Mathematical Tripos Part III

Michaelmas Term 2014 R.R. Horgan

Statistical Field Theory

Examples 3

Field Theory

(1) In the Gaussian model with $\alpha = 1$

$$\Delta(p) = \frac{1}{p^2 + m^2} \, .$$

Let $x = (s, \mathbf{x})$ where \mathbf{x} is a D - 1 dimensional vector. Show that

$$\int d^{D-1}\mathbf{x} \ \Delta(s,\mathbf{x}) \ \propto \ \xi \ e^{-|s|/\xi} \ .$$

where $\xi = 1/m$ is the correlation length.

An optional and much harder result to obtain is

$$G(r) = \int \frac{d^D p}{(2\pi)^D} e^{-i\mathbf{p}\cdot\mathbf{x}} \frac{\alpha}{p^2 + \alpha m^2} \sim \begin{cases} \frac{\xi e^{-r/\xi}}{(r\xi)^{(D-1)/2}} & a \ll \xi \ll r \\ \frac{1}{r^{(D-2)}} & a \ll r \ll \xi \end{cases}$$

with $\xi^{-2} = \alpha m^2$ and α constant. A hint is to heavily approximate the integral in the two regions by recognizing that for $a \ll \xi \ll r$ it is dominated by $p \ll m$ and for $a \ll r \ll \xi$ it is dominated by $p \gg m$.

In an interacting theory α depends on p and we write

$$\frac{\alpha(p,\xi)}{p^2 + \alpha(p,\xi)m^2} = \frac{Z(p,\xi)}{p^2 + \xi^{-2}} ,$$

which **defines** $Z(p,\xi)$. For large enough ξ we find that

$$Z(p,\xi) \sim \begin{cases} (ap)^{-\sigma} & p \gg \xi^{-1} , \\ \\ (a/\xi)^{-\sigma} & p \ll \xi^{-1} , \end{cases}$$

In this case, can you infer the asymptotic forms for G(r) similar to those stated above?

(2) The partition function of a scalar D = 0 field theory is given by

$$\mathcal{Z} = \int dx \ e^{-\left(\frac{1}{2}\lambda x^2 + \frac{g}{4!}x^4\right)} \ .$$

Derive the Feynman rules for the perturbation expansion in g for the connected r-point function $\langle x^r \rangle_c$. To $O(g^2)$ evaluate $\langle x^4 \rangle_c$ and verify your answer by explicit calculation. Try some other low order calculations of your choice.

(3) The partition function for a Euclidean scalar field theory is defined in terms of the action $S(\phi)$ by

$$Z = \int \{d\phi\} e^{-S(\phi)/\lambda}$$

 $S(\phi)$ can be written explicitly in the form

$$S(\phi) = \int d^D x \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \sum g_n \frac{\phi^{2n}}{2n!} + \dots$$

More interactions such as derivative interactions can be included in principle.

By inspecting the rules for generating the diagrammatic expansion of the theory show that

- (i) every vertex carries a factor λ^{-1} ,
- (ii) every propagator line carries a factor λ .

Now consider the graphical expansion for the one-particle irreducible (1PI), truncated n-point function. Prove by induction or otherwise that the contribution of a given diagram carries a factor λ^{L-1} , where L is the number of loops in that diagram. Hence show that the result is also true for all connected diagrams. [See Itzykson and Zuber Section 6.2 for one way to do this.]

Also show that the contribution to $W(J) = -\lambda \log Z(J)$ from diagrams with L loops is $O(\lambda^L)$.

Note: in quantum field theory λ is identified with \hbar and so the expansion in the number of loops is the **same** as an expansion in powers of \hbar which measures the size of quantum corrections.

(4*) For the ϕ^4 field theory for $D = 4 - \epsilon$ the RG evolution equations for the coupling constant g and mass m are

$$\frac{du^2}{db} = 2u^2 + \frac{\Omega_D}{2(2\pi)^D} \frac{\lambda}{1+u^2}$$
$$\frac{d\lambda}{db} = \epsilon\lambda - \frac{3\Omega_D}{2(2\pi)^D} \frac{\lambda^2}{(1+u^2)^2}$$

where

$$u^2(b,T) = \Lambda^{-2}m^2(\Lambda,T), \quad \lambda(b,T) = \Lambda^{-\epsilon}g(\Lambda,T),$$

and Λ is the Ultra-Violet cutoff. Note that both u and λ are dimensionless.' Verify that the non-trivial fixed point is at

$$u^{*2} = -\epsilon/6$$
, $\lambda^* = 16\pi^2\epsilon/3$.

Draw a typical trajectory flow for a theory near to $T = T_c$ for t > 0, t < 0, calculate the relevant eigenvalue λ_t and so derive the related critical exponents.