−1jji+1···jn
a1j1 · · · [aiji

]
︸︷︷︸

· · · anjn

omit this term
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]

We see also that
∑

k

a2kA1k =
∑

k

a3kA1k = 0.

This follows because

(a) It is the scalar triple product with two vectors the same.

(b) It is the determinant of a matrix with two rows the same.

(c) When we unpack the sums we see that the same vector (either a2 or a3) occurs

twice in the contraction with ε.

The general result for arbitrary n is that

∑

k

aikAjk =

{

|A| i = j

0 i 6= j

As in (b) above, for i 6= j this is the determinant of a matrix with two rows the

same.

In matrix notation we have

∑

k

aikAjk = δij |A| or

A(adjA) = (det A)I

1.3.5 Properties of determinants

We collect here properties derived above and a few extra ones with examples.

1. Interchanging any two rows or columns of a matrix changes the sign of its deter-

minant.

2. |A| = 0 if any two rows or columns are the same.

3. The matrix obtained by multiplying all the elements of any one row (or column)

of A by λ has determinant λ|A|.

4. Adding a multiple of one row (column) to another row (column) leaves the de-

terminant unchanged. This is a useful way of reducing the calculation of |A|.
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E.g., our 3 × 3 example from before:

A =







1 2 3

−1 4 5

2 7 8







.

R2 → R2 + R1:

A =







1 2 3

0 6 8

2 7 8







.

R3 → R3 − 2 ∗ R1:

A =







1 2 3

0 6 8

0 3 2







.

R3 → R3 − 1/2 ∗ R1:

A =







1 2 3

0 6 8

0 0 −2







.

Then easily find |A| = 1 ∗ 6 ∗ (−2) = −12.

We have reduced the matrix to upper triangular form by performing row

operations . Can similarly define lower triangular form and column oper-

ations. The determinant is then just the product of the elements on the main

diagonal.

This is a much faster method for large matrices. The original definition requires

O(n!) mathematical operations (×, +), whereas this new method of reduction

to upper (lower) triangular form requires only O(n3) operations. (Computation-

ally, there can be issues with accuracy depending on the values of the matrix

elements.)

5. det AB = (det A)(det B). This follows directly from the definition in terms of

the ε-tensor but is fiddly to show. It relies on a useful result that I state for

n = 3 but is easily generalized:

∑

j1j2j3

εj1j2j3ai1j1ai2j2ai3j3 = |A|εi1i2i3 .

Show this by interchanging two i’s on both sides and noting that this is equivalent

to interchanging the associated pair of j’s on LHS together with multiplying by

(−1) because the ε-tensor is antisymmetric under interchange of j’s.
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6. |A| = |AT |. Using rows or columns in the formula are equivalent.

7. For ordinary 3D vectors in standard notation:

u ∧ v =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

u1 u2 u3

v1 v2 v3

∣
∣
∣
∣
∣
∣
∣
∣

, curl v = ∇ ∧ v =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂/∂x1 ∂/∂x2 ∂/∂x3

v1 v2 v3

∣
∣
∣
∣
∣
∣
∣
∣

.

8. The (signed) volume of the parallelepiped in 3D with sides a, b, c is V (a, b, c) =

a · (b ∧ c). Thus

V (a, b, c) =

∣
∣
∣
∣
∣
∣
∣
∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣
∣
∣
∣
∣
∣
∣
∣

The general result, which can be proved by induction, is that the (signed) volume

of a parallelepiped in n-dimensions with sides a1, a2, · · ·an is

V (a1, a2, · · ·an) = |A| where A =










a1
-

a2
-

...
...

an
-










Of course, here A = (aij) as usual. In all examples can use columns instead of

rows.

9. A result that is proved using det AB = (det A)(det B) can be illustrated in

3D. Given two parallelepipeds defined by (x1, x2, x3) and (y1, y2, y3) which are

related by

Axi = yi, i = 1, 2, 3

(treating x and y as column vectors), then

V (y1, y2, y3)

V (x1, x2, x3)
= |A| .

Certainly true if A is diagonal. With canonical basis vectors the length unit in

the ei direction is scaled by aii (e.g., the length unit in (0, 1, 0) direction is scaled

by a22), and so the volume is scaled by a11a22a33 ≡ |A|. This generalizes to n×n

matrices and can be the basis of the general proof.

x
1

x
2

x
3

y
2

y
1

y
3

A
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1.4 Inverse of a matrix

We consider only square matrices from now on.

Suppose we can find a matrix A−1 such that

A−1A = I .

We then can find the solution to the system of linear algebraic equations

Ax = y ,

be premultiplying both sides by A−1 to give

A−1Ax = (A−1A)x = Ix = x = A−1y ,

and hence we determine x.

The question is whether given A that A−1 exists and whether it is unique.

1.4.1 Uniqueness of inverse

If A−1 exists, it is unique and is both the left and right inverse. By this we mean

If LA = I then L is the left inverse of A

If AR = I then R is the right inverse of A.

Suppose that L is not unique, i.e., L1A = I and L2A = I. Then

L1 − L2 = (L1 − L2)I = (L1 − L2)AR

= (L1A − L2A)R = (I − I)R = 0 .

Hence, L1 = L2 and so L (and likewise R) is unique.

Now

L = LI = LAR = IR = R ,

and so the left and right inverses are the same.

1.4.2 Existence and construction of inverse

Earlier in this course we derived the important result that

A(adjA) = (det A)I .
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Thus, if A−1 exists, we have a ready-made construction of the right inverse of A

and hence of A−1, namely

A−1 =
adjA

det A
.

The 3 × 3 case is familiar. Suppose

A =







a -

b -

c -







,

then

A−1 =
1

a · (b ∧ c)






b ∧ c c ∧ a a ∧ b

? ? ?




 .

This works because






a -

b -

c -












b ∧ c c ∧ a a ∧ b

? ? ?




 =







a · (b ∧ c) 0 0

0 b · (c ∧ a) 0

0 0 c · (a ∧ b)







.

If |A| = 0 then A−1 does not exist and we say that A is a singular matrix. This

is the matrix generalization of the statement that x ∗ 0 = 1 has no solution for x.

However, a matrix whose determinant is zero is still not trivial. Some examples are







0 0 0

1 2 3

4 5 6







,







5 7 9

6 9 12

4 5 6







.

These matrices are equivalent under row operations. If |A| = 0 then at least one

row (column) can be reduced to all zeros by row (column) operations.









0 4 0 7

0 3 0 5

0 −1 0 9

0 1 0 0









,









15 4 18 7

11 3 13 5

7 −1 16 9

2 1 1 0









.

Equivalent under column operations C1 → 2 ∗ C2 + C4, C3 → C2 + 2 ∗ C4.
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1.4.3 Orthogonal matrices

A square matrix O which satisfies OOT = OT O = I. Thus, O−1 = OT . We have

|OT O| = |O|2 = |I| = 1, =⇒ |O| = ± 1 .

(i) Rotations

R(θ) =

(

cos θ sin θ

−sin θ cos θ

)

The rotation of a vector in Rn is a linear map given by an orthogonal matrix;

n = 2 (2D) example given above. A rotation of column vector x through angle

θ gives vector y where

y = R(θ)x.

Rotations preserve the length of the vector and so

xT x = yT y = xT (RT R)x .

True for all x and hence we deduce that RT R = I. Prove RRT = I by noting

that x = RT y and repeating argument. For rotations |R| = 1.

(ii) Reflections

The vector x′ obtained by reflecting x in a plane with unit normal n is x′ =

x − 2(x · n)n. In matrix notation, writing n as a column vector:

x′ = Ox, O = I − 2nnT , (O)ij = δij − 2ninj .

• Note that OT = O; it is its own inverse. This is clear geometrically – two

reflections in the same line get you back to original vector.

• Use nT n = 1 to show OT O = I. For reflection |O| = −1. Check this (without

loss of generality) by choosing nT = (0, 0, 1). Then O = diag(1, 1,−1) (diagonal

matrix with these elements on diagonal).

• Two successive different reflections O1 followed by O2 give a total transfor-

mation, or map, R = O2O1. Now, R is orthogonal and |R| = |O2O1| =

|O2||O1| = 1. Thus R is a rotation.
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1.5 Linear equations

1.5.1 Cramer’s rule

If Ax = y and |A| 6= 0, then

x = A−1y =
(adjA)y

|A| .

Then

xi =
1

|A|
∑

k

Akiyk .

We can rewrite the RHS and we get

xi =
1

|A|

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 · · · y1 · · ·
a21 · · · y2 · · ·
...

...

an1 · · · yn · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

where the y’s replace the i-th column in A. Thus, we get Cramer’s rule.

1.5.2 Uniqueness of solutions

Consider the set of equations

Ax = y ,

where A is m × n, x is n × 1 and y is m × 1 (i.e., column vectors). Given y, we

wish to investigate the possible solutions to these m equations for the n unknowns

x1, x2, · · · , xn.

• We may have redundant equations in this set. A redundant equation is some

linear combination of the others and should be omitted. If there are redundant

equations the equations will be linearly dependent.

• There may be inconsistent equations in the set. Best seen by example:

(

4 3

4 3

)(

x1

x2

)

=

(

4

9

)







2 3 4

−4 6 5

0 12 13













x1

x2

x3







=







1

3

7







.

First example is obvious. In second, on LHS R3 = 2 ∗R1+R2 but 7 6= 2 ∗ 1+3.

Inconsistent if the LHS is linearly dependent but the corresponding y-values

on RHS do not obey the same linear relationship. Then no solution exists.
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We can first check linear dependence on the LHS by inspecting the entries in A and

then, if necessary, inspect the entries in y to check for redundancy or inconsis-

tency.

(1) If m < n the system is underdetermined; there is not enough information

to fix all the x’s. However, unless the equations are inconsistent, it is possible

to express some of the x’s in terms of the others. That is, to find a family of

solutions.

E.g., m = 1, n = 2:

a11x1 + a12x2 = y1 .

This defines a straight line in the 2D space of (x1, x2).

In general, the family of solutions will lie in an (n − m) dimensional subspace

(or larger if there are redundant equations) of the n-dim space in which x lies.

E.g., in 3D (assuming no redundancy) m = 2, n = 3 is a line, m = 1, n = 3 is a

plane.

(2) If m > n then the LHS of the equations must be linearly dependent since the

vectors a1 · · ·am lie in an n-dim space. Then different cases are

(i) The equations are inconsistent and so there is no solution. In this case we

say that the system is overdetermined. E.g., 3 × 2 case






3 1

5 2

13 5







(

x1

x2

)

=







1

4

12







.

On LHS R3 = R1 + 2 ∗ R2 but on RHS 12 6= 1 + 2 ∗ 4.

(ii) There are redundant equations and we can discard them and so reduce m.

• m > n: then still overdetermined as in (2)(i);

• m < n: then underdetermined as in (1);

• m = n: important case.

(c) The n × n case.

(i) |A| 6= 0. In this case the rows (and columns) of A are linearly independent

and so the equations are neither redundant nor inconsistent. The inverse A−1

exists and is unique. The system of equations has the solution

x = A−1y .
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In the special case y = 0 the only solution is x = 0. Thus,

Ax = 0 and |A| 6= 0 =⇒ x = 0 .

Note, that since the columns of A treated as vectors c1, c2, · · · , cn are linearly

independent they form a basis for Rn. Thus

A =






c1 c2 · · · cn

? ? ?




 .

The equations are then just

y = x1c1 + x2c2 + · · · + xncn ;

the x’s are the coordinates of y in this basis. Hence, if y = 0, the zero vector,

we expect all coordinates xi = 0, ∀ i.

• In general we can solve the equations Ax = y by performing row operations

to both sides (i.e., on A and y) chosen to reduce A to upper triangular form.

The equations then solve iteratively.






1 4 3

2 9 5

−1 −1 −4













x1

x2

x3







=







9

17

−8







Then operations R2 → (R2−2 ∗R1), R3 → (R3+R1), R3 → (R3−3 ∗R2)

give 





1 4 3

0 1 −1

0 0 2













x1

x2

x3







=







9

−1

4







We can now solve, in order, x3 = 2, x2 = 1, x1 = −1. Also, |A| = 2.

This is an example of Gaussian elimination.

(ii) |A| = 0, y = 0. We seek solutions of the homogeneous equations

Ax = 0 .

It is now convenient to think of the rows of A being vectors r1, r2, · · · , rn:

A =










r1
-

r2
-

...
...

rn
-










.
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The r’s are linearly dependent, and let the greatest number of independent

vectors be k. So the r’s span a subspace Sr of Rn, with dim Sr = k.

The equations are now written

x · ri = 0, i = 1, 2, · · · , n .

Example with n = 3. Suppose k = 2 and so there are two linearly independent

vectors in r1, r2, r3. Choose these to be r1, r2. Then they form a basis for the

2D space Sr. The equations to be solved are

x · r1 = 0, x · r2 = 0, x · r3 = 0 .

The trick is to find a vector z that does not lie in Sr, and z = r1 ∧ r2 is the

obvious choice. By construction z · ri = 0, i = 1, 2, 3. Then clearly

Az = 0 ,

and hence we deduce the solution for x to be

x = λz ≡ λ(r1 ∧ r2) ,

for any value of λ.

The result for the general case stated above is that there will be (n − k) inde-

pendent vectors z1, · · · , zn−k that do not lie in Sr so that for any s ∈ Sr then

s · zi = 0, ∀ i. The solution for x is then of the form

Since Azi = 0, i = 1, 2, · · · , (n − k), we get solution x =

n−k∑

i=1

αizi ,

for any αi, i = 1, 2 · · · , (n − k).

(The space spanned by z1, z2, · · · , zn−k is called the kernel of A.)

(iii) |A| = 0, y 6= 0.

The column vectors of A, denoted c1, c2, · · · , cn, referred to in (i) are linearly

dependent and so do not form a basis for Rn but rather only span a subspace

Sc ∈ Rn. If the greatest number of independent vectors is k, then Sc has dim Sc =

k. (Note, that although Sc and Sr have the same dimension they are generally

not the same subspace.)

Look again at the equation in the form

y = x1c1 + x2c2 + · · ·+ xncn .
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• If y does not lie in the subspace Sc (y /∈ Sc), there can be no solution for x.

(Sc is called the image of A since A must map every vector x ∈ Rn into Sc.)

Example with n = 3.






1 −1 1

2 5 9

1 3 5













x1

x2

x3







=







−1

12

7







,







2

−2

8







.

The columns are linearly dependent: c3 = 2 ∗ c1 + c2. I can choose the basis

for the 2D space Sc to be

c1 =







1

2

1







, c2 =







−1

5

3







.

In manner similar to before, consider w = c1 ∧ c2. Here

c1 ∧ c2 =







1

−4

7







.

Since c1, c2, c1 ∧ c2 do form a basis for R3 we can write

y = p1c1 + p2c2 + p3c1 ∧ c2 .

The point is that if p3 6= 0 then y does not lie in Sc and there is no solution.

The condition for y to lie in Sc is

y · c1 ∧ c2 = 0.

This is satisfied by the first example but not the second.

The result for the general case stated above is that there will be (n − k) inde-

pendent vectors w1, · · · , wn−k that do not lie in Sc so that for any s ∈ Sc then

s · wi = 0, ∀ i. The conditions for a solution for x to exist is then that

y · wi = 0 i = 1, 2, · · · , (n − k) .

Suppose these conditions are satisfied and we find a solution x0: Ax0 = y.

This solution is not unique since we clearly also have

A(x0 + αz) = y, where Az = 0 .

Thus, the most general solution to Ax = y in this case is

x = x0 +

n−k∑

i=1

αizi ,

where the zi satisfy Azi = 0, i = 1, 2, · · · , (n − k) as explained in (ii).
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1.6 Eigenvalues and eigenvectors

If

Av = λv ,

where A is n × n, λ is a scalar and v 6= 0, then

• λ is an eigenvalue of A

• v is the eigenvector of A corresponding to the eigenvalue λ.

(i) Acting (or operating) on v with A scales it by λ leaving the direction un-

changed.

(ii) If v is an eigenvector then so is αv.

We can then write

Av = λIv , =⇒ (A − λI)v = 0 .

The only solution is v = 0 except for special values of λ for which det(A−λI) = 0.

Thus, we seek solutions for λ to

det(A − λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

...

an1 an2 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ PA(λ) = 0 .

This determinant is a polynomial of degree n in λ and is called the characteristic

polynomial PA(λ) of A. It is degree n since

• each term in PA(λ) is n-th order in the a’s and contains one element from each

row and column.

• The product of a’s on the diagonal is one such term and this contains λn.

PA(λ) has n roots and these are the eigenvalues λ1, λ2, · · · , λn. The set of eigenvalues

is the spectrum of A. They may be complex even if the entries in A are real.

E.g., consider

A =

(

−2 6

6 7

)

. PA(λ) =

∣
∣
∣
∣
∣

−2 − λ 6

6 7 − λ

∣
∣
∣
∣
∣

= (−2 − λ)(7 − λ) − 62 = λ2 − 5λ − 50 = 0 =⇒ λ = 10,−5 .
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Here A is symmetric.

A =

(

cos θ sin θ

−sin θ cos θ

)

. PA(λ) =

∣
∣
∣
∣
∣

cos θ − λ sin θ

−sin θ cos θ − λ

∣
∣
∣
∣
∣

= (cos θ − λ)2 + sin 2θ = λ2 − 2λcos θ + 1 = 0 =⇒ λ = e±iθ .

Here A is orthogonal and a rotation matrix: the eigenvalues give the angle of rota-

tion. A is anti-symmetric only for θ = π/2.

(i)

det(A − λI) = PA(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) .

Evaluate with λ = 0 and find important result

det A =
n∏

i=1

λi .

(ii) If |A| = 0 then at least one eigenvalue is zero and the corresponding eigenvectors

satisfy

Av = 0 .

This homogeneous equation was discussed earlier, and we can see that the

set of eigenvectors with λ = 0 will span the kernel of A; the space of vectors

annihilated by A.

(iii) By inspecting the definition of PA(λ) and coeff. of λn−1 term also can show that

trace(A) =

n∑

i=1

λi .

(iv) For real matrices the coefficients in PA(λ) are real and so if any λ are complex

then they must come in complex-conjugate pairs. The number of real eigenvalues

(and eigenvectors) can therefore be less than n; there are none in one of the 2×2

examples above when θ 6= 0, π.

Each eigenvalue λa has its corresponding eigenvector va:

Ava = λava, a = 1, 2, · · · , n.

Since αv will also do, we can choose α so that v is normalized, usually to 1. Using

the inner (or scalar) product we can choose the eigenvectors so that va · va = 1.
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1.6.1 Real symmetric matrices

Defined by A = A∗ = AT .

1. A real symmetric matrix has real eigenvalues

Av = λv (1)

Av∗ = λ∗v∗ complex conjugate

(v∗)T A = λ∗(v∗)T transpose (2)

(v∗)T Av = λ(v∗)T v left multiply (1) by (v∗)T

(v∗)T Av = λ∗(v∗)T v right multiply (2) by v

(λ − λ∗)(v∗)T v = 0 subtract

Since (v∗)T v = 1 we deduce that (λ − λ∗) = 0 and hence that λ is real.

The eigenvector v is therefore real since it solves real equations with real coef-

ficients.

2. The eigenvectors corresponding to different eigenvalues of a symmetric matrix

are orthogonal. Similar procedure to above.

Av1 = λ1v1

vT
1 A = λ1v

T
1 transpose

vT
1 Av2 = λ1v

T
1 v2 right multiply by v2 (1)

Similarly,

Av2 = λ2v2

vT
1 Av2 = λ2v

T
1 v2 left multiply by vT

1 (2)

(λ1 − λ2)v
T
1 v2 = 0 (1) − (2)

Since λ1 6= λ2 we deduce that vT
1 v2 = 0.

(i) If some of the λ’s coincide (“degeneracy”) there are still n linearly indepen-

dent eigenvectors which can be made to be orthogonal. This is done by choice

of suitable linear combinations of those v’s corresponding to the degenerate

eigenvalues.

(ii) Normalize each va to unit magnitude. The eigenvectors then comprise an or-

thonormal basis which we now denote e1, · · · , en. So

Aea = λaea, ea · eb = eT
a eb = δab .
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We learn that if we want to choose a nice basis when working with A we should

choose the basis given by its orthonormal eigenvectors.

1.6.2 Diagonalization of real symmetric matrices

Consider the n × n matrix X whose i-th column is ei:

X =






e1 e2 · · · en

? ? ? ?






Now

XT X =










e1
-

e2
-

...
...

en
-















e1 e2 · · · en

? ? ? ?




 =










1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1










.

So

XT X = I.

Thus

• X−1 = XT .

• XT X = XXT = I.

• X is an orthogonal matrix.

• det X = 1.

Now,

AX = A






e1 e2 · · · en

? ? ? ?




 =






λ1e1 λ2e2 · · · λnen

? ? ? ?




 .

Thus

A′ = XT AX =










λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn










,
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is a diagonal matrix with diagonal elements given by the eigenvalues of A.

Clearly, A′ has the same eigenvalues as A but the eigenvectors are the canonical

basis:

e′
1 =










1

0
...

0










, e′
2 =










0

1
...

0










, etc.

1. Given Ax = y we can write

A(XXT )x = y

(XT AX)XT x = XT y

A′x′ = y′,

with x′ = XT x, y′ = XT y. Clearly, in the special case of the eigenvectors:

e′
i = XT ei .

2. What are the coordinates of x in basis of the e’s?

x =
n∑

i=1

xiei .

Then

x′ = XT x =
n∑

i=1

xiX
T ei =

n∑

i=1

xie
′
i =










x1

x2

...

xn










.

The entries in x′ are simply the coordinates of x in the basis of eigenvectors

e1, e2, · · · , en.

3.

|A′| = |XT AX| = |XT ||A||X| = |A| ,

since |X| = 1. Then have |A′| =
∏n

i=1
λi = |A|. Result derived earlier.

Look at my earlier example.

A =

(

−2 6

6 7

)

, λ1 = 10, λ2 = −5.
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Look for e1. This satisfies

(

−2 − λ1 6

6 7 − λ1

)(

x

y

)

≡
(

−12 6

6 −3

)(

x

y

)

= 0 .

These two equations are multiples of each other (by construction). Then

−12x + 6y = 0 =⇒ y = 2x.

The normalized vector is

e1 =

(
1√
5

2√
5

)

.

e2 can be derived similarly but we also know it is orthogonal to e1. Hence,

e2 =

(
2√
5

− 1√
5

)

.


