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2 Partial Differential Equations

2.1 Introduction

In science we wish to investigate the behaviour of functions of more than one variable.

E.g.,

• the vibrating string where the displacement at position x and time t is y(x, t).

• The amount of a substance at x and t diffusing in a medium measured by its

concentration Θ(x, t). E.g., ink drop in water.

• The electrostatic potential φ(x, y) due to a distribution of charge with charge

density ρ(x, y).

Each of these functions satisfies a partial differential equation (PDE) charac-

teristic of the physical phenomenon being studied. A PDE is an equation relating

a function f(x, y, . . .) of more than one variable and its partial derivatives with

respect to x, y, . . .. Define notation

fx =
∂f

∂x
, fxy =

∂2f

∂x∂y
, etc.,

where each suffix denotes partial differentiation with respect to (w.r.t) that variable.

The PDE is then of the form

F(x, y, . . . , fx, fy, . . . , fxx, fxy, fyy, . . .) = 0.

• The order of the PDE is the order of the highest derivative appearing in F .

• The PDE is linear if F contains no powers of f, fx, . . . higher than 1.

To define a unique solution to an ordinary differential equation (ODE) we need extra

pieces of information in form of the values of f and/or its derivatives at a number

of points to fix up the arbitrary constants of integration. These are given by the

particular conditions of the system being studied.

To obtain a unique solution to a PDE we need extra information in the form of

values of f etc., on surfaces in (x, y, . . .) space. Usually, a solution is sought for

(x, y, . . .) in some region D and the extra information or boundary conditions
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are given on all or part of the boundary ∂D of this region. They fix up arbitrary

functions arising in the integration. E.g.,

σ(x, y) = y2 + g(x) ,

∂σ

∂y
= 2y, independent of g(x).

σ(x, y) = yf(x) ,

y
∂σ

∂y
= σ, independent of f(x).

To work out how much information is sufficient but not too much is generally a hard

problem.

In these lectures we shall study examples of linear PDEs of second order and

we shall study them in the context of their physical application.

2.2 Physical derivation of important equations

2.2.1 The wave equation

A

B

y

x x+dx

T

T

Look at vibrating string. Let the string be under tension T with mass per unit

length ρ. The displacement at position x and time t is y(x, t).

Consider element AB of length dx.

• The transverse force F obtained by resolving in y-direction is

F = ≈ T (slope at B − slope at A)

= T

(
∂y

∂x
(x+ dx, t) − ∂y

∂x
(x, t)

)

≈ T
∂2y

∂x2
dx .

• Mass of element AB is ρdx.
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Then Newton’s Law is

T
∂2y

∂x2
dx = ρdx

∂2y

∂t2
.

We then get the wave equation for wave motion in the string

∂2y

∂x2
=

1

c2
∂2y

∂t2
, c =

√

T/ρ . Wave equation

We shall see that c is the velocity of the waves.

For problems in higher dimensions, such as sound waves, vibrations of drum mem-

brane etc., the equation becomes

∇2ψ(x, t) =
1

c2
∂2ψ(x, t)

∂t2
,

where ψ(x, t) is the displacement from equilibrium.

Just as in solving for particle motion the boundary conditions are the initial condi-

tions for the position and velocity of each segment of the string. We need

y(x, 0) = y0(x) , initial position,

∂y

∂t
(x, 0) ≡ yt(x, 0) = v0(x) , initial velocity .

2.2.2 The heat or diffusion equation

Consider a substance diffusing in 1D and let the concentration (i.e., density) be

Θ(x, t) at position x and time t.

A B C

x x + ∆x

−κ
∂Θ(x,t)

∂x
−κ

∂Θ(x+∆x)
∂x

The rate of diffusion from A to B is proportional to the concentration gradient.

R(A→ B) = − κ
∂Θ(x, t)

∂x
, R(B → C) = − κ

∂Θ(x+ ∆x, t)

∂x
,

Here κ is the constant of diffusion.
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Hence the rate of change of substance in region B is

∂[Θ(x, t)∆x]

∂t
= R(A→ B) − R(B → C)

= κ

[
∂Θ(x+ ∆x, t)

∂x
− ∂Θ(x, t)

∂x

]

.

OR

∂Θ(x, t)

∂t
= κ

∂2Θ(x, t)

∂x2
. Heat/Diffusion equation

Drop a drop of ink into water and it spreads out as a cloud with density Θ(x, t) at

time t. Θ(x, t) obeys the Diffusion equation

∂Θ(x, t)

∂t
= κ∇2Θ(x, t) .

A closely related equation is the Schrödinger equation for a free particle in quantum

mechanics:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m
∇2ψ(x, t) .

h̄ is Planck’s constant and m is the particle mass. The analogy with the heat

equation is of very great importance.

The boundary condition in this case is to give the initial value of Θ:

Θ(x, 0) = Θ0(x) .

This is physically sensible since the spot of ink has an initial shape which is all we

need to know to predict how it will spread.

2.2.3 Laplace’s equation

Qy

x, y

Qx

x, y + ∆y x + ∆x, y + ∆y

x + ∆x, y

Qy +
∂Qy

∂y
∆y

Qx +
∂Qx

∂x
∆x
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Consider the temperature distribution φ(x, y) in a 2D body in equilibrium: φ is

independent of time t.

Qx (Qy) is the heat-energy flux in the x (y) direction.

The phenomenological physical law giving Qx and Qy is

Qx = −σ∂φ(x, y)

∂x
∆y ,

Qy = −σ∂φ(x, y)

∂y
∆x .

I.e., Q is proportional to minus the temperature gradient and the length of the edge.

The constant of proportionality is the thermal conductivity σ.

The total influx of heat-energy is zero. Thus

[(

Qx +
∂Qx

∂x
∆x

)

−Qx

]

+

[(

Qy +
∂Qy

∂y
∆y

)

−Qy

]

= 0 ,

=⇒
∂Qx

∂x
∆x+

∂Qy

∂y
∆y = 0

OR (
∂2φ

∂x2
+
∂2φ

∂y2

)

(−σ∆x∆y) = 0 .

Thus

∂2φ

∂x2
+
∂2φ

∂y2
= 0 . Laplace’s Equation

Another application is to the electrostatic potential φ(x) due to a distribution of

charge density ρ(x). The electric field satisfies

∇ · E(x) =
1

ε0

ρ(x), and E(x) = −∇φ(x) .

Hence, get

∇2φ(x) = − 1

ε0
ρ(x) , Poisson’s equation.

This reduces to Laplace’s equation when ρ(x) = 0.

The boundary conditions are more varied here. They typically take one of two forms

giving data on the whole boundary ∂D to the region D where the solution is needed.

The two main choices are
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i) Dirichlet condition

Give the value of φ on ∂D. This would be typical if we know the temperature

on the boundary and want to know it in the interior.

φ(x) = φ0(x), x ∈ ∂D .

(ii) Neumann condition

Give the normal derivative of φ on ∂D. Typical of electrostatic problems

where we are given the electric field E at the boundary and wish to calculate

the potential φ inside.

n(x) · ∇φ(x) ≡ ∂φ

∂n
(x) = φn(x)

{

x ∈ ∂D,
n(x) is unit surface normal at x

.

Note that n(x) · ∇φ(x) = −n(x) · E(x).

It is possible to generalize and give a linear combination αφ(x) + β
∂φ

∂n
on ∂D.

2.3 Classification

This is a statement of terminology.

Consider the general form in 2D

a
∂2ψ

∂x2
+ 2b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
+ f

∂ψ

∂x
+ g

∂ψ

∂y
+ hψ = 0,

where a, b, etc. are constants.

(i) Elliptic

The equation is elliptic if b2 < ac. Example is Laplace’s equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 .

(ii) Parabolic

The equation is parabolic if b2 = ac. Example is the Heat equation

κ
∂2ψ

∂x2
− ∂ψ

∂t
= 0 .

(iii) Hyperbolic

The equation is hyperbolic if b2 > ac. Example is the Wave equation

∂2ψ

∂t2
− 1

c2
∂2ψ

∂x2
= 0 .
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2.4 Methods of solution

2.4.1 Method for some elliptic and hyperbolic equations in 2D

Consider equations of the form

a
∂2ψ

∂x2
+ 2b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
= 0.

Look for a solution of the form

ψ(x, y) = f(x+ py) ≡ f(z),

where p is a constant and z = x+ py.

Then use chain rule:

∂f

∂x
=

df

dz

∂z

∂x
=

df

dz
,

∂f

∂y
=

df

dz

∂z

∂y
= p

df

dz
.

Substitute into the equation to get

a
d2f

dz2
+ 2bp

d2f

dz2
+ cp2d

2f

dz2
= 0.

Hence we find

cp2 + 2bp+ a = 0,

with roots p = p+, p− given by

p+ = −b+
√
b2 − ac, p− = −b−

√
b2 − ac.

These roots will be complex if b2 < ac i.e., for elliptic equations. In this case we

see that p+ = p∗
−
.

Let u = x+ p+y, v = x+ p−y and then, because the equation is linear we can take

a linear combination of independent solutions to be the general solution. So we

find

ψ(x, y) = f(x+ p+y) + g(x+ p−y) = f(u) + g(v),

where f and g are arbitrary functions of a single variable. These are the analogues

of the arbitrary constants in ordinary differential equations.

Two special cases are:
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(a) The wave equation
∂2ψ

∂x2
=

1

c2
∂2ψ

∂t2
,

with u = x− ct, v = x+ ct and solution of the form

ψ(x, t) = f(x− ct) + g(x+ ct) .

An important example of this kind of solution is

ψ(x, t) = sin[k(x− ct)] ,

with k an arbitrary constant. This is a wave travelling at velocity c. More on

this shortly.

(b) Laplace’s equation
∂2ψ

∂x2
+

∂2ψ

∂y2
= 0,

With u = x+ iy, v = x− iy. Then we can write the general form most neatly as

ψ(x, y) = f(x+ iy) + g(x− iy) ≡ f(z) + g(z∗) where z = x+ iy .

It may seem odd that the solution becomes complex when we started out with

ψ real. However, because the equation is linear with real coefficients it must

be that the real and imaginary parts of this solution separately satisfy the

equation. Thus for our purposes we can restrict our solution to

ψ(x, y) = Real[f(z) + g(z∗)] , or ψ(x, y) = Imag[f(z) + g(z∗)] .

Examples are:

ψ(x, y) = Real(z) = x , trivially satisfies the equation

= Real(z3) = x3 − 3xy2 ,

= Real(einz) = e−nycos(nx) , n an integer constant

2.4.2 Separation of variables

Suppose b = 0. The general equation is now

a
∂2ψ

∂x2
+ c

∂2ψ

∂y2
+ f

∂ψ

∂x
+ g

∂ψ

∂y
+ hψ = 0.

Try a solution of the separable form ψ(x, y) = X(x)Y (y). This will not be the

most general solution since this would not be separable in this way. However, we

will see that this is a very useful move.
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We then get

aY
d2X

dx2
+ cX

d2Y

dy2
+ fY

dX

dx
+ gX

dY

dy
+ hXY = 0 .

OR, dividing by XY and rearranging slightly

1

X

[

a
d2X

dx2
+ f

dX

dx
+ hX

]

= − 1

Y

[

c
d2Y

dy2
+ g

dY

dy

]

= λ a constant .

This must be true since the first term depends only on x and the second only on y

and hence they cannot be equal unless they are independent of both x, y.

Get two ODEs which we solve using standard methods:

a
d2X

dx2
+ f

dX

dx
+ (h− λ)X = 0 ,

c
d2Y

dy2
+ g

dY

dy
+ λY = 0 .

This is as far as we can go without knowing the specific problem under study and

its boundary conditions.

It turns out that not necessarily all values of λ are allowed. Those that are are will

be determined by the boundary conditions and might be a discrete set. We shall

see examples soon, but some are the allowed frequencies of a plucked string and

the values of the allowed energy levels in an atom. They are actually examples of

eigenvalues.

For each allowed value of λ we label the separable solution with λ:

ψλ(x, y) = Xλ(x)Yλ(y) .

Also, because the equations are linear, then αψλ is also a solution, α a constant.

We then choose the normalization of ψλ by some convenient procedure to make

life easiest. The general solution is the linear combination

ψ(x, y) =
∑

λ

αλψλ(x, y) ,

where the sum is over the allowed values of λ and the αλ are constants.

[ Note: if b 6= 0 in the equation and so there is a ∂2ψ/∂x∂y term then a change of

variables to w = x + αy, z = x + βy will give an equation of suitable form (with

b = 0) for right choice of constants α, β.]
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2.5 Laplace’s equation

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= 0

Q What is the steady-state temperature distribution φ(x, y) for a region bounded

by a square whose boundary, or edges, are maintained at the temperatures shown

in the figure? Namely, three edges at φ = 0 and the fourth at φ(a, y) = T (y). These

are Dirichlet conditions. The square has edges of length a.

φ = 0

(a, 0)

x

(0, a) (a, a)

y

(0, 0)

φ = 0

φ = T (y)

φ = 0

Use separation of variables. Write

φ(x, y) = X(x)Y (y) ,

Y
d2X

dx2
+ X

d2Y

dy2
= 0 ,

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
= λ.

We thus have the two ODEs to solve:

d2X

dx2
− λX = 0 ,

d2Y

dy2
+ λY = 0 .

Then

λ < 0

{

X is sinusoidal

Y is exponential
, λ > 0

{

X is exponential

Y is sinusoidal

The choice is determined by the boundary conditions, and for this example we

choose λ > 0 and set λ = m2. The separable solution is then

Xm(x) = Aemx +Be−mx , Ym(y) = Csin(my) +Dcos(my).



2 PARTIAL DIFFERENTIAL EQUATIONS 11

We need

φ(x, 0) = φ(x, a) = 0 , =⇒ X(x)Y (0) = X(x)Y (a) = 0 , 0 ≤ x ≤ a .

Hence, we impose

Y (0) = Y (a) = 0 , =⇒
Y (y) ≡ Yn(y) = sin

(nπ

a
y
)

, n = 1, 2, . . .

So we have that the allowed values of m are m = nπ/a for n = 1, 2, . . .. This

in turn determines the Xm(x) to have these values of m. Thus, the most general

solution I can write down subject to these restrictions is

φ(x, y) =

∞∑

n=1

(
An e

nπx/a +Bn e
−nπx/a

)
sin

(nπ

a
y
)

.

I can do this because the PDE is linear. [Note that these solutions are Imag(e±nπz/a), z =

(x+ iy).]

We impose the boundary condition that

• φ(0, y) = 0

This gives An +Bn = 0 , ∀ n.

• φ(a, y) = T (y)

This gives the Fourier series

∞∑

n=1

2An sinh(nπ) sin
(nπ

a
y
)

= T (y) ,

and hence that

2An sinh(nπ) =
2

a

∫ a

0

dy T (y) sin
(nπ

a
y
)

.

Suppose, a = 1, T (y) = y. Then

2An sinh(nπ) = 2

∫ 1

0

dy y sin(nπy) .

Now,
∫ 1

0

dy y sin(py) = − d

dp

∫ 1

0

dy cos(py) = − d

dp

(
sin(p)

p

)

=
1

p2
sin(p)−1

p
cosp .

Setting p = nπ we find

An = − cos(nπ)

nπ sinh(nπ)
=

(−1)n+1

nπ sinh(nπ)
.
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So

φ(x, y) =

∞∑

n=1

(−1)n+1

nπ sinh(nπ)
sinh(nπx) sin(nπy) .

(This is a half-range sine series.)

1

0.8

0.6

0.4

0.2

0
00

0.2

0.1

0.4

0.2

0.6

0.8

0.3

1

0.4

I used a sum of 100 terms here.

[Note that the set of separable solutions ψn(x, y) = Xn(x)Yn(y), n = 1, 2, . . . form a

basis for an ∞-dimensional vector space of which φ(x, y) is a member given by the

linear combination of the basis vectors shown in the Fourier series.]

To solve for more complicated boundary conditions I can write the full solution

by adding or superposing the solutions to related problems that we have already

solved. E.g.,

T1(y) T1(y)

0

T0(x)

00 +

0

0

0

0

T0(x)

0=

Another example is the infinite strip of width a and with boundary conditions φ = 0

on upper and lower edges and φ → 0 as x → −∞. On edge at x = a have

φ(a, y) = T (y).
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φ → 0

(a, 0)
x

a

y

φ = T (y)

φ = 0

φ = 0

The most general solution is then as before

φ(x, y) =

∞∑

n=1

(
An e

nπx/a +Bn e
−nπx/a

)
sin

(nπ

a
y
)

The condition φ→ 0 as x→ −∞ implies that Bn = 0.

On edge at x = a we have

φ(a, y) =
∞∑

n=1

An e
nπsin

(nπ

a
y
)

= T (y) ,

and so again have Fourier series which then gives

An =
2

a
e−nπ

∫ a

0

dy T (y) sin
(nπy

a

)

.

2.6 The wave equation

∂2y

∂x2
=

1

c2
∂2y

∂t2
.

2.6.1 The infinite string

We found a solution in the form

y(x, t) = f(x+ ct) + g(x− ct) .

Suppose that the function g(v) is given. Then as t varies g(x− ct) vs x looks like

velocity c

x

t = 0

x = 0 x = c x = 3c

t = 1 t = 3

g
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The shape moves right with velocity c.

Likewise, the shape described by f(u), plotted as a function of x, moves left with

velocity c as t increases.

It is sufficient to know f(x) and g(x) for all x at t = 0 to specify the solution.

The shapes are unchanged; they do not disperse but just move left and right,

respectively, at velocity c: they are travelling waves. To find f and g it is sufficient

to know the initial conditions

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = v0(x) for all x.

Now, with u = x+ ct and v = x− ct,

∂f(u)

∂t

∣
∣
∣
∣
t=0

=
∂u

∂t

df

du

∣
∣
∣
∣
t=0

= c
df

du

∣
∣
∣
∣
t=0

= c
df

dx
.

Similarly,
∂g(v)

∂t

∣
∣
∣
∣
t=0

= − c
dg

dx
.

The initial conditions are

(i) f(x) + g(x) = y0(x)

(ii)

c

(
df

dx
− dg

dx

)

= v0(x) , =⇒

f(x) − g(x) =
1

c

∫ x

dx′ v0(x
′) .

Thus

f(x) =
1

2
y0(x) +

1

2c

∫ x

dx′ v0(x
′) ,

g(x) =
1

2
y0(x) −

1

2c

∫ x

dx′ v0(x
′) .

So we have

y(x, t) = f(x+ ct) + g(x− ct)

=
1

2
[y0(x+ ct) + y0(x− ct)] +

1

2c

∫ x+ct

x−ct

dx′ v0(x
′) .

An example is

y0(x) = e−x2/2 , v0(x) = x2 .
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For which

y(x, t) =
1

2
[e−(x+ct)2/2 + e−(x−ct)2/2] +

1

6c
[(x+ ct)3 − (x− ct)3] .

The important special case mentioned earlier is of sinusoidal travelling waves:

y(x, t) = Asin
[
ω(x/c+ t)

]
+Bsin

[
ω(x/c− t)

]
.

Here ω is the frequency of the wave.

It is often convenient to use complex exponential notation of the form

y(x, t) = Aeiω(x/c+t) + Beiω(x/c−t) ,

and use either the real or imaginary part of y at the end. Here A and B may be

complex.

2.6.2 Finite string stopped at x = 0 and x = L

y

x

0 L

The boundary conditions are

y(0, t) = y(L, t) = 0, for all t ,

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = v0(x) for 0 < x < L.

This will be solved by a Fourier series, and so we look for a separable solution:

y(x, t) = X(x)T (t) ,

giving
1

X

d2X

dx2
=

1

c2T

d2T

dt2
= λ .

We shall choose λ = −m2 so that we obtain sinusoidal solutions. Then

d2X

dx2
+m2X = 0 ,

d2T

dt2
+ c2m2T = 0 ,
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and we find the separable solution consistent with y(0, t) = y(L, t) = 0 to be

yn(x, t) =

[

An cos

(
nπct

L

)

+Bn sin

(
nπct

L

)]

sin
(nπx

L

)

, n = 1, 2, . . .

The choice is m = nπ/L, n = 1, 2, . . .. Clearly, the solution vanishes at x = 0, L ∀ t
by choice of the “sine” solution for X(x).

The general solution is then, as before,

y(x, t) =

∞∑

n=1

[

An cos

(
nπct

L

)

+Bn sin

(
nπct

L

)]

sin
(nπx

L

)

.

The boundary conditions then impose two Fourier series

1.) y(x, 0) = y0(x) .

Set t = 0 to get
∞∑

n=1

Ansin
(nπx

L

)

= y0(x) ,

which gives

An =
2

L

∫ L

0

dx y0(x) sin
(nπx

L

)

.

2.)
∂y

∂t
(x, 0) = v0(x) .

First differential w.r.t. t and then set t = 0. We get

∞∑

n=1

Bn

(nπc

L

)

sin
(nπx

L

)

= v0(x) ,

which gives

Bn =
2

nπc

∫ L

0

dx v0(x) sin
(nπx

L

)

.

The frequency of vibration for the separable solution labelled with n is ωn = nπc/L.

The general solution consists of a superposition of modes, or harmonics, with allowed

frequencies ωn only.

2.7 The heat or diffusion equation

The diffusion equation in 1D is

∂Θ

∂t
= κ

∂2Θ

∂x2
,
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with diffusivity κ > 0. Here Θ(x, t) is the concentration, or density, of material at

time t. We expect the total amount of material to be conserved. I.e.,

∂

∂t

∫
∞

−∞

dxΘ(x, t) = 0 .

Taking the derivative under the integral sign and using the diffusion equation we

have

∂

∂t

∫
∞

−∞

dxΘ(x, t) = κ

∫
∞

−∞

dx
∂2Θ(x, t)

∂x2

=

[
∂Θ(∞, t)

∂x
− ∂Θ(−∞, t)

∂x

]

.

The second step is integration by parts at fixed t or just simply integration of a

derivative. For any physical distribution we assume

∂Θ(±∞, t)

∂x
= 0 ,

i.e., there is no outward flux at x = ±∞. Hence, RHS = 0 and the material is

conserved. [This kind of manipulation is important in quantum mechanics where

total probability is conserved.]

2.7.1 infinite bar

Look for solutions in terms of the dimensionless variable

u =
x

(4κt)1/2
,

of the form

Θ(x, t) = F (u) .

We have

∂Θ

∂x
= F ′(u)

∂u

∂x
= F ′(u)(4κt)−1/2 ,

∂2Θ

∂x2
= F ′′(u)(4κt)−1 ,

∂Θ

∂t
= F ′(u)

∂u

∂t
= F ′(u)

(−u
2t

)

.

The heat/diffusion equation them becomes

κF ′′(u)(4κt)−1 = − u

2t
F ′(u) ,
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or
F ′′(u)

F ′(u)
= − 2u .

This is

d

du
lnF ′(u) = −2u , =⇒

F ′(u) = Ae−u2

.

We thus find that

F (u) = A

∫ u

0

ds e−s2

+ B .

Choose A = 1/π1/2 and B = 1/2. We define the error function erf (u) by

erf (u) =
2

π1/2

∫ u

0

ds e−s2

,

which satisfies

erf (±∞) = ± 1 since

∫
∞

0

ds e−αs2

=
1

2

√
π

α
.

Then we have the solution

Θ(x, t) =
1

2

(

1 + erf
( x

4κt

))

.

For t small and x > 0 (x < 0) the argument, u, approaches u = ∞ (−∞). Since

erf (±∞) = ±1, the initial state at t = 0 is

Θ(x, 0) =

{

1 x > 0

0 x < 0
.

The solution for t ≥ 0 as t increases then looks like

-10 -5 0 5 10

x
-0.2

0

0.2

0.4

0.6

0.8

1

T
he

ta
(x

,t)
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2.7.2 ink drop

Note now that, if Θ1(x, t) is a solution to the diffusion equation, then so is

Θ(x, t) =
∂Θ1(x, t)

∂x
,

and hence taking Θ1(x, t) to be the error function solution above we find the new

solution

Θ(x, t) =
∂

∂x

1√
π

∫ x/(4κt)1/2

0

ds e−s2

=
1

(4πκt)1/2
e−x2/4κt .

For t small the material is concentrated in a small region around x = 0 of width

x ∼ (κt)1/2. The region of high concentration increases in size as the material

spreads out: it diffuses. The initial state is therefore a highly concentrated spot at

x = 0; e.g., an ink drop dropped into water. In fact, this is a normal distribution

and as t increases we get

-10 -5 0 5 10

x
0

0.1

0.2

0.3

0.4

0.5

0.6

T
he

ta
(x

,t)

2.7.3 bar of finite length

Consider a bar that occupies 0 ≤ x ≤ L. The distribution of temperature obeys the

heat equation.

In this example we give the boundary conditions as

flux = 0 ⇒ Θx(L, t) = 0

x = 0 x = L

Θ(0, t) = 0

Θ(x, 0) = g(x)

• at x = 0 maintain temperature at zero: Θ(0, t) = 0 t ≥ 0: Dirichlet condition;
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• at x = L apply insulating boundary condition: there is no flux of heat to x > L.

Then have Θx(L, t) = 0, t ≥ 0: Neumann condition;

• at t = 0 the initial distribution is given: Θ(x, 0) = g(x), 0 < x ≤ L: Dirichlet

condition.

Look for separable solutions Θ(x, t) = X(x)T (t). Substituting find

κX ′′(x)T (t) = X(x)T ′(t) ,

and so

κ
X ′′(x)

X(x)
=

T ′(t)

T (t)
= C a constant.

At this point in general we have different choices for C. These correspond to distinct

physical situations and distinct kinds of boundary conditions. In our example we

need C < 0. Set C = −κα2. We have

κ
X ′′(x)

X(x)
=

T ′(t)

T (t)
= − κα2 ,

with solutions

X(x) = A sin(αx) +B cos(αx) ,

T (t) = D exp(−κα2t) .

• The condition Θ(0, t) = 0 is satisfied by taking B = 0.

• The condition Θx(L, t) = 0 then requires X ′(L) = 0, and so

cos(αL) = 0 , =⇒ αL =
(
n+ 1

2

)
π , n = 0, 1, . . . ,∞.

Note, that not all values of α are allowed.

• Can set D = 1 without loss of generality.

The most general solution satisfying the boundary conditions is then the Fourier

series

Θ(x, t) =
∞∑

n=0

An sin
[(
n + 1

2

)
πx/L

]
exp

[

−κ
(
n+ 1

2

)2
π2t/L2

]

.

The initial condition now requires

Θ(x, 0) =
∞∑

n=0

An sin
[(
n+ 1

2

)
πx/L

]
= g(x) , 0 ≤ x ≤ L .
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The functions
{
sin

[(
n+ 1

2

)
πx/L

]
, n = 0, 1, . . .

}
are orthogonal. Therefore, mul-

tiplying both sides by sin
[(
m+ 1

2

)
πx/L

]
and integrating from 0 to L gives

Am =
2

L

∫ L

0

dx g(x) sin
[(
m+ 1

2

)
πx/L

]
.

Remark on other choices for C

The choice C > 0 (real) in the separable solution discussed in the previous example

will give solutions which grow exponentially in time and is thus unphysical. However,

I can choose C = iω. This leads to complex separable solutions whose real and

imaginary parts are then taken as the solutions for Θ(x, t). These are:

Θ(x, t) = e−kx cos(ωt− kx) ,

Θ(x, t) = e−kx sin(ωt− kx) ,

Θ(x, t) = ekx cos(ωt+ kx) ,

Θ(x, t) = ekx sin(ωt+ kx) ,

where k is an arbitrary constant and ω = 2k2κ. Can verify by substitution. Note

that they represent damped travelling waves, the first two travelling in the positive

x-dirn., and the second two in the negative x-dirn.

A physical application is to the temperature distribution interior to a bar subject to

an oscillating heat source, of frequency ω, applied to one end. E.g., this is a simple

model for the temperature in the interior of the earth subject to the daily cycle of

radiation from the sun on its surface.

3 Elementary analysis

3.1 Introduction

Begin with a few definitions

3.1.1 functions

A function f is a rule which, for any given x, provides a value f(x). In our context

x and f(x) will be real numbers.

(a) Sometime write f : x→ y where y is real.
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(b) f may not be defined for all x. E.g., f(x) =
√
x is only defined for x ≥ 0 if f is

to be real.

(c) The graph of a function is a set of points in the plane (x, y) : y = f(x). Not

always easy to draw. E.g.,

f(x) =

{

1/q if x is rational with x = p/q

0 if x is irrational.

(d) A polynomial function of degree n takes the form

f(x) = a0x+ a1x
2 + . . .+ anx

n ,

where a0, . . . , an are constants.

(e) A rational function has the form f(x) = P (x)/Q(x) where P and Q are

polynomials.

(f) Algebraic functions are evaluated by performing a finite number of mathe-

matical operations (+,−,×, . . .). E.g.,

F (x) =
x1/4

√
8 − x2 + 3x5

x2 + 7
.

(g) Transcendental functions need an infinite number of operations. E.g.,

Exponential f(x) = ax, a 6= 0, 1

Logarithmic f(x) = loga x, a 6= 0, 1

Trigonometric f(x) = sin(x), cos(x), etc.

Hyperbolic f(x) = sinh(x), cosh(x), etc.

Bessel function f(x) = Jν(x) order ν

3.2 Limits of functions and sequences

3.2.1 Definitions and examples

Consider the values of a function f(x) as x gets closer and closer to x0. E.g., as

x→ 0 look at f(x) = x2 + 1 and f(x) = sin(1/x):

0 1 2 3 4 5
x

0

5

10

15

20

25

30

f=
x2 +

1

0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

f=
si

n(
1/

x)
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In the first case f(x) = x2 + 1 → 1 as x → 0. In the second case f(x) = sin(1/x)

has no limit as x→ 0. The formal way to express this idea is as follows.

f(x) → l as x→ x0 or lim
x→x0

f(x) = l

if, given any ǫ > 0 however small, we can find a δ depending on ǫ such that

|f(x) − l| < ǫ for all x such that |x− x0| < δ .

Note that it is not necessary that f(x0) = l since the point at x = x0 is excluded

from the definition. Examples are

(a)

f(x) =

{

x2 + 1 if x 6= 0

0 if x = 0.

Then lim
x→0

f(x) = 1 even though f(0) = 0; the limit exists but f is discontinuous

at x = 0 since f(0) 6= lim
x→0

f(x). Check the formal definition:

|f(x) − l| ≡ |x2| < ǫ if |x− 0| ≡ |x| < δ =
√
ǫ .

(b) f(x) =







−1 x < a

0 x = a

1 x > a.

-1 0 1 2 3
x

-1

-0.5

0

0.5

1

f

At any point x0 other than x0 = a the limit of f(x) as x→ x0 exists:

lim
x→x0

f(x) =

{

−1 x < a

1 x > a.

The limit as x → a does not exist. However, the “left-hand limit” and the

“right-hand limit” do exist:

as x→ a from the left f(x) → −1, written as lim
x→a−

f(x) = −1 ,

as x→ a from the right f(x) → 1, written as lim
x→a+

f(x) = 1 .

(c) A sequence {un} may be regarded as a function defined only at integer points

x = n. E.g., 1, 1/3, 1/5, 1/7, . . . : un = 1/(2n − 1). We normally only consider

the limit of a sequence for n→ ∞.

The sequence has a limit l if, for any ǫ > 0, there is an N depending on ǫ such

that

|un − l| < ǫ for all n > N .
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3.2.2 properties of limits

If lim
x→x0

a(x) = A and lim
x→x0

b(x) = B then

(i) lim
x→x0

[a(x) ± b(x)] = A± B.

(ii) lim
x→x0

[a(x)b(x)] = AB.

(iii) lim
x→x0

[a(x)/b(x)] = A/B provided B 6= 0,

• if A 6= 0 and B = 0 then lim
x→x0

[a(x)/b(x)] does not exist.

• if A = 0 and B = 0 then lim
x→x0

[a(x)/b(x)] may or may not exist.

• if A = ∞ and B = ∞ then lim
x→x0

[a(x)/b(x)] may or may not exist.

(iv) lim
x→x0

[(a(x))p] = Ap for any real number p, if Ap exists.

(v) lim
x→x0

[(p)a(x)] = pA for any real number p, if pA exists.

Examples are

lim
x→∞

[
3x2 − 5x

5x2 + 2x− 6

]

= lim
x→∞

[
3x2

5x2

]

=
3

5
.

lim
x→∞

[
√

x(x+ 1) − x] = lim
x→∞

[x(1 + 1/x)1/2 − x] =

lim
x→∞

[x(1 + 1/2x− 1/8x2 . . .) − x] = lim
x→∞

[1/2 − 1/8x+ . . .] = 1/2.

3.2.3 l’Hôpital’s rule

If lim
x→x0

f(x) = 0 and lim
x→x0

g(x) = 0 then

lim
x→x0

(
f(x)

g(x)

)

= lim
x→x0

(
f ′(x)

g′(x)

)

,

whenever the second limit exists.

This result follows from Taylor’s theorem. If f and g are differentiable n times on

an interval containing x and x0 then

f(x) = f(x0)+ (x−x0)f
′(x0)+

(x− x0)
2

2!
f ′′(x0)+ . . .+

(x− x0)
n−1

(n− 1)!
f (n−1)(x0)+Rn,
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where Rn = c
(x− x0)

n

n!
fn(ξ) for some ξ, x0 ≤ ξ ≤ x. Similarly for g(x). When

f(x0) = g(x0) = 0 then

lim
x→x0

(
f(x)

g(x)

)

= lim
x→x0






(x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + . . .

(x− x0)g
′(x0) +

(x− x0)
2

2!
g′′(x0) + . . .






= lim
x→x0






f ′(x0) +
(x− x0)

2!
f ′′(x0) + . . .

g′(x0) +
(x− x0)

2!
g′′(x0) + . . .






= lim
x→x0

(
f ′(x)

g′(x)

)

.

If lim
x→x0

f ′(x) = 0 and lim
x→x0

g′(x) = 0 then the rule can be applied again, and so on

until one of both of the limits is non-zero. In fact, just identify, respectively, the

first term in each of the Taylor’s series for f and g that does not vanish and inspect

the ratio.

Examples are

(i)

lim
x→0

(
ex − 1

x

)

= lim
x→0

(
ex

1

)

= 1 .

(ii)

lim
x→0

[
x sin(x)

cos(x) − 1

]

= lim
x→0

[
sin(x) + x cos(x)

−sin(x)

]

= lim
x→0

[
2 cos(x) − x sin(x)

−cos(x)

]

= − 2 .

3.2.4 more examples

Some examples need ad hoc treatment. E.g.,

lim
x→∞

[x2e−x] = lim
x→∞

[
x2

ex

]

=

lim
x→∞

[
x2

1 + x+ x2/2! + x3/3! + . . .

]

≤ lim
x→∞

[
x2

1 + x+ x2/2! + x3/3!

]

= 0 ,

where we have assumed that the series expansion for ex is valid (i.e., converges) for

all x. We will come back to this later.

lim
x→0

[

(cosx)1/x2

]

= lim
x→0

[

exp

(
1

x2
ln(cosx)

)]

.
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Use cosx = 1 − x2/2! + x4/4! + . . . and ln(1 + u) = u− u3/3 + . . .. We find

ln(cosx) = −x2/2! +O(x4) ,

and so

lim
x→0

[

(cos x)1/x2

]

= lim
x→0

[
exp

(
−1/2 +O(x2)

)]
= e−1/2 .

3.3 Series

3.3.1 Definitions

From a given sequence u1, u2, u3, . . . we can form a new sequence S1, S2, S3, . . ., where

Sn = u1 + u2 + . . .+ un =
n∑

k=1

uk .

The infinite series

lim
n→∞

Sn =

∞∑

k=1

uk,

if the limit exists, is of importance. Sn is called the nth partial sum. If S = lim
n→∞

Sn

exists, the series is said to be convergent with sum S. Otherwise, it is divergent.

An example is the geometric series Sn = a
n∑

k=1

rk.

• If |r| < 1 then lim
n→∞

Sn =
a

1 − r
. The series is convergent with sum S =

a

1 − r
.

• If |r| ≥ 1, the series is divergent.

Some simple properties of series are

(a) Removal, insertion or alteration of a finite number of terms does not affect the

divergence or convergence of a series.

(b) If
∑

k uk converges, then lim
k→∞

uk = 0.

(c) If
∑

k uk converges, then so does the series obtained by bracketing the terms of

{uk} in any manner to form a new series. The two series have the same sum.

Not true for a divergent series. E.g.,

∑

k

(−1)k = 1 + (−1 + 1) + (−1 + 1) + . . . = 1

∑

k

(−1)k = (1 − 1) + (1 − 1) + . . . = 0 .
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An important observation is

If the sequence S1, S2, S3, . . . is increasing and bounded, i.e., Sn ≥ Sm for all

m,n with n ≥ m, and there is a number B such that Sn ≤ B for all n, then the

sequence converges.

Consider the geometric series above with a = 1, r = 1/2. Then

Sn =
1 − 1/2n+1

1 − 1/2
= 2(1 − 1/2n+1) .

Clearly, {Sn} is an increasing sequence and Sn ≤ 2 for all n: B = 2 (B = 3 would

also do).

The limit of series with these properties is the least upper bound or supremum

of the sequence. I.e., it is the smallest value of B that satisfies the criterion Sn ≤ B.

In the example, it is B = 2.

3.3.2 tests for convergence

First consider series with terms all of one sign (say positive).

(a) comparison test

If

∞∑

k=1

vk is convergent and uk ≤ vk for all k ≥ N for some N , then

∞∑

k=1

uk is

convergent.

If

∞∑

k=1

vk is divergent and uk ≥ vk for all k ≥ N for some N , then

∞∑

k=1

uk is

divergent.

Examples

(i)
∞∑

k=1

1

k2k
is convergent since

1

k2k
≤ 1

2k
for k ≥ 2, and

∞∑

k=1

1

2k
= 1 (a convergent

geometric series).

(ii) Z1 =
∞∑

k=1

1

k
diverges. To show this let SN =

N∑

k=1

1

k
. For any finite N we can

group terms as follows:

SN = (1) +

(
1

2
+

1

3

)

+

(
1

4
+

1

5
+

1

6
+

1

7

)

+

(
1

8
+ . . .+

1

15

)

+ . . . .
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Each bracketed term is greater than 1/2. So, putting N = 2m − 1, we have

S2m−1 >
1

2
+

1

2
+ . . . =

m

2
, k = 1, 2, . . . .

Thus by takingN large enough, SN can be made bigger than any chosen number.

Hence, the series diverges.

(iii)

Zp =
∞∑

k=1

1

kp

{

diverges if p ≤ 1

converges if p > 1
.

p = 1: done already.

p < 1: diverges by comparison test since k−p ≥ k−1 for k > 1 .

p > 1 have

SN = (1) +

(
1

2p
+

1

3p

)

+

(
1

4p
+

1

5p
+

1

6p
+

1

7p

)

+

(
1

8p
+ . . .+

1

15p

)

+ . . . .

Now, for m > 1, the mth bracketed term is less than

(
1

(2m−1)p
+ . . .+

1

(2m−1)p

)

︸ ︷︷ ︸

2m−1 terms

=
1

2(m−1)(p−1)
.

Thus in a similar manner to before

S2m−1 <
1

1p−1
+

1

2p−1
+

1

4p−1
+ . . .

1

2(m−1)(p−1)
<

1

1 − 21−p
.

This is because the middle expression is a finite number of terms from the

geometric series with r =
1

2p−1
and the last term on RHS is its infinite sum.

Thus,

SN <
1

1 − 21−p
for any N ,

and the series converges (remember we have p > 1).

(a) ratio comparison test

Let lim
k→∞

uk

vk
= A.

(i) If A 6= 0 or ∞, then
∑

k uk and
∑

k vk either both converge or both diverge.

(ii) If A = 0 and
∑

k vk converges then
∑

k uk converges.

(iii) If A = ∞ and
∑

k vk diverges then
∑

k uk diverges.
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Example
∞∑

k=1

uk diverges for uk =
4k2 − k + 3

k3 + 2k
. Let vk =

1

k
. Then

lim
k→∞

uk

vk
= 4 ,

but

∞∑

k=1

vk diverges and hence the result.

(c) integral comparison test

Suppose that f(x) > 0 is defined for all x, 0 ≤ x ≤ ∞, and is continuous and

monotonically decreasing. Let uk = f(k). Then:

The series
∞∑

k=1

uk converges if the integral

∫
∞

0

dx f(x) converges and diverges if

integral

∫
∞

1

dx f(x) diverges. From the diagrams we see that

∫ N+1

1

dx f(x) ≤
N∑

k=1

uk ≤
∫ N

0

dx f(x) .

x

f (x)

3 4 . . . N210 N + 1

uN. . .u4u3u2u1

x

f (x)

u3u2u1

3 4 . . . N210

u4 . . . uN

Both statements follow by letting N → ∞.

(d) D’Alembert’s ratio test

Let lim
k→∞

uk+1

uk
= L. Then

∞∑

k=1

uk is

{

convergent if L < 1 ,

divergent if L > 1 .

The test is indecisive if L = 1.

For example,

∞∑

k=1

k

2k
is convergent since

lim
k→∞

[
(k + 1)/2k+1

k/2k

]

=
1

2
.
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3.3.3 Alternating series

(a) If {uk} is a sequence of terms which have alternating + and − signs, and |uk|

decreases monotonically to zero as k → ∞ then
∞∑

k=1

uk converges.

Assume w.l.o.g, that u1 > 0. Then S1 > 0 and 0 < S2 < S1. We have

S2n+1 − S2n−1 = u2n + u2n+1 < 0, S2n+2 − S2n = u2n+1 + u2n+2 > 0 .

Thus, {S2n+1} form a decreasing sequence and {S2n} form an increasing se-

quence. Also, S2n+1 − S2n = u2n+1 → 0 as n → ∞. Therefore, both tend to the

same limit, l say.

S2n

S2n+1

l

n

Example:

1 − 1

2
+

1

3
− 1

4
+ . . . converges to ln(2) .

(b) Let {uk} be a sequence containing both positive and negative terms.

If
∞∑

k=1

|uk| converges then
∞∑

k=1

uk is said to be absolutely convergent and,

hence, is also convergent.

If

∞∑

k=1

|uk| diverges but

∞∑

k=1

uk converges, the latter is said to be conditionally

convergent. E.g., the example summing to ln 2 in (a).

3.3.4 Power series

∞∑

k=0

ckx
k = c0 + c1x+ c2x

2 + . . . ,

is a power series about x = 0. Replace x by (x− a) then it is a power series about

x = a.
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D’Alembert’s ratio test shows that the series is absolutely convergent (and thus

convergent) when

lim
k→∞

∣
∣
∣
∣

uk+1

uk

∣
∣
∣
∣
< 1 , =⇒ lim

k→∞

∣
∣
∣
∣

ck+1x

ck

∣
∣
∣
∣
< 1 .

This condition is satisfied when

|x| < R, where R = lim
k→∞

∣
∣
∣
∣

ck
ck+1

∣
∣
∣
∣
.

It may or may not converge for x = ±R. R is called the radius of convergence.

For example,

x− x3

3
+
x5

5
+ . . . =

∞∑

k=0

(−1)k x
2k+1

2k + 1
,

has radius of convergence R = lim
k→∞

2k + 3

2k + 1
= 1.

3.3.5 Taylor series

From Taylor’s theorem, if f is differentiable an infinite number of times on the

inclusive interval from a to x, written [a, x], then we have the series expansion

f(x) =

k∑

k=0

ck(x− a)k ck =
f (k)(a)

k!
.

The expansion is valid when the series converges. Examples:

(i) The Taylor’s series for e−x is

e−x = 1 − x+
x2

2!
− x3

3!
+ . . . =

∞∑

k=0

(−1)kx
k

k!
.

The radius of convergence is R = lim
k→∞

(k + 1)!

k!
= lim

k→∞

(k + 1) = ∞. Thus,

the series for e−x, and similarly ex, always converges and is always a good

representation for this function. We used this earlier in an example.

(ii)

f(x) =
1

a + x
, f (k)(0) = (−1)k k!

ak+1
=⇒ ck =

(−1)k

ak+1
.

Thus, R = lim
k→∞

a = a. The series is absolutely convergent for −a < x < a.

Set a = 1.

At x = −1, f(−1) = ∞ and the series is 1 + 1 + 1 + . . .. It diverges.

At x = 1, f(1) = 1/2 and the series is 1 − 1 + 1 − . . .. It still diverges.


