Examples 1

Thermodynamics

(1) In standard notation, the first law of thermodynamics for a magnetic system is

\[dU = TdS - MdH . \]

where \(U \) is the internal energy, \(M \) is the magnetization and \(H \) the applied magnetic field. Define the other functions of state by appropriate Legendre transformations, for example \(F = U - TS \) and hence obtain the Maxwell relations:

\[
\begin{align*}
\left(\frac{\partial T}{\partial H} \right)_S &= -\left(\frac{\partial M}{\partial S} \right)_H, \\
\left(\frac{\partial S}{\partial M} \right)_T &= -\left(\frac{\partial H}{\partial T} \right)_M, \\
\left(\frac{\partial S}{\partial H} \right)_T &= \left(\frac{\partial M}{\partial T} \right)_H, \\
\left(\frac{\partial T}{\partial M} \right)_S &= \left(\frac{\partial H}{\partial S} \right)_M.
\end{align*}
\]

(2) The specific heats at constant magnetic field and at constant magnetization for the magnetic system are

\[C_H = T \left(\frac{\partial S}{\partial T} \right)_H, \quad C_M = T \left(\frac{\partial S}{\partial T} \right)_M . \]

The isothermal and adiabatic susceptibilities are

\[\chi_T = \left(\frac{\partial M}{\partial H} \right)_T, \quad \chi_S = \left(\frac{\partial M}{\partial H} \right)_S . \]

Also define

\[\alpha_H = \left(\frac{\partial M}{\partial T} \right)_H . \]

From the identity

\[\left(\frac{\partial S}{\partial T} \right)_M = \left(\frac{\partial S}{\partial T} \right)_H + \left(\frac{\partial S}{\partial H} \right)_T \left(\frac{\partial H}{\partial T} \right)_M, \]

deduce that

\[\chi_T \left(C_H - C_M \right) = -T \left(\frac{\partial M}{\partial H} \right)_T \left(\frac{\partial M}{\partial T} \right)_H \left(\frac{\partial H}{\partial T} \right)_M, \]

and hence show that

\[\chi_T \left(C_H - C_M \right) = T \alpha^2_H \quad (†). \]

By similar means show that

\[C_H (\chi_T - \chi_S) = T \alpha^2_H. \]

Hence show that

\[\chi_S C_H = \chi_T C_M . \]
(3) For $T \to T_c$ for $T < T_c$ and $H = 0$ the dependence of the following observables on T is parametrized by

$$
C_H \sim (T_c - T)^{-\alpha}, \quad M \sim (T_c - T)^{\beta}, \quad \chi_T \sim (T_c - T)^{-\gamma}.
$$

Using that $C_M > 0$ and (†) above derive Rushbrooke's inequality:

$$
\alpha + 2\beta + \gamma \geq 2.
$$

What is the equivalent set of statements for a gaseous system?

Statistical Models and Landau Theory

(4) The Hamiltonian for a set of N spins $\{s_n\}$ that are 3-dimensional vectors in the presence of a magnetic field \mathbf{H} is

$$
\mathcal{H} = \sum_n \mu H \cos \theta_n,
$$

where θ_n is the angle between between s_n and \mathbf{H}. Show that the partition function is

$$
Z = \left[4\pi \left(\frac{\sinh \beta \mu H}{\beta \mu H} \right) \right]^N.
$$

Compute the free energy F, the entropy S and the internal energy U. Find the equation of state and compute the susceptibility χ_T. Examine the behaviour of χ_T at low T.

(5) In a modification of the 1-dimensional Ising model the spins can take the values $\sigma_n = 1, 0, -1$. Show that the partition function is

$$
Z = \text{Tr} \, W^n,
$$

where W is the 3×3 matrix

$$
\begin{pmatrix}
z\mu^2 & \mu & z^{-1} \\
\mu & 1 & \mu^{-1} \\
z^{-1} & \mu^{-1} & z\mu^{-2}
\end{pmatrix}
$$

with $z = e^{\beta J}$ and $\mu = e^{\beta h/2}$.

For the case $h = 0$ show that this matrix can be expressed in the form $W = \Lambda \Lambda^{-1}$ where

$$
\Lambda = \begin{pmatrix}
2 \cosh \beta J & \sqrt{2} & 0 \\
\sqrt{2} & 1 & 0 \\
0 & 0 & 2 \sinh \beta J
\end{pmatrix},
\quad
P = \begin{pmatrix}
1/\sqrt{2} & 0 & -1/\sqrt{2} \\
0 & 1 & 0 \\
1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{pmatrix}.
$$
Hence find the eigenvalues of W and show that in the thermodynamic limit the free energy of the system is

$$F = -NkT \log \left\{ \left(1 + 2 \cosh \beta J + \sqrt{(2 \cosh \beta J - 1)^2 + 8}\right)/2 \right\}.$$

(6) Give a plausible argument that the phase diagram of the 3D spin model with Hamiltonian

$$H = -J \sum_{<ij>} s_i \cdot s_j + \frac{1}{2} g \sum_i \left((s_i^z)^2 - \frac{1}{2} \left((s_i^x)^2 + (s_i^y)^2 \right) \right)$$

has the form

![Phase Diagram](image)

where $-\infty < g < \infty$, $<i,j>$ means nearest neighbour pairs, and s_i is a vector at the i-th site with $|s_i| = 1$.

You should consider the nature of the dominant configurations for low and high temperature for $|g|$ very large, and the type of transition that is likely to separate them. Then ask what happens for low T as g changes sign. Note that in $D = 3$ the $O(2)$, plane rotator, model (the spin at each site, s_i, is a unit vector lying in the xy-plane) exhibits a continuous phase transition.

If you look in the extra material at the end of the notes on the web then you will see the answer.

3