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Statistical Models and Landau Theory

(1) By considering < σ0 > in equilibrium show that in the mean field approximation to
the Ising model in D-dimensions the equilibrium magnetisation is given by the solution
to

M = tanhβ(qJM + h)

where β = 1/kT , q = 2D, J(> 0) is the nearest neighbour coupling constant and h is
the applied magnetic field.

The free energy in this approach is

A = −kT log [2 coshβ(qJM + h)] +
1

2
qJM2.

Show that the expression for the equilibrium magnetization above can also be obtained
by minimizing A with respect to M .

The critical exponent α governs the divergence in the specific heat:

C = T

(
∂2A

∂T 2

)
h=0

, C ∼ |T − Tc|−α T → Tc. (1)

Using the expression for M above show that the free energy in equilibrium for h = 0
is

A = − kT log 2 +
1

2
kT log

(
1−M2

)
+

1

2
qJM2 , (2)

By assuming the expansion M2 = Ct+Dt2 + . . . where t ≡ (T − Tc)/Tc, derive that

A = − kT log 2 +
1

2
kT log

(
1− Ct−Dt2 − . . .

)
+

1

2
qJ(Ct+Dt2 + . . .) .

By expanding A in t show that

A = a0 + a1t+
1

2
a2t

2 + . . . ,

for constants ai, and consequently that

C = a2 + O(t),

and hence that the exponent α is given by α = 0.

We note also that, except for α we can get all exponents from the equation of state
by expanding tanh near t = 0:

M = (βqJM + βh) − 1

3
(βqJM + βh)3 + . . . ,

or, keeping only linear terms in h (ignore e.g. hM2 since this gives non-leading singular
behaviour – check it),

1

3
(βqJ)3M3 + (1− βqJ)M − βh = 0 ,

as we find from minimizing A.
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(2) In the Blume-Capel model in D-dimensions the spins σn take values σn = 1, 0,−1. The
Hamiltonian is an extension of the Ising-like one discussed in the previous question:

H = − J
∑
n

σnσn+µ + g
∑
n

σ2
n − h

∑
n

σn .

Use the mean field approach to show that the free energy of this system is approximated
by

A ≡ F

N
=

1

2
Jq M2 − kT log (1 + 2κ coshβ(JqM + h)) .

where κ = exp(−βg). (Hint: do not approximate the g
∑
σ σ2

n term.)

For h = 0 expand A as a power series in M . For what values of (T, κ) does mean
field theory predict (i) ordinary critical behaviour, (ii) tricritical behaviour, (iii) a first
order transition? In each case find the value of the critical temperature Tc(κ).

Calculate the critical exponent α for both critical and tricritical behaviours.

(3) The free energy, A, of an Ising system with order parameter, M , is given by

A = −hM +A2M
2 +A4M

4 +A6M
6,

where it is assumed that A6 > 0 and that A2 and A4 are functions of the external
fields T and g, with A2 ∼ (T −Tc(g)) and where h is the applied magnetic field. (Note,
this is similar to Q2 where κ = exp(−βg).)

On dimensional grounds argue that at equilibrium A may be expressed as

A =
|A2|

3
2

A
1
2
6

F

 A4

2|A2|
1
2A

1
2
6

,
hA

1
4
6

|A2|
5
4

 ,
where F (0, 0) is finite and non-zero.

Compare this expression with the generic form for the free energy, A, near the tri-
critical point, namely

A = |T − Tc(g̃)|2−αF
(

g̃

|T − Tc(g̃)|φ
,

h

|T − Tc(g̃)|∆
)
,

where g̃ ∝ A4 and g̃ has been substituted for g as one of the independent external
fields. Deduce that

α =
1

2
, φ =

1

2
, ∆ =

5

4
.

Define the critical temperature at the tricritical point to be TTCP ≡ Tc(g̃ = 0).

(i) For h = 0 consider the trajectory in (T, g̃) space defined by the limit

g̃ → 0, T → TTCP ,

with

g̃

|T − Tc(g̃)|φ
= x fixed.

Observe that A ∼ |T − TTCP |
3
2 ⇒ α = 1

2 , The trajectory lies in the tricritical
region, i.e., we see tricritical exponents as we approach the transition. φ is
known as the crossover exponent since it controls the shape of the trajectory nd
hence defines the boundary of the tricritical region.
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(ii) For h = 0, g̃ fixed and T → Tc show that α = 0 (i.e. normal critical behaviour)
as long as it can be assumed that the function G defined by

yG(y, 0) = F (
1

y
, 0)

is finite and non-zero at y = 0.

The crucial point is that to use dimensional analysis the existence of scaling functions
such as F and G must be assumed and that these functions are finite and non-zero
when their arguments are set to zero.

The Renormalization Group

(4) Derive the RG transformation equations for the 1D Ising model as given in the notes:

x′ =
x(1 + y)2

(x+ y)(1 + xy)

y′ =
y(x+ y)

(1 + xy)

w′ =
w2xy2

(1 + y)2(x+ y)(1 + xy)
.

where
x = e−4βJ , y = e−2βh , w = e4βC .

Show that there is a fixed point at x = 0, y = 1. Linearize the transformation about
this fixed point, derive the fixed point eigenvalues and the two associated critical
indices. Hence, deduce that the singular part of the free energy per spin satisfies

f(x, ρ) = b−1f(b2x, bρ),

for a scale change b = 2p and where y = 1− ρ. Use this result to show that

f(x, ρ) =
√
xf̃(ρ/

√
x) ,

where f̃(z) = f(1, z). Verify that this is consistent with the exact result for the free
energy if we choose

f̃(z) = − kT
√

1 + z2/4 .

for the singular part.

(5) Compare the complete expression for the free energy F , derived in the notes, with its
scaling form. What plays the rôle of the inhomogeneous part?

For fixed J and h = 0 find an expression as T → 0 for the leading singularity in the
analogue of the specific heat C = ∂2F/∂t2. Comment on what this implies for the
value of α and the validity of the scaling relation α+ 2β + γ = 2.

Suppose now T > 0 and fixed with h = 0 and let J → ∞. What is the value of α in
this case?

(6) (This is Q5.2 from Binney et al. “The Theory of Critical Phenomena”) Consider
the two-dimensional Ising model on a square lattice with nearest- and next-nearest-
neighbour interactions only, and denote the couplings by K and L, respectively. Per-
form a thinning of degrees of freedom by summing over the spins on every second
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site in a ‘checker-board’ fashion. Rescale the lattice by factor b =
√

2 to recover the
original lattice spacing. Calculate the interactions on the blocked lattice keeping only
terms up to O(K2) and O(L). Show that there are only two such interactions to this
order which are the same operators as the original ones but with couplings

K ′ = 2K2 + L, L′ = K2 .

Find the critical points for these RG equations and identify the non-trivial one. Lin-
earizing about this point, find a value for the exponent ν.

Sketch the RG flows in the K,L plane with K > 0, L > 0.
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