Statistical Field Theory

Examples 3

Field Theory

(1) In the Gaussian model with $\alpha=1$

$$
\Delta(p)=\frac{1}{p^{2}+m^{2}}
$$

Let $x=(s, \mathbf{x})$ where \mathbf{x} is a $D-1$ dimensional vector. Show that

$$
\int d^{D-1} \mathbf{x} \Delta(s, \mathbf{x}) \propto \xi e^{-|s| / \xi}
$$

where $\xi=1 / m$ is the correlation length.
An optional and much harder result to obtain is

$$
G(r)=\int \frac{d^{D} p}{(2 \pi)^{D}} e^{-i \mathbf{p} \cdot \mathbf{x}} \frac{\alpha}{p^{2}+\alpha m^{2}} \sim \begin{cases}\frac{\xi e^{-r / \xi}}{(r \xi)^{(D-1) / 2}} & a \ll \xi \ll r \\ \frac{1}{r^{(D-2)}} & a \ll r \ll \xi\end{cases}
$$

with $\xi^{-2}=\alpha m^{2}$ and α constant. A hint is to heavily approximate the integral in the two regions by recognizing that for $a \ll \xi \ll r$ it is dominated by $p \ll m$ and for $a \ll r \ll \xi$ it is dominated by $p \gg m$.

In an interacting theory α depends on p and we write

$$
\frac{\alpha(p, \xi)}{p^{2}+\alpha(p, \xi) m^{2}}=\frac{Z(p, \xi)}{p^{2}+\xi^{-2}}
$$

which defines $Z(p, \xi)$. For large enough ξ we find that

$$
Z(p, \xi) \sim \begin{cases}(a p)^{-\sigma} & p \gg \xi^{-1} \\ (a / \xi)^{-\sigma} & p \ll \xi^{-1}\end{cases}
$$

In this case, can you infer the asymptotic forms for $G(r)$ similar to those stated above?
(2) The partition function of a scalar $D=0$ field theory is given by

$$
\mathcal{Z}=\int d x e^{-\left(\frac{1}{2} \lambda x^{2}+\frac{g}{4!} x^{4}\right)}
$$

Derive the Feynman rules for the perturbation expansion in g for the connected r-point function $\left\langle x^{r}\right\rangle_{c}$. To $O\left(g^{2}\right)$ evaluate $\left\langle x^{4}\right\rangle_{c}$ and verify your answer by explicit calculation. Try some other low order calculations of your choice.
(3) The partition function for a Euclidean scalar field theory is defined in terms of the action $S(\phi)$ by

$$
Z=\int\{d \phi\} e^{-S(\phi) / \lambda}
$$

$S(\phi)$ can be written explicitly in the form

$$
S(\phi)=\int d^{D} x \frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}+\sum g_{n} \frac{\phi^{2 n}}{2 n!}+\ldots
$$

More interactions such as derivative interactions can be included in principle.
By inspecting the rules for generating the diagrammatic expansion of the theory show that
(i) every vertex carries a factor λ^{-1},
(ii) every propagator line carries a factor λ.

Now consider the graphical expansion for the one-particle irreducible (1PI), truncated n-point function. Prove by induction or otherwise that the contribution of a given diagram carries a factor λ^{L-1}, where L is the number of loops in that diagram. Hence show that the result is also true for all connected diagrams. [See Itzykson and Zuber Section 6.2 for one way to do this.]
Also show that the contribution to $W(J)=-\lambda \log Z(J)$ from diagrams with L loops is $O\left(\lambda^{L}\right)$.

Note: in quantum field theory λ is identified with \hbar and so the expansion in the number of loops is the same as an expansion in powers of \hbar which measures the size of quantum corrections.
$\left(4^{*}\right)$ For the ϕ^{4} field theory for $D=4-\epsilon$ the RG evolution equations for the coupling constant g and mass m are

$$
\begin{aligned}
\frac{d u^{2}}{d b} & =2 u^{2}+\frac{\Omega_{D}}{2(2 \pi)^{D}} \frac{\lambda}{1+u^{2}} \\
\frac{d \lambda}{d b} & =\epsilon \lambda-\frac{3 \Omega_{D}}{2(2 \pi)^{D}} \frac{\lambda^{2}}{\left(1+u^{2}\right)^{2}}
\end{aligned}
$$

where

$$
u^{2}(b, T)=\Lambda^{-2} m^{2}(\Lambda, T), \quad \lambda(b, T)=\Lambda^{-\epsilon} g(\Lambda, T)
$$

and Λ is the Ultra-Violet cutoff. Note that both u and λ are dimensionless.'
Verify that the non-trivial fixed point is at

$$
u^{* 2}=-\epsilon / 6, \quad \lambda^{*}=16 \pi^{2} \epsilon / 3
$$

Draw a typical trajectory flow for a theory near to $T=T_{c}$ for $t>0, t<0$, calculate the relevant eigenvalue λ_{t} and so derive the related critical exponents.

