Mathematical Tripos Part 111 Michaelmas Term 2013

R.R. Horgan
Statistical Field Theory

Examples 2
Statistical Models and Landau Theory

By considering < o¢ > in equilibrium show that in the mean field approximation to
the Ising model in D-dimensions the equilibrium magnetisation is given by the solution

to
M = tanh S(qgJM + h)

where 8 = 1/kT, ¢ = 2D, J(> 0) is the nearest neighbour coupling constant and h is
the applied magnetic field.

The free energy in this approach is
A = —kTlog[2cosh B(qJM + h)] + -;-qJMZ.

Show that the expression for the equilibrium magnetization above can also be obtained
by minimizing A with respect to M.

The critical exponent a governs the divergence in the specific heat:

82A Y
C = T<3—T_2)h-o’ O[T =To™" T'T% (1)

Using the expression for M above show that the free energy in equilibrium for h=0
is 1 1
A = —kTlog2 + kTlog (1 - M2) + 5qJM2, (2)

By assuming the expansion M? = Ct + Dt? 4 ... , where for small t = (T - Te)/Te,
derive that

1
A= —kTlog?2 + %leog(l—Ct—th—...) + 5aJ(Ct+DE+..).
By expanding A in ¢ show that
L
A = a0+a1t+§a2t +.,
for constants a;, and consequently that
C = a2 + O(),

and hence that the exponent « is given by a = 0.

We note also that, except for a we can get all exponents from the equation of state
by expanding tanh near ¢t = 0:

M = (BgJM + Bh) — % (BgJM + Bh)® + ...,

or, keeping only linear terms in h (ignore e.g. hM 2 gince this gives non-leading singular
behaviour - check it),

S(Bad)*M® + (1= Ba)M — Bh = 0,

as we find from minimizing A.
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(2)

3)

In the Blume-Capel model in D-dimensions the spins o, take values o, = 1,0, —1. The
Hamiltonian is an extension of the Ising-like one discussed in the previous question:

H = —JZ OnOntp + 92 aﬁ - hz on .
n n n

Use the mean field approach to show that the free energy of this system is approximated

by
A= % = %Jq M? — kT log (1 + 2k cosh B(JgM + h)) .
where k = exp(—/3g). (Hint: do not approzimate the g3, o2 term.)

For h = 0 expand A as a power series in M. For what values of (T, x) does mean
field theory predict (i) ordinary critical behaviour, (ii) tricritical behaviour, (iii) a first
order transition? In each case find the value of the critical temperature T¢(k).

Calculate the critical exponent a for both critical and tricritical behaviours.
The free energy, A, of an Ising system with order parameter, M, is given by
A= —hM + A;M? + AyM* + AgM®,

where it is assumed that Ag > 0 and that A and A4 are functions of the external
fields 7' and g, with Ay ~ (T —T¢(g)) and where h is the applied magnetic field. (Note,
this is similar to @8 where xk = exp(—£g).)

On dimensional grounds argue that at equilibrium A may be expressed as

3 i
A=|A2,|2F( Y 1’hAﬁ),
4l ;

2|Ap|3 A7 |A2lt

where F(0,0) is finite and non-zero.

Compare this expression with the generic form for the free energy, A, near the tri-
critical point, namely

> g h
A=T—T'2‘“F< I, . )
T -TOF\F=rgP F- TP
where § o« A4 and § has been substituted for g as one of the independent external
fields. Deduce that

5

1 1
¢_§s A_Z'

= 5,
Define the critical temperature at the tricritical point to be Trcp = Te(g = 0).
(i) For h = 0 consider the trajectory in (7, g) space defined by the limit
§g—0, T—Trcp,

with

9 -
O

Observe that A ~ |T' — TTCP|% = o= %, The trajectory lies in the tricritical
region, i.e., we see tricritical exponents as we approach the transition. ¢ is
known as the crossover exponent since it controls the shape of the trajectory nd
hence defines the boundary of the tricritical region.



(6)

(i) For h =0, § fixed and T' — T, show that a = 0 (i.e. normal critical behaviour)
as long as it can be assumed that the function G defined by

yG(y,0) = F(i’ 0)

is finite and non-zero at y = 0.

The crucial point is that to use dimensional analysis the existence of scaling functions
such as F and G must be assumed and that these functions are finite and non-zero
when their arguments are set to zero.

The Renormalization Group

Derive the RG transformation equations for the 1D Ising model as given in the notes:

P - z(1+ y)2
(z +y)(1+ 2y)

y/ - y(z‘ +y)
(1+ zy)

o - wizy?
(I+y)2x+y)(L+ay)

where
r=e%, y= e, w= e*C

Show that there is a fixed point at = 0,y = 1. Linearize the transformation about
this fixed point, derive the fixed point eigenvalues and the two associated critical
indices. Hence, deduce that the singular part of the free energy per spin satisfies

f(@,p) = b7 f (b, bp),

for a scale change b = 2P and where y = 1 — p. Use this result to show that

f@,p) = Vaf(p/Va),

where f(z) = f(1,2). Verify that this is consistent with the exact result for the free

energy if we choose
f(z) = —kT\/1+22/4.

for the singular part.

Compare the complete expression for the free energy F, derived in the notes, with its
scaling form. What plays the réle of the inhomogeneous part?

For fixed J and h = 0 find an expression as 7' — 0 for the leading singularity in the
analogue of the specific heat C' = 9?F/0t*. Comment on what this implies for the
value of o and the validity of the scaling relation o + 23 + v = 2.

Suppose now T > 0 and fixed with 4 = 0 and let J — co. What is the value of « in
this case?

(This is Q5.2 from Binney et al. “The Theory of Critical Phenomena”) Consider
the two-dimensional Ising model on a square lattice with nearest- and next-nearest-
neighbour interactions only, and denote the couplings by K and L, respectively. Per-
form a thinning of degrees of freedom by summing over the spins on every second



site in a ‘checker-board’ fashion. Rescale the lattice by factor b = v/2 to recover the
original lattice spacing. Calculate the interactions on the blocked lattice keeping only
terms up to O(K?) and O(L). Show that there are only two such interactions to this
order which are the same operators as the original ones but with couplings

K' =2K?+L, L = K2?.

Find the critical points for these RG equations and identify the non-trivial one. Lin-
earizing about this point, find a value for the exponent v.

Sketch the RG flows in the K, L plane with K > 0,L > 0.
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As <0
As T decreases A(M) behaves qualitatively differently depending on whether
Ay >0 or Ay <0:

T Dol gk

T=T, A T=T,
T<T, // T<To\
\/ M

NN

second-order transition at T =T, first-order phase transition at T,, T,> T,

Hence the system passes from a second-order transition to a first-order transition
as A, changes sign and becomes negative.
The stationary points are at M = 0 and at

1
M? = [—A4 + (A2 - 4424) ] /246 = M2,
The + sign gives the minima and the — sign the maxima.

Ty is determined by A(M) = 0 having a double root at M = M, (note that Ao
is set to zero so that A(0) = 0 is the minimum for T' > 7). The solution is

3 A2
- 1
and at the transition
2 2 - 0 3A4
(a02)' = = -3 2

Thus the point T = T,, A4 = 0 separates the first-order line from the second-order
line: this is a tricritical point. To see the tricritical point these two parameters
have to take these special values and this requires tuning two external fields in
the phase diagram.

In the space of physical fields, denoted by 7" and g (e.g., g can be identified with
a chemical potential controlling the relative abundances in a two component
system), the phase diagram has the form:



Ty(g)

v

S, critical v A
---- region ‘
tricritical = second-order
region %
(b)
TCP
/ A,
(a)
first-order

(i) Both trajectories (a) and (b) exhibit a second-order transition.

(ii) Trajectory (a) passes through the TCP and lies entirely within the tricritical

region. The transition is characterised entirely by the properties of the TCP,
and all critical exponents are tricritical ones.

(iii) Trajectory (b) exhibits an ordinary second order transition. However, it
starts in the tricritical region and so initially the divergence of the relevant
quantities is controlled by the TCP. Eventually it passes into the critical
region and the transition is characterised by the line of ordinary critical
points and the critical exponents that are given above.

In other words we only see a transition controlled by the TCP when we apporoach
along a trajectory lying in the tricritical region. For trajectories that pass from

one region to another we see a change in the critical behaiviour. This change is
characterised by crossover exponents.



At the TCP A; = 0, and so we have

A, B

, 1
|M| = 1 with 06, = 1

New exponents can be defined, see Eqns (1),(2):

(To—Te) ~ (—A4)% with ¢ =

[,_.I\DI)—'

AM ~ |A4P*  with Bu= 3

where AM is the discontinuity in M across the first-order line (A4 < 0).
then for small A4 we can write

Ay Bt
|]V[| - —/1_6 7TL((E),
Ay
z = ———
2|Ay|2 Ag

where z is a dimensionless variable which vanishes as A; — 0. Note that A,
remains non-zero at a TCP. To see tricritical behaviour along a trajectory we
clearly need x small, i.e.,

A? < 4] Ag|As.

This defines a parabola in the (44, Ag) plane separating the tricritical from critical
regions. This is shown on the figure. In the space of physical parameters it
translates into a similar shaped curve defining the two regions controlled by the
TCP and ordinary critical points respectively.

The general theory of continuous phase transitions can be encoded in terms of
scaling functions and relies on dimensional analysis together with some assump-
tions about the behaviour of the scaling functions for small argument. If naive
or engineering dimensions are used this is generally a recoding of Landau the-
ory but is often used to describe the behaviour of the relevant thermodynamic
variables as a function of the actual external fields and hence parametrises the
experimental observations.

Add a magnetic field, h, with contribution to the free energy of —hM. Then we
can always write

2 i
A= |A21|2 F( A41 1) hlAGﬁ) ’
A2 2| Ag|2 AZ | A2

The point is that the equilibrium free energy, A, can always be written in terms
of dimensionless ratios in this way. As before assign dimension (—1) to M and
dimension d to A, and then A, has dimension (d+n). The above expression is then
a general way of writing the dependence of A at equilibrium on the coefficients



A,, in terms of a scaling function, F'. Note that since Ag is always taken as
positive it causes no problem in the denominators.
We now compare with a standard form parametrising A near the TCP:

% h
| ()] T = Te(g)|*" 1T - Te()]4

where § o A4, and thus measures the distance from the TCP along the tangent
to the critical line at the TCP. Note that § has been substituted for the field g
as the second independent external field: the critical line is thus parametrised as
T.(3). The TCP then is at position (0,7;) in the (g, 7)) plane where T = T,(0)
Labelling the critical exponents at the TCP by suffix, ¢, we clearly have

1 1 5
Q=3 ¢>t="2‘, At':Z-

The following examples clarify the interpretation.

(i) h=0, §— 0, T — T, such that pr—hmr = = is fixed. Then
A=|T —TJ|3F(z,0) with F(0,0) finite.

We see tricritical behaviour and since § ~ |T' — T3|?* the trajectory lies in
the tricritical region. ¢, is the cross-over exponent.

(i) h — 0, g fixed, T — T..

A=T-T} F (—L—O> .
|T — T¢|?

the argument of F is not under control and so we rearrange the expression:

— T2 — T3
A = |T ~TC| G |T ‘;rC|2 ’0 '
g g

where G(z,0) = 2F(%,0) and G(0,0) is finite and non-zero. This property
of G is an assumption in the general theory and could be violated. It does
follow from the standard Landau analysis and hence if it turned out to be
false in an experiment it would signal a breakdown of the Landau theory.
The goal then would be to rescue the dimensional analysis approach by
assigning values to the dimensions of the parameters different from the
naive ones but which render the scaling functions F' and G well behaved
for small argument.

In this case we find that A shows the normal critical behaviour associated
with an ordinary critical point, namely

A~|T =T with a=0.
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