Brillouin zone pictures

Figure 1: The Brillouin zones for a cubic 2D lattice. The red centre zone is B_{1} and get to the others by counting out from B_{1}.

In Figure 1 I have constructed a large number of the Brillouin zones for the 2D cubic lattice.
In Figures 2 and 3 I show a few different 2D Brillouin zone pictures. To construct my pictures I used that for all $\boldsymbol{k} \in B_{n}$ the origin is the n-th nearest point in Λ^{*} to \boldsymbol{k}. This is the same as using the result that if \boldsymbol{k} lies in a boundary of a Brillouin zone then $k^{2}=|\boldsymbol{k}+\boldsymbol{q}|^{2}$, for some $\boldsymbol{q} \in \Lambda^{*}$. This is the same as defining the boundaries using the Bragg formula: $2 \boldsymbol{k} \cdot \boldsymbol{q}-\boldsymbol{q} \cdot \boldsymbol{q}=0$ with $\boldsymbol{q} \in \Lambda^{*}$. The bases I used for Λ^{*} are, respectively,

$$
\begin{array}{rll}
\text { cubic } & \boldsymbol{b}_{1}=(1,0) & \boldsymbol{b}_{2}=(0,1) \\
\text { hexagonal } & \boldsymbol{b}_{1}=(1,0) & \boldsymbol{b}_{2}=(1 / 2, \sqrt{3} / 2) \\
\text { cubic } & \boldsymbol{b}_{1}=(1.5,0) & \boldsymbol{b}_{2}=(0,1)
\end{array}
$$

There is a very good website from Material Science which has a lot of stuff. The website is: http://www.doitpoms.ac.uk/tlplib. Go to the section on Brillouin zones. In particular, there are animations showing the construction of the Brillouin zones using the Bragg formula given above. Also, especially look at the zone folding section. This is animated and shows how to construct the reduced zone scheme from the extended scheme in 2D by translating $B_{n}, n>1$ by $\boldsymbol{q} \in \Lambda^{*}$ to fit into the Voronoi cell (i.e. the region covered by B_{1}).

Figure 2: The Brillouin zones for a cubic 2D lattice (left) and the hexagonal lattice (right). The red centre zone is B_{1} and get to the others by counting out from B_{1}.

Figure 3: The Brillouin zones for a rectangular 2D lattice. The red centre zone is B_{1} and get to the others by counting out from B_{1}

