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1 INTRODUCTION 1

1 Introduction

This course of sixteen lectures is concerned with explaining how the principles of quan-
tum mechanics and quantum statistical physics underlie some important and applicable
phenomena in modern physics. In particular we will study the laser and the bi-polar
transistor. Over many years these devices have been developed in sophisticated and
diverse ways to serve the many applications with which we are very familiar. However,
our object is to avoid (or try to avoid) getting bogged down in the complicated details
of the systems whose workings we are trying to understand. The underlying theory is
what we are aiming at, and it will be enough to study the simplest and cleanest systems
which exhibit the phenomena in which we are interested. The complete theory of such
devices does need advanced techniques of theoretical physics but it is important to
realise that the phenomena themselves can be explained conceptually and successfully
using the basic ideas of quantum mechanics and statistical physics. Nevertheless, to
then convert this understanding into the design of efficient working systems requires a
lot of calculation and analysis of the details of real experimental systems.

This course will assume that students have taken the Part IB ”Quantum Mechanics”
course and knowledge of the Part II “Foundations of Quantum Mechanics” course will
be useful at times, but all other necessary theory will be developed in the lectures.
In particular, the ideas of quantum statistical physics will be presented for the first
time. The new ideas presented in course are very general in nature and are of great
interest in their own right: the concepts underpinning them are universal and of wide-
ranging applicability. Nevertheless, the focus is on practical application which acts as
the vehicle to help us understand the important mathematical and physical techniques
we are using.

2 Review of Quantum Mechanics

Quantum mechanics is constructed in terms of operators acting as transformations
on the linear vector space of wavefunctions

(i) Important operators are the linear momentum p, the position vector x and the Hamil-
tonian H, where

H =
1

2m
p2 + V (x) . (2.1)

V (x) is the potential energy function and H is the “energy” operator. In the
Schrödinger representation we have:

x represented by multiplication by x;
p represented by −ih̄∇,

which imply the commutation relations:

[xi, pj ] = ih̄δij , [xi, xj ] = [pi, pj ] = 0 . (2.2)

Then from eqn. (2.1) the Hamiltonian H is represented by

H = − h̄2

2m
∇2 + V (x) . (2.3)

H and p are differential operators in the Schrödinger representation and so act on
sufficiently differentiable functions of x. These functions are called wavefunctions
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and embody all of the physics of the system under study. These wavefunctions are
functions of position, x, and time, t. If we know the wavefunction, ψ(x, t), for all x

and t we can predict the outcome of all experimental measurements on the system.

(ii) The dynamics of the system which allow us to calculate ψ(x, t) are given by Schrödinger’s
equation for the time evolution of ψ(x, t). This is the “equation of motion” of quantum
mechanics. Schrödinger’s equation is:

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t) . (2.4)

(iii) Energy eigenfunctions ψn(x, t) satisfy

Hψn(x, t) = Enψn(x, t) , (2.5)

where n labels and distinquishes the different eigenfunctions. Together with eqn. (2.4),
this equation implies that

ψn(x, t) = φn(x) e−iEnt/h̄ , (2.6)

with
Hφn(x) = Enφn(x) . (2.7)

This last equation is Schrödinger’s time-independent equation for the energy eigen-
values, En. The wavefunctions ψn(x, t) are particularly important and all called “sta-
tionary wavefunctions (or states)”. Equation (2.7) is a differential equation which can
be solved once the boundary conditions are given. Generally, the boundary conditions
are such that only particular values for the En are allowed. The sequence E0, E1 . . .
give all the allowed observable values for the energy of the system.

The ψn(x, t) form a complete basis for the linear space of wavefunctions. Hence,
the most general solution to Schrödinger’s time-dependent equation, eqn. (2.4) can be
written using this basis as:

ψ(x, t) =
∑

n

an ψn(x, t) , (2.8)

which, using eqn. (2.6), becomes:

ψ(x, t) =
∑

n

an φn(x) e−iEnt/h̄ . (2.9)

This way of writing the general solution to eqn. (2.4) is a standard Maths Methods
technique of solving all such equations subject to given boundary conditions: it is not
peculiar to quantum mechanics.

(iv) The inner product (like a “dot product”) of two wavefunctions ψ and χ is denoted
by (χ, ψ) and is given by

(χ, ψ) =

∫

d3x χ∗(x, t) ψ(x, t) . (2.10)

In particular for two energy eigenfunctions ψm and ψn

(ψm, ψn) = δmn =⇒ (φm, φn) = δmn . (2.11)
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I.e., the energy eigenfunctions are orthonormal.

The matrix element of an operator A is denoted by (χ, Aψ) and is given by

(χ, Aψ) =

∫

d3x χ∗(x, t) (Aψ(x, t)) . (2.12)

The hermitian conjugate A† of A is defined by

(A†χ, ψ) = (χ, Aψ) . (2.13)

(v) The solution to eqn. (2.4) is then constructed as follows:

(a) Solve Schrödinger’s time-independent equation (2.7) using the physical boundary
conditions to find the {En}, and the corresponding φn(x).

(b) Construct the ψn(x, t) using eqn. (2.6) and express the general solution, ψ(x, t),
using the ψn as a basis as given in eqn. (2.8).

(c) Since Schrödinger’s time-independent equation is first-order in time it is an initial
value problem and we only need to know the solution at t = 0 to solve for all t.
Suppose we are given ψ(x, 0) = f(x) . Then from eqn (2.6) we see that

ψ(x, 0) = f(x) =
∑

n

an φn(x) . (2.14)

Hence, using orthonormality, eqn. (2.11), we determine the coefficients {an} by

(φn, f) = an . (2.15)

The general solution is given by substituting the {an}, which are usually complex,
back into eqn. (2.8).

(vi) Other operators have associated eigenvalues and eigenfunctions too. In general, we
have

Agn(x) = λngn(x) . (2.16)

If A† = A then A is said to be hermitian and the eigenvalues λn are real. All observables
have real eigenvalues and are thus represented by hermitian operators. Like the φn the
gn are orthonormal and form a complete basis for the space of wavefunctions:

ψ(x, t) =
∑

n

cn(t) gn(x) . (2.17)

with
cn(t) = (gn, ψ) . (2.18)

Note: in the special case A = H we found

ψ(x, t) =
∑

n

an e−iEnt/h̄ φn(x) ,

which identifies in this case

cn(t) = an e−iEnt/h̄ and gn(x) = φn(x) . (2.19)

In general, however, the time-dependence of the {cn(t)} is not so simple: the energy
operator is very special.
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(vii) The interpretation of this expansion is explained by the question

“A system is described by the wavefunction ψ(x, t). What is the probability PA
n (t) of

measuring the value of the observable represented by the (hermitian) operator A to
have value λn? ”

The answer is
PA

n (t) = |cn(t)|2 = |(gn, ψ)|2 . (2.20)

In the special case A = H we see from eqn. (2.19) that

PH
n (t) = |an e−iEnt/h̄|2 = |an|2 ,

which establishes that PH
n is independent of time. Clearly, we must have

∑

n

|cn(t)|2 = 1 , (2.21)

which is ensured by imposing
∫

d3x |ψ(x, t)|2 = 1 . (2.22)

2.1 Example of two-state system

To illustrate the review above we consider a two-state system. Such a system has only
two energy eigenfunctions ψ1 and ψ2 with energies E1 and E2 respectively: Hφn =
Enφn, n = 1, 2 . The general solution for the wavefunction is thus

ψ(x, t) = a1 e−iE1t/h̄ φ1(x) + a2 e−iE2t/h̄ φ2(x) ,

|a1|2 + |a2|2 = 1 (2.1.1)

Let an observable, A, operate on the eigenfunctions φ1, φ2 as

A φ1 = φ2 , A φ2 = φ1 . (2.1.2)

What are the eigenfunctions of A ? Let a generic eigenfunction be g(x) with

A g(x) = λ g(x) . (2.1.3)

Using that φ1, φ2 form a complete basis we must have that

g = b1 φ1 + b2 φ2 , (2.1.4)

|b1|2 + |b2|2 = 1 ,

where b1 and b2 are determined as follows.
Multiply both sides of eqn. (2.1.4) by φ∗

1 and integrate over all space. Repeat with
φ∗

2. Using orthonormality of the φn we find

(φ1, g) = b1 , (φ2, g) = b2 . (2.1.5)

This is just taking the inner product of eqn. (2.1.4) with φ1 and φ2.
Now operate with A on both sides of eqn. (2.1.4) and use eqns. (2.1.2) and (2.1.3)

to give

A g = λ g

=⇒ b1Aφ1 + b2Aφ2 = λb1 φ2 + λb2 φ1 , (2.1.6)
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Taking the inner product of this equation with the φ1 and φ2 we find, using eqn. (2.1.5),

λ b1 = b2

λ b2 = b1
=⇒

(

0 1
1 0

) (

b1

b2

)

= λ

(

b1

b2

)

(2.1.7)
Clearly, the problem is now a 2x2 matrix eigenvalue problem. There are two eigen-

vectors corresponding to two eigenvalues. These are

√
1
2

(

1
1

)

λ = λ1 = 1

√
1
2

(

1
−1

)

λ = λ2 = − 1

(2.1.8)

Then we have

g1 =

√

1

2
φ1 +

√

1

2
φ2

g2 =

√

1

2
φ1 −

√

1

2
φ2 , (2.1.9)

with corresponding eigenvalues λ1 = 1 and λ2 = −1 .
Now suppose that the system has been prepared at t = 0 to be in the eigenstate

with eigenfunction g1(x) of A. This is the initial condition for the evolution of the
system. This means we set ψ(x, 0) = g1(x). This initial condition can be ensured, for
instance, by taking an ensemble (i.e., collection) of many similar systems and measuring
the observable A for each at t = 0. Then consider only those systems in the ensemble
for which the measurement yielded the value λ1.

Thus using familiar notation

Ψ(x, 0) = g1(x) = a1 φ1(x) + a2 φ2(x) , (2.1.10)

and from eqn. (2.1.9) we can identify

a1 =

√

1

2
and a2 =

√

1

2
. (2.1.11)

Thus the wavefunction ψ(x, t) is given by (eqn. (2.6))

ψ(x, t) =

√

1

2

(

e−iE1t/h̄φ1(x) + e−iE2t/h̄φ2(x)
)

. (2.1.12)

Using eqn. (2.1.9) we can rewrite this equation as

ψ(x, t) = c1(t) g1(x) + c2(t) g2(x) , (2.1.13)

where

c1(t) =
1

2

(

e−iE1t/h̄ + e−iE2t/h̄
)

c2(t) =
1

2

(

e−iE1t/h̄ − e−iE2t/h̄
)

. (2.1.14)

Now let’s answer the question:
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“Given that at t = 0 the system is in the eigenstate with eigenfunction g1 of oper-
ator A, what is the probability, PA

1 (t) that the observable corresponding to A will be
measured to be λ1 at time t? ”

From all that has gone before we know that

PA
1 (t) = |c1(t)|2 = cos 2

(
(E2 − E1)t

2h̄

)

. (2.1.15)

This means that from our ensemble of prepared systems a proportion PA
1 (t) will yield

the value λ1 on measurement of the observable corresponding to the operator A.

3 Photon polarization states

A photon of light consists of an electromagnetic wave oscillating transversely to direc-
tion of propagation of the beam. The energy, E of the photon is given in terms of its
momentum, k, by E = h̄ω = c|k|. The unit vector lying in the plane of oscillation of
the photon’s electric field and perpendicular to the propagation direction, k̂, is called
the polarization vector, denoted e. Clearly, there are two independent polarization
vectors which can be denoted e1 and e2: e1 · k̂ = e2 · k̂ = 0 .

In general we have
e = cos θ e1 + sin θ e2 . (3.1)

Thus the photon has two possible polarization states which we represent by

ψ1 =

(

1
0

)

ψ2 =

(

0
1

)

, (3.2)

with associated polarization vectors e1 and e2, respectively.
Using eqn. (3.1) the general state of a plane-polarized photon with polarization

vector e is thus

ψ = cos θ ψ1 + sin θ ψ2 =

(

cos θ
sin θ

)

. (3.3)

The inner product is
(χ, ψ) = (χ∗)T · ψ , (3.4)

i.e., the dot product in two complex dimensions: χ and ψ are vectors in a 2D complex
space.

Note, for example:
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(i) The polarization angle θ is given by

cos θ = (ψ1, ψ) sin θ = (ψ2, ψ) . (3.5)

(ii) The probability of measuring the photon to have polarization in the 1-direction (i.e.,
e1 in the diagram) is (c.f. eqn. (2.20))

P1 = |(ψ1, ψ)|2 = cos 2θ . (3.6)

When a beam of light passes through a sheet of polaroid all the emergent photons
have the same polarization which is determined by the orientation of the polaroid. In
this way we can prepare plane-polarized photons in a given polarization state.

Circularly polarized light has wavefunctions

ψ± =

√

1

2
(ψ1 ± iψ2) =

√

1

2

(

1
±i

)

. (3.7)

4 Electron spin

We associate angular momentum with orbital motion of particles, say electrons in an
atom. In quantum mechanics the orbital angular momentum operator is L = x ∧ p.
We can find simultaneous eigenfunctions for the operators L2 and Lz with eigenvalues
h̄2l(l + 1) and h̄m respectively, with the restriction that l and m are integers with
l ≥ 0 and −l ≤ m ≤ l .

However, there is another kind of angular momentum which has nothing to do with
motion of a particle but is an intrinsic property of the particle itself. This is called
spin. The electron has spin angular momentum l = 1/2 and so the allowed values
of m are ±1/2 . (Note: half-integer values of l and m were not allowed in the case of
orbital angular momentum.) Thus the electron has an internal degree of freedom which
is a kind of discrete internal coordinate and can only take one of the two values ±1/2 .
Classically the spin might be pictured as the rotation of the particle on its own axis
but it is, in fact, a purely quantum phenomenon since its magnitude is proportional to
h̄.

The presence of spin is detected because it gives rise to a magnetic moment, M,
just as a circulating current does: the electron is a minute bar-magnet like a compass
needle. Thus an electron in a magnetic field has a potential energy which is given by

E = − B · M . (4.1)
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where B is the field. The existence of electron spin can be detected in atomic spectra
(fine-structure) because of atomic energy-level shifts due to the electron magnetic mo-
ment interacting with internal magnetic fields in the atom. Also by applying external
magnetic fields to electron beams or to atoms, this energy can again be detected as
shifts in the energy levels. Nuclear Magnetic Resonance (NMR) relies on this effect for
proton spin in the nucleus.

The important message is that the electron has two internal states which we shall
from now on label by s = ± 1/2.

5 Many-particle wavefunctions

Consider a system of two particles which is described by the wavefunction ψ(x1, α1, x2, α2, t),
where αi stands for other degrees of freedom: e.g., for an electron it is the spin which
takes values in [−1/2, 1/2]. The state is normalized:

∑

α1α2

∫

|ψ(x1, α1, x2, α2, t)|2 d3x1d
3x2 = 1 , (5.1)

and the function

P (x1, α1, x2, α2, t) = |ψ(x1, α1, x2, α2, t)|2 (5.2)

gives the probability density at time t for finding particle 1 at x1 with spin α1 and
particle 2 at x2 with α2. The single particle probability density for particle 1 is given
by

P (x1, α1, t) =
∑

α2

∫

|ψ(x1, α1, x2, α2, t) |2 d3x2 , (5.3)

and likewise for particle 2.
The Hamiltonian will in general take the form:

H = − h̄2

2m1
∇2

1 − h̄2

2m2
∇2

2 + V (x1, x2) , (5.4)

where the subscripts “1” and “2” label the two particles. (Note: In principle H can
depend on the “coordinates” αi, e.g., for electrons it would depend on spin if mag-
netic fields acted on the system. However, this is an unnecessary complication for our
purposes.)

In the special case that V (x1, x2) = V1(x1) + V2(x2) the Hamiltonian is separable
which means that:

H = H1(x1) + H2(x2) . (5.5)

We can write

H1φ
(1)
n (x1, α1) = E(1)

n φ(1)
n (x1, α1) H2φ

(2)
n (x2, α2) = E(2)

n φ(2)
n (x2, α2) ,

=⇒

H φ(1)
n1

(x1, α1)φ
(2)
n2

(x2, α2) = (E(1)
n1

+ E(2)
n2

) φ(1)
n1

(x1, α1)φ
(2)
n2

(x2, α2) . (5.6)

Thus in the separable case the two-particle eigenfunctions take the form

ψn1n2
(x1, α1, x2, α2, t) = ψ(1)

n1
(x1, α1, t)ψ

(2)
n2

(x2, α2, t) , (5.7)
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with energy E
(1)
n1

+ E
(2)
n2

. These eigenfunctions form a complete basis for the space of
all two-particle wavefunctions and thus

ψ(x1, α1, x2, α2, t) =
∑

n1n2

cn1n2
ψn1n2

(x1, α1, x2, α2, t) . (5.8)

This analysis can easily be extended to systems of N particles.

5.1 Identical particles

Suppose the system consists of N identical particles. Then labelling them 1, 2, . . .etc.
wrongly distinquishes them. For example, there is no way of distinquishing

ψ(x1, α1, x2, α2, t) from ψ(x2, α2, x1, α1, t) , (5.1.1)

experimentally. They must be the same state with the same energy. They may
differ by a phase since this does not affect probabilities or energies. Somehow we must
construct the states to take into account the indistinquishability of the particles. This
is done in one of the two following ways which have far reaching consequences for most
physical systems:

(i) Fermi-Dirac statistics states that the wavefunction must be antisymmetric under
interchange of any two particles. In the example above this means 1 ↔ 2 with a
phase factor of −1. Particles which obey Fermi-Dirac statistics are called fermions
and include all spin-1/2 particles and in particular the electron.

(ii) Bose-Einstein statistics states that the wavefunction for identical particles is sym-
metric under interchange of any pair of particles. Particles which obey Bose-Einstein
statistics are called bosons which includes the photon.

Thus we have:

Fermi-Dirac: ψ(x1, α1, x2, α2, t) = − ψ(x2, α2, x1, α1, t) ,

Bose-Einstein: ψ(x1, α1, x2, α2, t) = + ψ(x2, α2, x1, α1, t) . (5.1.2)

In the separable case for two particles

H = − h̄2

2m
∇2

1 − h̄2

2m
∇2

2 + V (x1) + V (x2) , (5.1.3)

and the wavefunction becomes

Ψ =
√

1
2 (ψ1(x1, α1, t)ψ2(x2, α2, t) ∓ ψ1(x2, α2, t)ψ2(x1, α1, t)) , (5.1.4)

with (−) for Fermi-Dirac and (+) for Bose-Einstein.

5.2 The Exclusion Principle

Consider two electrons and neglect the interaction between them. The Hamiltonian is
then separable. Put one in single particle state ψ1(x, s, t) and the other in ψ2(x, s, t).
The total energy is E = E1 + E2 and the correct wavefunction is

Ψ(x1, s1, x2, s2, t) =
√

1
2 (ψ1(x1, s1, t)ψ2(x2, s2, t) − ψ1(x2, s2, t)ψ2(x1, s1, t)) .

(5.2.1)
If ψ1 = ψ2 then Ψ = 0. This is the Exclusion Principle which states that
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“No two electrons may occupy identical single particle states.”

For a system of N electrons with separable Hamiltonian the energy eigenfunctions take
the form

Ψ(x1, s1, . . . , xN , sN , t) = Φ(x1, s1, . . . , xN , sN , t) e−iEt/h̄ , (5.2.2)

where Φ can be written most conveniently as

Φ =

√

1

N !

φ1(x1, s1) φ1(x2, s2) . . . . . . φ1(xN , sN )
φ2(x1, s1) φ2(x2, s2) . . . . . . φ2(xN , sN )

. .

. .

. .

. .
φN (x1, s1) φN (x2, s2) . . . . . . φN (xN , sN )

, (5.2.3)

with E =
∑N

i=1 Ei. Fermi-Dirac statistics are automatically satisfied.
This is the Slater determinant and eigenfunctions of this kind form the complete

basis set of functions for all atomic physics calculations.
E.g., for N = 3 we have E = E1 + E2 + E3 and

Φ(x1, s1, x2, s2, x3, s3) =

√

1

6

φ1(x1, s1) φ1(x2, s2) φ1(x3, s3)
φ2(x1, s1) φ2(x2, s2) φ2(x3, s3)
φ3(x1, s1) φ3(x2, s2) φ3(x3, s3)

, (5.2.4)

In the case that the Hamiltonian does not depend on the spin of the electron the
energy eigenstates which differ just by spin orientation have the same energy and same
spatial wavefunction. In this circumstance we may ignore the presence of spin in many
of our calculations except to remember that any given state may be occupied by at
most two electrons: one with spin “up” (+1/2) and one with spin “down” (−1/2). For
example, in the lithium atom, which has three electrons, the (non-degenerate) ground
state is occupied by two electrons with opposing spins and the Exclusion Principle then
requires that the third electron occupy the first excited state.

The Exclusion Principle is the key to atomic structure and the periodic table – if it
were not true then all atomic electrons would be in the lowest (i.e., ground) state and
the chemical richness of the elements would not occur.

(For detailed theory of spin see the Easter term course on “Symmetries and Groups
in Quantum Physics”)

6 Quantum Statistical Physics

To deal with large systems of many particles statistical methods are essential. We can
write down the classical equations of motion or the Schrödinger equation for the system
but, with typically 1023 particles in the system, we have no hope of solving for the full
microscopic motion or wavefunction of the system. There are even conceptual difficul-
ties of which chaos is one manifestation. However, we shall assume that the system
is in equilibrium and so then we can describe its properties by a few macroscopic
variables such as pressure, temperature, volume, etc.
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(1) The whole system can occupy any one of a sequence of macroscopic energy eigenstates
each of which is uniquely specified by a complete (and very large) set of quantum
numbers. For a given energy eigenvalue there will be a very large number of states
with that energy. That is, the degeneracy of the energy level is very large.

(2) The important principle underlying statistical physics is that

The system will occupy all macroscopic eigenstates
of a given energy with equal probability.

An important example that has wide applicability is of a system which consists of N
non-interacting particles.

(i) A given particle can occupy any one of a sequence of single-particle energy eigenstates of
energy Ei, i = 1, 2, . . . ,∞. In general, there is more than one state with a given energy
and the the number, gi, of states with a given energy Ei is called the degeneracy of
that energy level.

(ii) A given macroscopic energy eigenstate of the whole system will be described by a
wavefunction which is the product of the individual single-particle wavefunctions in a
form which generalizes equation 5.7 or 5.1.4. The whole system will have very many
such eigenstates with the same macroscopic energy and so a given energy level has a
very large degeneracy.

(iii) Consider all macroscopic eigenstates of a given energy E and total particle number
N . Let the number of particles with energy Ei be Ni : the Ni are the occupation
numbers of the single particle levels. All macroscopic observables will be functions
only of the Ni and so we shall average over all other quantum numbers which distinguish
the states.

(iv) There will be many macroscopic energy eigenstates associated with the same set of
occupation numbers {Ni} and equilibrium is characterized by the set {N i} which is
most probable. Using (2) above this will be that set of occupation numbers which is
associated with the largest number of macroscopic states of the system.

(v) Because N is large the most probable set is overwhelmingly dominant and there are
uniques values for the macroscopic quantities which then characterize the equilibrium.

6.1 The Boltzmann Distribution

The number of particles with energy Ei is Ni, and we have

N =
∑

Ni , E =
∑

NiEi . (6.1.1)

Now,

(i) there are
N !

N1!N2! . . .

of partitioning N into the set {Ni} , and
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(ii) for a given energy Ei there are gNi

i ways of assigning the Ni particles since each particle
has a choice of gi levels.

Thus the number of ways of realising this distribution is

N !

N1!N2! . . .
gN1

1 gN2

2 . . . . (6.1.2)

Hence, the probability of realising the partition of N into the set {Ni} is

P ({Ni}) ∝
∏

i

gNi

i

Ni!
. (6.1.3)

The N ! is an irrelevant factor since P must be normalized to unity.
Now maximize P with N and E fixed. Use Lagrange multipliers and maximize

f({Ni}) = log P − αN − βE

=
∑

i

[(Ni log gi − log Ni!) − Ni (α + βEi)] , (6.1.4)

with respect to each of the Ni. Stirling’s formula for Ni → ∞ gives

log Ni! ≈ Ni(log Ni − 1) + O(log Ni) ,

and so the stationary point is given by Ni = N i, for each i, where N i satisfies

log gi − (log N i − 1) − 1 − (α + βEi) = 0 ,

=⇒
N i = gi e−α−βEi (6.1.5)

Using the constraints from eqn. (6.1.1), we can determine α by

N = e−α Z =⇒ α = log
Z

N
,

where

Z =
∑

i

gi e
−βEi the partition function (6.1.6)

N i =
N

Z
gi e−βEi the mean occupation number (6.1.7)

Note that the mean occupation number for one given level of energy E is thus
N
Z e−βE . We also have

E =
∑

i

N iEi =
N

Z

∑

i

giEie
−βEi = − N

d

dβ
log Z . (6.1.8)

The partition function, Z, is fundamental to statistical physics.
The equilibrium state is characterized by the value of β, and β−1 is identified with

the temperature:

β =
1

kT
. (6.1.9)
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T is the temperature in degrees Kelvin ( 0K) and k is Boltzmann’s constant:

k = 1.38 · 10−23 Joules(J)/ 0K = 0.862 · 10−4 electron-volts(eV) 0K .

[Remember, a Joule(J) is a unit of energy and one Joule is the work done when a
force of one Newton acts over a distance of one metre: one Joule = one Newton-metre,
and 1eV = 1.60 · 10−19J (see later for more on eV).]

Why is this interpretation sensible? Bring two systems together each of which are
separately in equilibrium characterized by N1, E1, β1 and N2, E2, β2 respectively.
Together they make a system with N = N1 + N2 and E = E1 + E2 but which is
initially not in equilibrium since it is not characterized by a single value of β. The
whole system will move to equilibrium and will then be characterized by a single value
of β, βe. The two systems are still distinquishable but they are now in equilibrium
with each other since they have a common value of β, namely βe. This is exactly
what we expect of temperature also: an important condition for two systems to be in
equilibrium is that they have the same temperature.

The occupation number distribution as a function of energy given in eqn. (6.1.7) is
called the Boltzmann distribution.

6.1.1 The example of a perfect gas

A perfect gas consists of a system of particles which do not interact with each other.
The gas is in a cubical box with walls at temperature, T and energy will be exchanged
between the particles and the walls when the particle collide (inelastically) with the
walls. The gas will come into equilibrium with the box and will have temperature, T ,
also.

Let the number of particles be N , the box be of side L with volume V = L3, and
the mass of each particle be m. The wavefunction for one particle in the box is

φ(x) =

√

8

V
sin

(
πl1x1

L

)

sin

(
πl2x2

L

)

sin

(
πl3x3

L

)

, (6.1.1.1)

with energy

E =
h̄2π2

2mL2
(l21 + l22 + l23) and p2 = 2mE , (6.1.1.2)

with li integers and li > 0 . In the limit that L → ∞ we can treat the energy as
taking values in a continuous spectrum and then the Boltzmann distribution gives the
occupation number density, n(E), as a function of energy:

dN(E)

dE
≡ n(E) = Cg(E)e−E/kT , (6.1.1.3)

where g(E)dE is the number of energy states in the interval (E, E + dE), C is a
normalization constant, and N(E) is the number of particles with energy less than E .
Let l = (l1, l2, l3) be a vector in the positive octant of a 3D space. Then fixed E means
fixed length radius |l|:

R(E)2 = |l|2 =
2mL2E

π2h̄2 , (6.1.1.4)

and the number of states (in the limit that |l| ≫ 1) in (E, E +dE) is the volume of the
shell in the positive quadrant between spheres of radii R(E) and R(E) + (dR/dE)dE
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(see the figure). Using eqn (6.1.1.4) this volume is

g(E)dE =
4π

8
R2 dR

dE
dE =

(2m)3/2

4π2h̄3 V E1/2dE ,

=⇒

g(E) =
(2m)3/2

4π2h̄3 V E1/2 . (6.1.1.5)

We can now calculate a number of macroscopic properties of the gas. Of course, we
must always remember that the outcome must be compatible with the L → ∞ , |l| → ∞
limits. Note that g(E) ∝ volume, V .

(i) First we must normalize the number distribution by calculating C in eqn. (6.1.1.3).
We can absorb all other constants into C and write:

N = C

∫ ∞

0
g(E)e−E/kT dE

= C ′
∫ ∞

0
e−E/kT E1/2dE . (6.1.1.6)

At this point we note the results
∫ ∞

0
u2e−λu2

du =
1

4

√
π

λ
,

∫ ∞

0
u4e−λu2

du =
3

8

√
π

λ
. (6.1.1.7)

Using the change of variable u2 = E, we find

∫ ∞

0
e−E/kT E1/2dE = 2

∫ ∞

0
u2e−u2/kT du =

π1/2

2
(kT )3/2 . (6.1.1.8)

Thus we get

C ′ =
2N

π1/2

1

(kT )3/2
. (6.1.1.9)

Then we have
n(E) = C ′ e−E/kT E1/2 . (6.1.1.10)
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(ii) The mean energy is given by

E =

∫ ∞

0
E n(E) dE

= C ′
∫ ∞

0
E3/2e−E/kT dE .

Substituting u2 = E we get

E = 2C ′
∫ ∞

0
u4 e−u2/kT du

= C ′ 3

4
π1/2(kT )5/2 .

Substituting for C ′ gives

E = 3
2NkT equipartition of energy (6.1.1.11)

This is a fundamental result that relates the mean energy per particle to the tempera-
ture. Equipartition of energy says that

“ The mean energy per degree of freedom is 1
2 kT ”.

In three dimensions we get the result in the box above and the generalization to D
dimensions is obvious. Our result corresponds to a value of (eqn. (6.1.1.4))

|l|2 =
3kTmL2

h̄2π2
. (6.1.1.12)

For fixed temperature, T , we see that |l| → ∞ as L| → ∞ which justifies the assump-
tions of continuity made earlier. With h̄ = 1.05 · 10−34Jsecs and K = 1.38 · 10−23J/ 0K
we find

|l|2 = 1.52 · 1019 L2T , (6.1.1.13)

where L is in metres and T is 0K. Clearly, for all reasonable physical situations our
assumptions are valid! (Note: T = 300 0K is about room temperature.)

6.2 Distribution for Indistinquishable Particles

In the derivation of the most probable distribution above we used quantum methods
but treated the particles as distinquishable, i.e., we counted the number of ways
the particles could be distributed amongst the states treating each rearrangement as
distinct even if the individual energy-level occupation numbers were unchanged. This
procedure must be modified for indistinquishable particles.

For example, consider a system with just two states φ1 and φ2 and two particles
in the system. Before we would count 4 ways of distributing the particles between the
states:

(1) (2) (3) (4)

φ1 1 2 1 2 −−
φ2 −− 2 1 1 2
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If the particles are indistinquishable then (2) and (3) are the same distribution since
out of the two possible quantum states φ1(x1)φ2(x2) and φ1(x2)φ2(x1) only:

1√
2

(φ1(x1)φ2(x2) + φ1(x2)φ2(x1)) (6.2.1)

survives for Bose particles, and only

1√
2

(φ1(x1)φ2(x2) − φ1(x2)φ2(x1)) (6.2.2)

survives for Fermi particles. In addition configurations (1) and (4) are forbidden by
the Exclusion Principle in the case of fermions. So for bosons three distributions or
configurations are distinct and for fermions only one configuration survives.

In the general case of many particles and levels we must treat bosons and fermions
separately to get the right occupation number distributions. We first consider bosons
and derive the Bose-Einstein distribution.

6.2.1 Bose-Einstein statistics

As before consider levels of energy Ei and degeneracy gi. Assign Ni particles to the gi

levels of energy Ei. The number of different arrangements of the Ni particles among
those levels is given by the number of ways of writing Ni as a sum of non-negative
integers,

Ni = n1 + n2 + . . . + ngi
. (6.1.2.1)

Then there are n1 in level 1, n2 in level 2, and so on. This is the number of ways of
dividing Ni dots by gi − 1 strokes:

•• | •• | •• . . . . . . • | | •• | •• . . .
n1 n2 nj nj+1

︸ ︷︷ ︸

Ni dots, gi − 1 strokes

The number of ways of arranging the lines and dots is calculated by considering Ni +
gi − 1 locations each occupied by a dot or a line. Assign the dots first. The first dot
can be put into one of (Ni + gi − 1) locations, the next into one of (Ni + gi − 2) etc.
When the Ni dots are assigned the lines just fill up the rest. Hence, so far there are

(Ni + gi − 1)(Ni + gi − 2) . . . (gi) =
(Ni + gi − 1)!

(gi − 1)!

ways of doing this. However, the order in which the dots were assigned does not matter
since the bosons are indistinquishable. Hence, the number of distinquishable ways is

Wi(Ni, gi) =
(Ni + gi − 1)!

Ni! (gi − 1)!
. (6.1.2.2)

Thus the total number of ways of distributing the particles amongst the levels is

P =
∏

i

Wi(Ni, gi) =
∏

i

(Ni + gi − 1)!

Ni! (gi − 1)!
, (6.1.2.3)

with E =
∑

i NiEi , N =
∑

i Ni .
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As before, maximize P with respect to the {Ni} accounting for the constraints using
Lagrange multipliers. We maximize f = log P − βE − αN with

log P =
∑

i

[(Ni + gi − 1) log(Ni + gi − 1) − (gi − 1) log(gi − 1) − Ni log Ni]

(6.1.2.4)
If {Ni} = {N i} at the stationary point we have

∂f

∂Ni
= log(N i + gi − 1) − log N i − βEi − α = 0 . (6.1.2.5)

It is reasonable to assume that gi ≫ 1 (remember g(E) in the calculation of equiparti-
tion is huge), and then we can ignore the odd “1” lying around to get

N i

N i + gi
= e−βEi−α (6.1.2.6)

or

N i =
gi

eβ(Ei−µ) − 1
Bose-Einstein distribution. (6.1.2.7)

Here α = −βµ and β = 1/kT . Only if β(E − µ) ≫ 1, i.e., N i ≪ gi, does this
become the Boltzmann distribution. In this case, the occupation numbers are so low
that indistinquishability is not important. The parameter µ is the chemical potential
which must be chosen to ensure

∑

i N i = N . Note that µ < min(Ei) since the {N i}
must be positive for all Ei.

The Bose-Einstein distribution is the one appropriate for photons.

6.2.2 The Fermi-Dirac distribution

We consider the same system as in the previous section but now we must impose that no
more than one fermion can occupy any one given energy level because of the exclusion
principle.

As before we assign Ni fermions to the gi levels which have common energy Ei. The
number of distinct ways of doing this (Ni ≤ gi) is

Wi(Ni, gi) =
gi (gi − 1) . . . (gi − Ni + 1)

Ni!
=

gi!

(gi − Ni)! Ni!
. (6.2.2.1)

For equilibrium and the most probable distribution maximise

P =
∏

i

gi!

(gi − Ni)! Ni!
, (6.2.2.2)

with
E =

∑

i

NiEi and N =
∑

i

Ni . (6.2.2.3)

As before, in fact, we take account of these constraints with Lagrange multipliers and
maximize f = log P − βE − αN to give

∂

∂Ni

∑

j

[gj log gj − Nj log Nj − (gj − Nj) log(gj − Nj) − αNj − βNjEj ] = 0 .

(6.2.2.4)
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Then the most probable distribution, N i, satisfies

− log N i + log(gi − N i) = α + βEi , (6.2.2.5)

or

Ni = gi f(Ei) , (6.2.2.6)

f(E) =
1

eβ(E−µ) + 1
Fermi-Dirac distribution. (6.2.2.7)

Here, again, the chemical potential µ has been defined by α = −βµ and β = 1/kT .
In the context of the Fermi-Dirac distribution µ is also called the Fermi energy and
can be denoted EF instead. For Ei = µ we have from eqn. (6.2.2.7) that N i = gi/2 ,
i.e., such a level has a 50% probability of occupation. The distribution f(E) looks like:

(i) We have the mean energy, E given by

E =
∑

i

giEi

eβ(Ei−µ) + 1
= − ∂

∂β
log Z + µN , (6.2.2.8)

where the partition function, Z, is defined by

Z =
∏

i

(

1 + e−β(Ei−µ)
)gi

. (6.2.2.9)

(ii) The number of particles, N , is given by

N =
∑

i

gi

eβ(Ei−µ) + 1
= − ∂

∂µ
log Z . (6.2.2.10)

Since N is given, this equation determines the value of µ (remember µ is basically the
Lagrange multiplier α introduced to ensure that the number of particles is fixed at N).
µ is thus a function of N and T in general.
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(iii) At T = 0 from the diagram we see that µ is the increase in the energy of the system
when the particle number is increased by one.

The Fermi-Dirac distribution is applicable to electrons and will be important when
we discuss semi-conductor physics.

6.3 Black-Body Radiation

Any body with temperature T > 0 emits radiation in the form of photons. For example:

(i) a light bulb filament is heated by the electric current to a high temperature and it
glows;

(ii) iron heated in a forge glows red hot meaning that it emits visible red light. As the iron
gets hotter the colour changes toward the blue end of the spectrum, i.e., there are more
photons of shorter wavelength than before, which means they have higher energy;

(iii) bodies at room temperature typically emit infra-red radiation, e.g., people. This is often
referred to as “heat” but really it is only distinquished by being of longer wavelength
than visible light.

Consider radiation trapped in a box with perfectly reflecting walls. The different energy
states for the photons will each be occupied by different numbers of photons. Suppose,
a body of temperature T is introduced into the box.

This body will emit and absorb photons and so change the occupation numbers
of the levels. The box will thus contain radiation in the form of many photons of
varying frequency which are being continually absorbed and emitted by the body, and
these photons will come into equilibrium with it and so will conform to the Bose-
Einstein distribution. Now, the number of photons is not constrained since they are
continually being emitted from (or absorbed by) the body, and hence there is no need
for the Lagrange multiplier α in the derivation in section (6.2.1) above. The effect is
to set µ = 0 for photons.

The body is a black-body if it can absorb and emit radiation of all frequencies
(i.e. energies) across a wide spectral range. If it is not a black-body then photons of
some frequencies cannot be absorbed or emitted by the body and so their number will
be fixed at some non-equilibrium value. The corollary is that if radiation is in contact
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with a black-body at temperature T , then photons of all frequencies will conform to
the Bose-Einstein distribution with µ = 0. Thus:

Radiation in equilibrium with a black-body at temperature T is characterized only
by the temperature T . Such radiation is called black-body radiation.

6.3.1 The Black-Body Distribution

We will calculate the occupation number density for photons of frequency ω and energy
E = h̄ω for black-body radiation.

The photon modes satisfy the standard wave equation:

c2 ∂2

∂t2
F (x, t) = ∇2F (x, t) . (6.1.3.1)

We impose the boundary conditions that the solution is periodic in the 1- ,2- , and
3-directions with period L, i.e.,

F (x1+L, x2, x3, t) = F (x1, x2+L, x3, t) = F (x1, x2, x3+L, t) = = F (x1, x2, x3, t) .
(6.1.3.2)

This is different from the case of the perfect gas where we imposed that the wavefunction
vanished on the boundary. However, in the limit L → ∞ the final result does not
depend on the details of the boundary condition but it is a device that helps us
calculate: the volume V does not appear in the expressions for physical observables.

The general normal-mode solution is the complex separable one:

E(x, t) = E0 exp

{

−i

(

ωt − 2π

L
(l1x1 + l2x2 + l3x3)

)}

. (6.1.3.3)

with
4π2

L2
(l21 + l22 + l23) =

ω2

c2
, li integers . (6.1.3.4)

This is a travelling wave with energy E = h̄ω and momentum p

p =

(
2πh̄

L
l1,

2πh̄

L
l2,

2πh̄

L
l3

)

. (6.1.3.5)

The mode is a vector function, E, because there are two polarization states per
given energy mode, and E0 encodes this internal degree of freedom. From the earlier
discussion we have

E0 · p = 0 . (6.1.3.6)

As before l = (l1, l2, l3) is treated as a continuous vector and from eqn. (6.1.3.4)

|l|2 =
ω2L2

4π2c2
. (6.1.3.7)

Hence,

The number of modes in the interval (ω, ω + dω)

= Volume of spherical shell of radius
ωL

2πc
and thickness

Ldω

2πc

=
4πω2L3dω

8π3c3
.
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Each photon has two polarizations and so the total number of states in (ω, ω + dω)
is twice this, namely:

g(ω)dω =
ω2V

π2c3
dω . (6.1.3.8)

where g(ω) is the density of states.
Thus the number density of photons per unit volume, n(ω), is given using the

Bose-Einstein distribution to be (µ = 0):

n(ω) =
g(ω)

V

1

eβE − 1
,

which, using eqn. (6.1.3.8) and E = h̄ω, becomes

n(ω) =
ω2

π2c3

1

eβh̄ω − 1
Black-body radiation distribution. (6.1.3.9)

(i) The energy density (per unit volume), ǫ(ω), is given by

ǫ(ω) = h̄ω n(ω)

=
h̄ω3

π2c3

1

eβh̄ω − 1
(6.1.3.10)

This is the Planck radiation law.

(ii) The total energy per unit volume is then

E(T ) =

∫ ∞

0
ǫ(ω)dω

=
1

h̄3c3π2

∫ ∞

0
(h̄ω)3

1

eβh̄ω − 1
d(h̄ω) . (6.1.3.11)

Setting x = βh̄ω we get

E(T ) =
1

β4

1

h̄3c3π2

∫ ∞

0
x3 1

ex − 1
dx .
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Hence, (we look up the integral, it is π4/15)

E(T ) = CT 4 , C =
π2k

15

(
k

h̄c

)3

. (6.1.3.12)

(iii) The energy flux, E(T ), radiated from a black-body is defined as the energy per second
leaving a small hole of unit area in the wall of the box, assuming no inward flux. The
speed of the photons is c, and the number in interval (ω, ω + dω) crossing unit area per
second is

df(ω) =
c

4
n(ω) dω ,

where the factor 1/4 comes from an angular integration over velocity directions. Thus,

E(T ) =
1

4
E(T )c ,

or

E(T ) = σ T 4 , σ =
π2kc

60

(
k

h̄c

)3

Stefan-Boltzmann law. (6.1.3.13)

Here σ = 5.67 · 10−8Js−1m−2K−4 is Stefan’s constant.

6.4 Atomic Transitions

The atoms in the black-body have many quantum states. In particular consider a pair
of states, m and n, with energies Em and En, respectively, with h̄ω = En−Em. There
are three kinds of quantum transitions between these levels:

(i) Spontaneous emission. An atom in state n may spontaneously decay to state m
emitting a photon of frequency ω. Let Anm be the probability for this to happen per
second.

(ii) Absorption. An atom in state m may absorb a quantum of radiation of frequency ω
and jump to state n. The rate is proportional to the energy density, ǫ(ω), of radiation
present. Let this rate be Bmn ǫ(ω) .

(iii) Stimulated emission. The presence of radiation induces an atom in state n to drop
to state m and emit a quantum of frequency ω. This is unlikely unless the stimulating
radiation has frequency very close to ω. The rate is proportional to the energy density
and we write it as Bnm ǫ(ω).

In equilibrium a steady state obtains: the rate of transitions from m → n balances
the rate from n → m. If Nm and Nn are the respective equilibrium populations of the
two levels then we must have

Nm · Bmn ǫ(ω) = Nn · [Anm + Bnm ǫ(ω)] .

=⇒
ǫ(ω) =

Anm

(Nm/Nn) · Bmn − Bnm
(6.4.1)
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The Boltzmann distribution for the atomic levels gives

Nm

Nn
= e−β(Em−En) = eβh̄ω .

These last two equations must be consistent with the known black-body expression for
ǫ(ω) in eqn. (6.1.3.10). Comparing the two alternative expressions for ǫ(ω) we find

Bnm = Bmn

Anm =
(
h̄ω3/π2c3

)
· Bnm







Einstein A and B coefficients. (6.4.2)

This allows the rate for spontaneous emission to be calculated from the rate for
stimulated emission. The latter is much easier to calculate – spontaneous emission
calculations require the full apparatus of quantizing the electric field.

7 Lasers

We describe the Helium-Neon laser as an example and paradigm. This laser consists of
a mixture of helium and neon in a long tube with parallel mirrors at each end forming
a tuned cavity which is designed to sustain a standing wave of light of a certain
wavelength λ :

It is a bit like a fluorescent tube in construction.
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(i) As in a fluorescent tube, a discharge is set up which consists of accelerating electrons
between high voltage electrodes at opposite ends of the cavity. The electrons collide
with the helium atoms which absorb energy in the collision by being excited to levels
above their ground state.

(ii) The helium atoms in turn collide with the neon atoms giving up energy in the collision
and exciting the neon atoms to a meta-stable excited state. This is a state for which
the spontaneous emission rate is small. This is the upper laser state, n .

(iii) The lower laser state, m, (Em < En), is a short-lived state. It decays through spon-
taneous emission and thus will always depopulate very quickly.

Thus

(a) Nn is large because n is meta-stable;

(b) Nm is small because m decays quickly.

Hence Nn/Nm ≫ 1 . Note that the usual equilibrium conditions give

Nn

Nm
= e(En−Em)/kT ≪ 1 .

The population is inverted – like negative temperature.

Suppose there is a lot of energy in the cavity field. This is tuned by mirrors to have
frequency ω = 2π/λ = (En − Em)/h̄ .

(i) If the energy density is high enough then stimulated emission from n → m will occur
at a much higher rate than incoherent spontaneous emission.

(ii) The photon emitted has energy h̄ω and is in phase with the stimulating field being
sustained by the cavity. This latter fact is not easy to show but is plausible since energy
has been released into the cavity field which therefore must increase in intensity – the
emitted photon must hence reinforce the field.

(iii) The cavity field becomes very intense under these circumstances and it is coherent
which means that all the photons constituting it are in step. A definite phase can be
assigned to the electric standing wave:

E(z, t) = E0 cos ωt sin

(
ω

c

)

z . (7.1)
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(iv) If one of the mirrors is not quite 100% reflecting then a few % of the radiation can be
transmitted and used.

Why must the lower level m depopulate quickly? Consider the Einstein relation relating
absorption to stimulated emission eqns. (6.4.2). These occur at the same rate, namely
ǫ(ω)B. Hence, if the lower level becomes appreciably populated it will make the inverse
transition to n, absorbing radiation from the cavity which will compete strongly with
the wanted stimulated emission. This will only not be a problem if m depopulates
quickly by decaying fast to even lower levels by other emissions etc.

The major properties of such laser light are that it is

(a) very intense – can produce high energy densities;

(b) totally coherent – can be used for holography;

(c) highly collimated – the divergence of the beam is close to the theoretical minimum
value.

For general laser action require:

(1) Two active levels of the medium, n and m , En > Em . The laser transition is
n → m , h̄ω = En − Em .

(2) A pumping mechanism which will create and sustain a population inversion Nn >
Nm .

(3) A tuned cavity which will sustain standing waves of frequency ω parallel to the tube
axis.

Then

(1) Pumping −→ population inversion;

(2) Stimulated emission n → m caused by standing wave. Emitted photons are in phase
with standing wave thus reinforcing it if emitted sufficiently parallel to tube axis, oth-
erwise they are lost in the walls;

(3) Useful radiation is allowed to pass out through a mirror which is not 100% reflecting;

(4) Fluctuations and losses are caused by fluctuations in mirrors, spontaneous emissions,
losses in walls and leakage of radiation for use.

The laser is a new state of radiation in the presence of matter. An ordinary flash tube
or light bulb is not a laser but an ordinary light source. Such devices produce only
incoherent light dominated by spontaneous emission from excited states. Each atom
emits independently of any other and consequently the photons are not phase-locked
and are incoherent and uncollimated. A laser below the lasing threshold is the same.
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7.1 A model for the laser

Let the number of photons in the cavity field be r . Then

ṙ = gain − loss . (7.1.1)

The gain is from stimulated emission and the loss is due to mainly to the finite lifetime
of the photons in the cavity field. We write N = Nn−Nm and then have the reasonable
parametrization:

gain = GNr , loss = χ r . (7.1.2)

Suppose that without laser action the pumping mechanism would maintain the
population inversion at N = N0 . Then with laser action we must have

N = N0 − αr . (7.1.3)

The decrease in N is due to stimulated emission which is proportional to r . Then

ṙ = G(N0 − αr)r − χ r

or ṙ = − (χ − N0G)r − αGr2

≡ − ar − br2 . (7.1.4)

The steady state is ṙ = 0:

a > 0 t → ∞ r → 0 no laser action

a < 0 t → ∞ r → |a|
b

laser action

Consider b = 1 for simplicity. The solution to the eqn. (7.1.4) is (r(0) = r0)

a > 0 r =
aCe−at

1 − Ce−at
, C =

r0

a + r0

a < 0 r =
|a|

1 + Ce−|a|t
, C =

|a| − r0

r0
(7.1.5)

This looks like:

The two cases are N0 < χ/G , N0 > χ/G . The pumping strength given by N0

precipitates the phase transition to the laser phase as it passes through Nc = χ/G .
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Because the photon has a finite lifetime, t0 = 1/χ , there is an uncertainty in the
frequency, δω , of the observed radiation. This is given by

δω ≈ 2π

t0
= 2π χ . (7.1.6)

7.2 Laser statistics

Another way of investigating the laser is to apply the same “most probable” counting
method that we used to study quantum statistics. Consider the following system

(i) A cavity which sustains one particular frequency mode. This is like picking just one
mode out of all the possible modes in a box. This will be occupied by photons with
momentum parallel to the tube axis and each with energy h̄ω. This means there is just
one state for the photons.

(ii) A gas of N atoms (N ≫ 1). We are only interested in the two laser states n and
m, separated by energy En − Em = h̄ω . These atoms are treated as distinquishable
particles: they each have their own pair of laser states, so there is no way in which
one atom can be excited to the upper state of another and so no confusion about
indistinquishability.

(iii) The system contains energy E = Rh̄ω above its ground state, where R is an integer.

Let the energy be distributed with r photons in the cavity mode and (R − r) atoms in
the upper state, n. The number of ways of achieving this division is

P (r) =
N !

(N − R + r)!(R − r)!
. (7.2.1)

Maximise P (r) w.r.t r to find the most probable configuration.

log P ≈ N log N − (N − R + r) log(N − R + r) − (R − r) log(R − r) ,

d

dr
log P

∣
∣
∣
∣
r=r0

= 0 ⇒ (N − R + r) = (R − r) ,

or r0 = R − N

2
. (7.2.2)

7.2.1 R ≪ N/2

Since must have r ≥ 0, the most likely configuration is r = 0 , i.e., no photons in the
cavity at all. Consider now the fluctuations in r . What is the probability of finding r
photons in the cavity?

log P (r) = log P (0) + r
d

dr
log P (r)

∣
∣
∣
∣
0

+ . . . .

Now, from eqn. (7.2.1)

d

dr
log P (r) = log

(
R − r

N − R + r

)

=⇒ log P (r) = log P (0) + r log

(
R

N − R

)

+ . . .

=⇒ P (r) = P (0)

(
R

N − R

)r

. (7.1.2.1)
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Let p = R/(N − R) . Then the average value, r, for r is given by

r =

∑∞
0 rpr

∑∞
0 pr

,

giving

r =
p

1 − p
. (7.1.2.2)

How do we interpret this result? If we define β′ by setting p = exp(−β′h̄ω) we find

r =
1

eβ′h̄ω − 1
, (7.1.2.3)

i.e., the Bose-Einstein distribution if we interpret β′ = 1/kT ′ . We have really re-derived
the BE distribution in this special case. The cavity mode exchanges energy with the
large heat-bath consisting of the N gas atoms and we get the expected functional form
for the mean BE occupation number. This is an example of what happens when a sub-
system (here just the cavity mode and its photons) is brought into contact with (i.e.,
can exchange energy with) a reservoir of energy (called a heat bath). The temperature
is then T ′ .

Now, β′ is clearly a function of R and hence of the energy, E, of the whole system.
T ′ increases with E as we should expect. We can go further, however. Suppose, now,
that the gas itself is allowed to exchange energy with the walls which we will assume
are at temperature T . Then the atoms occupy their levels with a probability given by
the Boltzmann distribution. In particular

number in level n

number in level m
=

R

N − R
= e−h̄ω/kT . (7.1.2.4)

However, from above

p =
R

N − R
= e−h̄ω/kT ′

,

and hence T ′ = T and our interpretation of T ′ as a temperature is consistent.

The real message is that systems in equilibrium are characterized by a few special
functional forms for the important quantities and, in particular, by the values of the
parameters parametrizing those functions, such as temperature and chemical potential.
The power of the method is that the description works so well for a wide range of
systems.

The discussion of this section shows that the system is not a laser since it is charac-
terised by the BE distribution and there is not much energy in the cavity mode. This
state is characteristic of an ordinary light source. Can it be different?
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7.2.2 R > N/2

Let R = N/2 + k . From above the most likely configuration is

r0 = R − N/2 = k .

Thus there are now k photons in the coherent cavity mode giving laser action. Here
R > N −R which corresponds to having so much energy in the system that there must
be a population inversion. Consider the fluctuations again. Let r = k + ∆k . Then

P (k + ∆k) =
N !

(N/2 + ∆k)!(N/2 − ∆k)!
. (7.2.2.1)

Then, using Stirling’s formula

log P ≈

N log N −
(

N

2
+ ∆k

)

log

(
N

2
+ ∆k

)

−
(

N

2
− ∆k

)

log

(
N

2
− ∆k

)

.

(7.2.2.2)

Let P0 = P (k) and from eqn. (7.2.2.2) we find P0 ≈ 2N . For small ∆k we get

log P ≈ N log N −
(

N

2
+ ∆k

) (

log
N

2
+

2∆k

N

)

−
(

N

2
− ∆k

) (

log
N

2
− 2∆k

N

)

= log P0 − 2(∆k)2

N
. (7.2.2.3)

Or
P (k + ∆k) ≈ P0 e−2(∆k)2/N . (7.2.2.4)

Hence, the fluctuations obey a normal distribution with variance 〈(∆k)2〉 = N/8 ,
and so the fluctations are proportional to

√
N .

For example, consider k = a
√

N with a ≫ 1 . Then r = k ≫ 1 and

r

N
=

a√
N

−→ 0 as N −→ ∞ ,

√

〈r − r〉2
r

∼ 1

a
≪ 1 . (7.2.2.5)

Hence, the cavity field intensity, r, is very large with very small fluctuations. To
establish R > N/2 we require a population inversion, and so laser action sets in if the
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pumping mechanism is strong enough to generate a reasonable population inversion
R − N/2 ∼ a

√
N at least. This agrees with the simple model without fluctuations

discussed earlier.

Note here that we have produced a different distribution from BE. There is con-
sequently no concept of “temperature” for the system in this state: the lasing state. It
is simply a new state of the system. We have a large number, N , of atoms as is usual
in statistical physics but the amount of energy in the system is huge compared with
systems we have discussed before: E ≪ Nh̄ω gives usual statistics as N → ∞, but
E ∼ Nh̄ω gives new statistics as N → ∞ .

8 Band Structure

Consider a 1D array of N atoms and concentrate on the same atomic level in each
atom. Consider an electron in that level for a given atom. How is it that, although
this electron is bound to the site, there is a probability that given enough time it will
be found near a far-away site? What happens is that the electron tunnels through the
barrier between the atoms and can thus migrate arbitrarily far from the original site.
A simple picture is one where tunnelling to nearest-neighbour sites dominates all other
processes:

The lattice spacing is b . The electron on the n-th atom is represented by the state
φn . The Hamiltonian is H = H0 + V where

H0φ = E0φ ,

(φn, V φn) = α , (φn, V φn±1) = − A ,

(φn, V φm) = 0 , m 6= n, n ± 1 . (8.1)

So H0 is the hamiltonian for the atom in isolation and φn is the wavefunction for the
chosen level on the n-th atom. Note that

φn(x) = φ0(x − nb) , (8.2)

i.e., all wavefunctions are related by translation of the origin – it is the same level in
each atom. We will also make the approximation that (φn, φm) = δmn . From eqn.
(8.2) this is not strictly true but is correct up to exponentially small corrections.

The potential V is due soley to the presence of the neighbouring atoms and the
matrix element −A is the “tunnelling amplitude” between neighbouring sites. We
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want to solve the full problem:
HΦ = EΦ , (8.3)

and as usual we write
Φ =

∑

p

cpφp , (8.4)

using the {φn} as a complete basis. Then using (8.3)

H
∑

p

cnφp = (H0 + V )
∑

p cpφp = E
∑

p

cpφp

⇒
∑

p

cp(E0 + V )φp =
∑

p

cpEφp . (8.5)

Take the inner product of both sides with φn and use eqns. (8.1):

Ecn = (E0 + α)
︸ ︷︷ ︸

E′

0

cn − A(cn−1 + cn+1) . (8.6)

[This kind of equation occurs in the classical dynamics of a set of equally spaced particles
in 1D interconnected by springs. The solution to that problem is that waves can travel
freely up and down the chain. As a classical model of a 1D crystal such waves are
simply sound waves.]

We need to solve this difference equation for the {cn} and so try the usual substi-
tution:

cn = eiknb , normal mode solution

⇒ cn±1 = e±ikbcn , (8.7)

where we remember that b is the spacing and that the n-th atom is situated at xn = nb .
Substituting is eqn. (8.6) we get

E ≡ E(k) = E′
0 − 2A cos kb . (8.8)

The N atomic levels which were originally degenerate at E0 are replaced by N new
levels which are spread out in energy according to eqn. (8.8). The old state labelling,
n, was by atomic position. The new labelling is by the wavevector, k, which contains
no reference to position at all: for each value of k there is an eigenstate with energy
E(k) .

To get the counting of states right we must think about boundary conditions at the
ends of the chain of atoms. We impose periodicity, i.e., we assume the atoms form a
ring. Then we have

eikNb = 1 . (8.9)

What happens at the ends cannot affect the bulk properties (c.f., the boundary condi-
tions in a box that we used). Define L = Nb, the chain length. Taking N even, this
implies that

k = 2πp/L , p an integer : − N

2
< p ≤ N

2
. (8.10)

So k is discrete, taking one of N values which is consistent with starting with having
N states in the first place.

The important features so far are
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(i) the eigenstates are no longer degenerate in energy but are labelled by a wavevector
k and have energy E(k) which lies in a band of allowed energies determined by eqn.
(8.8) called the dispersion relation. The band has width 4A. This structure will occur
for each atomic level. For the lower, more tightly bound, levels A is small and the
bands are narrow. The higher bands are wider and may even overlap in energy;

(ii) the electron is no longer localized on a given site but has a non-zero probability of
being found anywhere, i.e., they are extended:

Pk(x) ∝ |Φk(x)|2 = |
∑

n

eiknbφn(x) |2 6= 0 ∀ x .

The number of states per band is then 2N (2 for electron spin) ⇒ band is filled by
2N electrons (unless bands overlap). What is the density of states (N → ∞):

dp

dk
=

L

2π
⇒ dp

dE
=

L

2π

∣
∣
∣
∣

dk

dE

∣
∣
∣
∣ . (8.11)

The level density per unit length, g(E), is

g(E) = 2
2

L

dp

dE
=

2

π

∣
∣
∣
∣

dk

dE

∣
∣
∣
∣ . (8.12)

Factors of 2 for ±p and 2 for spin. This is a general result in 1D and is not special to
this model.

Schematically, the physical outcome of what we have solved is shown in the figure.

8.1 Bloch Waves

The stationary state is thus

Φk(x) = C
∑

p

eikpbφp(x) . (8.1.1)

Using eqn. (8.2), consider x → x + b:

Φk(x + b) = C
∑

p

eikpbφp(x + b) = C
∑

p

eikpbφp−1(x) ,

= eikb Φk(x) . (8.1.2)
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Notice we have labelled the state by k, the wave vector, and the momentum is h̄k.
Thus we can always write

Φk(x) = uk(x) eikx , (8.1.3)

where the function uk(x) is defined by this relation and satisfies

uk(x + b) = uk(x) . (8.1.4)

I.e., uk(x) is periodic on the lattice. Of course, the explicit expression for uk can be
deduced from eqn. (8.1.1) but it is the form of the solution that I am emphasizing.
With time-dependence the stationary state is

Ψ(x, t) = uk(x) ei(kx−ωt) Bloch Wave Solution. (8.1.5)

I have defined ω = E(k)/h̄. This solution can be generalized to 3D and represents the
basic form of the stationary state for all problems involving periodic potentials and
especially crystal lattices. It shows that the energy eigenstates are travelling waves
which are extended. In particular, the electron can now carry charge from one end to
the other in the form of an electric current.

8.2 Brillouin Zones

Clearly, the range of k is −π/b < k ≤ π/b . This is called the first Brillouin zone
in k space. The n-th Brillouin zone corresponds to kn = k + 2nπ/b . A graph of the
dispersion relation ( energy E versus k ) is shown for the first Brillouin zone in the
figure.

9 Insulators and Conductors

From the fermi distribution we learn that EF ≡ µ for a free gas of N electrons is
determined by:

N

V
=

∫ ∞

0

g(E)dE

eβ(E−EF ) + 1
, (9.1)

where g(E) is the density of states per unit volume. As T → 0 all levels with E < EF

are occupied and those with E > EF are unoccupied. At T = 0 we find (see Q12 on
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example sheet 1)

EF =
h̄2

2m

(
N

V

)2/3

≈ 4 · 10−19eV m2
(

N

V

)2/3

. (9.2)

In many materials such as metals, a typical value for N/V is 1028 m−3 ⇒ EF ≈ 2 eV.
At room temperature T ≈ 300 0K , kT ≈ 3 · 10−2 eV ⇒ kT ≪ EF and the fermi
distribution in this case differs very little from that at T = 0, i.e., there is still a sharp
decrease at E ∼ EF . Thus, at relevant temperatures all levels with E < EF are filled
and those with E > EF are empty. Only for EF − kT < E < E + kT is this not true
but kT ≪ EF .

Consider filling up the energy levels of an atom with electrons using the Exclusion
Principle. The set of levels with a given energy is called a shell and when it is full
it is known as a closed shell: the next electron must go into a state of next higher
energy. From the discussion of band structure each shell corresponds to an energy band
in the crystal made from the atoms: the N copies of a given shell combine because of
tunnelling into a band of states with an energy spread labelled by k . A closed shell
will give rise to a band which is also completely filled with electrons. This idea of a
closed shell giving rise to completely filled bands allows insulators and conductors to
be distinquished from each other.

(i) Insulators contain atoms in which the electrons occupy closed shells. The atoms in
an insulator have just the right number of electrons to fill all the shells with no electrons
left over. The corresponding bands are completely filled.

(ii) Conductors contain atoms in which the last (i.e., highest energy) occupied shell is
not closed. The lower energy shells are closed but there are not enough electrons to
completely fill the highest of the occupied shells. Correspondingly, the low-lying bands
are full but the top band is only partially filled.

Why is this? When there is no applied electric field the electrons move equally in
all directions and there is no nett transport of charge. When an electric field is applied
it must accelerate some electrons and deccelerate others to generate a flow asymmetry.
This means that electrons must vacate some states to occupy other, originally vacant,
states (see figure). However, if the band is full there can be no such asymmetry under
any conditions since all states are occupied at all times. Such a system is in the same
state whether or not an electric field is applied and so there can never be nett charge
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transport: the system is an insulator. Conversely, if at least one band is only partially
filled there are vacant states nearby in energy to which an an electron can move and
the state of the system changes when a field is applied (see figure): the system is a
conductor. In the next section this argument is considered in more detail.

9.1 Conduction

9.1.1 group velocity

When a particle has plane–wave stationary states it has equal probability of being found
anywhere. To localize it we must superpose the waves. This is wave–particle duality
and forms one way of looking at the Uncertainty Principle. Consider superposing two
plane waves with momenta h̄(k ± ∆k) with energy dispersion E(k) = h̄ω(k). Let
∆ω = dω

dk ∆k and then the wavefunction is:

ψ(x, t) =

√

1

2V

(

e(i(k+∆k)x−i(ω+∆ω)t) + e(i(k−∆k)x−i(ω−∆ω)t)
)

. (9.1.1.1)

The observable quantity is |ψ(x, t)|2 which is clearly given by

|ψ(x, t)|2 =
1

V
(1 + cos (∆k x − ∆ω t)) . (9.1.1.2)

The velocity of this wave–packet is given by following points of constant |ψ(x, t)|2 as t
changes. From above this means ∆k x−∆ω t = constant, i.e., keep the phase constant.
Thus the velocity is

v =
dx

dt
=

∆ω

∆k
=

dω(k)

dk
. (9.1.1.3)

Thus

v =
dω(k)

dk
, the group velocity. (9.1.1.4)

The group velocity is the observable velocity of particles. This analysis applies
equally well to signals carried by waves, e.g., radio waves and waves in waveguides.

Remember the gaussian wavepacket for free particles where ω(k) = h̄k2/2m . The
group velocity is v = dω/dk = h̄k/m where h̄k is the momentum. This is the correct
classical result, namely “velocity = momentum/mass ”. Equation (9.1.1.4) is very
important generally and we shall use it below.
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9.1.2 Dynamics

In a band, the group velocity of the electron in state labelled by wavenumber k is

v =
dω(k)

dk
=

1

h̄

dE(k)

dk
. (9.2.1.1)

This is the velocity at which the charge carried by the electron is transported.
Consider an applied electric field E . The force on the electron of charge q is F = qE ,

and so the change in energy of the electron is

dE = Fdx = qEv dt . (9.2.1.2)

Substituting the group velocity for v, we get

dE =
q

h̄
E dE(k)

dk
dt . (9.2.1.3)

We can reinterpret this result in terms of a time-dependent k :

dE =
dE(k)

dk
dk ⇒ dk

dt
=

q

h̄
E . (9.2.1.4)

This is what we expect classically since the momentum is h̄k and

d momentum

dt
= applied force .

We see, however, that since k changes with time the electron must be continually
making the transition to states of more positive k . From above

v̇ =
1

h̄

d

dt

dE

dk
=

1

h̄

(

k̇
d

dk

)
dE

dk
=

1

h̄
k̇

d2E

dk2
. (9.2.1.5)

Substituting for k̇ from eqn. 9.2.1.4

v̇ =
q

h̄2

d2E

dk2
E . (9.2.1.6)

Comparing this with Newton’s law which would be of the form mv̇ = qE , we see that
we can write this result as

m∗v̇ = qE ,

with

m∗ = h̄2

(

d2E

dk2

)−1

, the effective mass.

(9.2.1.7)

Thus we can treat many of the subsequent calculations as classical as long as we use
an effective mass, m∗, for the electron. The major features are

(i) If the band is narrow d2E/dk2 is small (small A above), and m∗ is large: the electron
is hard to move.
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(ii) For any band:

(a) near the bottom d2E/dk2 > 0 ⇒ m∗ > 0 there;

(b) near the top d2E/dk2 < 0 ⇒ m∗ < 0 there;

(c) at the point of inflexion, k = ±π/2b , m∗ = ∞ .

(d) at the top k = ±π/b and at the bottom, k = 0 ,
dE/dk = 0 .

(iii) Under an applied field the velocity of an electron starting from k = 0, v = 0 increases
to its maximum at k = π/b, and then it decreases again reaching v = 0 at the zone
boundary. By periodicity, k re-enters the zone at k = −π/b. In general, symmetry
requires v = dE/dk = 0 at the top and bottom of the band.

In a perfect crystal there is no steady state for electrons in a constant applied
electric field. They accelerate through the Brillouin zone and their velocity oscillates
thus giving an oscillating charge flow. However, this effect can only be seen in very
large and perfect crystals at low temperature. The usual state of affairs is different
because of impurities and imperfections in the crystal lattice.

Consider for the moment the case of the perfect crystal. When the field E is applied
the distribution of electrons per unit length, n(k, t), is time-dependent and not the
equilibrium distribution n0(k) appropriate to E = 0. We now use conservation of
particle number to get information about n(k, t). This tells us that

n(k, t) = n(k + dk, t + dt) . (9.2.1.8)

The particles that have wavevector k + dk at time t + dt are the same ones that had
wavevector k at time t: they just moved from k to k + dk (in k−space) in time dt.
Then we have (

∂n(k, t)

∂t

)

fields
+ k̇

∂n(k, t)

∂k
= 0 . (9.2.1.9)

[ This is just the 1D version of the usual conservation equation

∂n(k, t)

∂t
+ ∇k · j(k, t) = 0 ,

with j(k, t) = n(k, t)k̇. Note, also, that k̇ is constant. ]
Then, using k̇ = qE/h̄,

(
∂n(k, t)

∂t

)

fields
= − qE

h̄

∂n(k, t)

∂k
. (9.2.1.10)

This is the effect on n(k, t) of the applied fields alone.
Suppose scattering off imperfections causes the electron to jump randomly between

states. This means that its velocity (or state) after such a scattering is independent
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of the original velocity (or state). This introduces a “friction” term into the dynamics.
Assume τ is the time between collisions and that after a collision the electron velocity
is random. Then, by definition,

(
∂n(k, t)

∂t

)

collisions
= − 1

τ
(n(k, t) − n0(k)) . (9.2.1.11)

Here, τ could be k-dependent but we ignore this from now on. Note, that in absence
of fields this means that n(k, t) → n0(k) as t → ∞, i.e., the systems equilibriates on
characteristic time scale τ . The steady state is defined by a t-independent density n(k),
and so must have

dn

dt
=

(
∂n

∂t

)

collisions
+

(
∂n

∂t

)

fields
= 0 , (9.2.1.12)

for the steady state distribution n(k). Thus

n(k) = n0 + τ

(
∂n

∂t

)

fields
= n0 − qEτ

h̄

dn

dk
. (9.2.1.13)

The electric current I is defined by

I = q

∫ π/b

−π/b
n(k)vk dk =

q

h̄

∫ π/b

−π/b
n(k)

dE

dk
dk , (9.2.1.14)

where we have used eqn. (9.2.1.1), i.e., that h̄vk = dE/dk. Using the expression for
n(k) we get

I = − q2Eτ

h̄2

∫ π/b

−π/b

dn(k)

dk

dE

dk
dk . (9.2.1.15)

Note, the first term n0(k) gives zero contribution to I by symmetry (it gives the current
for E = 0, which is zero). Because E is, in fact, a weak field we approximate

n(k) ≈ n0(k) =
1

π
f(k) ,

where f(k) is the Fermi-Dirac distribution. Remember, n(k) is number density per
unit length and the 1/π is the number states per unit length in (k, k + dk). Then

I = − 2
q2Eτ

πh̄2

∫ π/b

0

df(k)

dk

dE

dk
dk . (9.2.1.16)

The conductivity is defined by Ohm’s law which says V = IR . In 1D for a conductor
of length L the conductivity is σ = L/R . Also E = V/L is the definition of E . Hence,
Ohm’s law becomes σE = I , and we can read off σ from (9.2.1.16) to get

σ = − 2q2τ

πh̄2

∫ ∞

0
dk

df(k)

dk

dE(k)

dk
, (9.2.1.17)

But f(k) varies only very slowly except at k = kF where it approximates a step function,
and so

df

dk
= − δ(k − kF )

⇒

σ ≈ 2q2τ

πh̄2

dE

dk

∣
∣
∣
∣
kF

. (9.2.1.18)
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Clearly σ = 0 if the band is full since the upper limit is then k = π/b (E vanishes for
higher k), and dE/dk = 0 there.

Note that the last part of this discussion applies strictly only at T = 0 0K . It
explains why metals conduct at all temperatures and why insulators do not conduct at
low−T . Non-zero conductivity in semiconductors (see later) and insulators depends
strongly on temperature.

We define

neff =
2m

πh̄2

dE

dk

∣
∣
∣
∣
kF

, (9.2.1.19)

where m is the usual electron mass. For free particles for which E = h̄2k/2m , neff

is the actual number density. Then

σ =
neff q2τ

m
. (9.2.1.20)

This way of writing σ in terms of effective parameters is useful and will occur again
later.

9.1.3 Impurities

Lattice imperfections are due to

(i) impurity atoms in the lattice;

(ii) defects. Atoms may be missing at some sites or out of place;

(iii) thermal motion of atoms from their equilibrium positions: this destroys the exact
periodicity of the crystal.

Items (ii) and (iii) become less important as T → 0 .
We now study what happens when an impurity atom replaces one of the regular

atoms in the lattice. We redo the band structure calculation but substitute the impurity
atom for the usual one at n = 0 .

Let the wavefunction for the electron bound to the impurity atom be χ(x) with
H0χ(x) = (E0 + F )χ(x) . Remember, for n 6= 0 we have H0φ(x) = E0φ(x) . Then we
write the eigenstate of the full Hamiltonian, H0 + V as

Φ =
∑

n6=0

anφn + a0χ , (9.3.1.1)

with
HΦ = EΦ . (9.3.1.2)
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As before we have

(φn, V φn) = (χ, V χ) = α ,

(φn, V φn±1) = (χ, V φ±1) = − A ,

(φn, V φm) = 0 , n 6= m, m ± 1

(χ, φn) = 0 n 6= 0 . (9.3.1.3)

All states are assumed orthonormal. Multiplying in turn both sides of eqn. (9.3.1.2)
by φ∗

n and χ∗ we find the coupled difference equations:

Ean = E′
0 an − A (an−1 + an+1) n 6= 0

Ea0 = (E′
0 + F ) a0 − A (a−1 + a+1) , (9.3.1.4)

with E′
0 = E0 +α . Far to the left and right of n = 0 we have the usual travelling wave

solutions which means that the energy dispersion formula, eqn (8.8) is unchanged.
However, the impurity at n = 0 will reflect part of an incident wave, transmitting the
rest. It is the same phenomenon as in quantum mechanics where waves are reflected
and transmitted by a barrier, or as in waves in a string where a massive particle fixed
to the string also causes reflection of waves.

To see this in more detail consider a steady-state of the form:

an =

{

eiknb + β e−iknb n < 0
γ eiknb n > 0

(9.3.1.5)

This solves the equations which do not include a0 . From these equations we find, as
before, that E ≡ E(k) = E′

0 − 2A cos kb : the energy dispersion relation is the same as
before. The three equations which include a0 are

n = −1 : (E − E′
0) (e−ikb + β eikb) = − A (e−2ikb + β e2ikb + a0)

n = 0 : (E − E′
0 − F ) a0 = − A (e−ikb + (β + γ) eikb)

n = 1 : (E − E′
0) γ eikb = − A (a0 + γ e2ikb) .

(9.3.1.6)

Substituting the expression for E in terms of k gives

n = −1 : a0 = 1 + β n = 1 : a0 = γ .
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Hence γ = 1 + β , and from n = 0 we find

β =
−F

F − 2iAsin kb
. (9.3.1.7)

Note that there is no change in the energy but just a change in direction: there is a
reflected wave and a transmitted wave.

There is another solution which corresponds to the trapping of the electron. This
means that there is an eigenstate which is not extended but localized and represents
the electron bound to the impurity. To see this look for a solution of eqns. (9.3.1.6)
of the form

an = c eκnb n < 0

an = c e−κnb n > 0 .

If a solution exists with κ > 0 then the electron is localized at n = 0 . Substituting into
the equations not including a0, we find similar algebra as before and get the energy
dispersion:

E(κ) = E′
0 − 2A cosh κb . (9.3.1.8)

The equations for a1 and a−1 are also satisfied if a0 = c, and that for a0 determines
the value of κ . This equation gives

Ec = (E′
0 + F )c − Ac (e−κb + e−κb) ,

and, on substituting for E from eqn. (9.3.1.8), we find

−2A sinh κb = F . (9.3.1.9)

Note also that since κ > 0 we must have that F and A have opposite signs for a
localized state to appear.

If we write z = eκb we can write eqn. (9.3.1.9) as a quadratic in z :

z2 +
F

A
z − 1 = 0 ,

⇒

z =
1

2



−F

A
±

√

4 +
F 2

A2



 .

Since clearly z > 0, we must choose the “+” sign above. Using this result for κ and
substituting into eqn. (9.3.1.8) we get

E = E′
0 − A

√

4 +
F 2

A2
. (9.3.1.10)

The result is that a localized state can exist with energy given by eqn. (9.3.1.10)
which lies in the band (i.e., “forbidden”) gap either above, (sign(A) = −1), or below,
(sign(A) = +1), the band in question. This result is very important for the physics of
semiconductors.
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9.2 Semiconductors

A semiconductor has filled bands and so is an insulator at T = 0. However, the
band-gap, ∆, between the top-most filled band, called the valence band, and the next
empty one, called the conduction band, is small: ∆ ≤ 1eV. At room temperatures
(∼ 300 0K) electrons, total number density denoted by “n”, are thermally excited from
the valence band to states in the conduction band. Conversely, these excited electrons
leave behind vacant states in the valence band which are called “holes”, total number
density denoted by “p”. Clearly, n = p . Semiconductors for which n = p are called
intrinsic semiconductors. The values of n and p are strongly temperature dependent.
Conduction is due to both the electrons in the conduction band and the holes in the
valence band. To explain this fact we now study the dynamics of holes. The most
useful semiconductor is silicon but germanium was originally used in the early days.

9.2.1 Holes

The figure shows a semiconductor at non-zero temperature. The fermi energy EF

lies near the middle of the band gap. We will verify this fact later. The vacated site
will always be near the top of the filled band. Why? The probability that a state
is occupied is f(E), the Fermi-Dirac distribution. Hence the number of unoccupied
states in (E, E + dE) is p(E):

p(E)dE = g(E)(1 − f(E))dE , (9.1.2.1)

where g(E) is the density of states. But f(E) approaches unity exponentially rapidly
as E decreases below EF , and hence only near the top of the valence band is p(E)
different from zero.

Now, in the absence of a field the current in a filled band is zero. I.e.,

I = q
∑

i

vi = q



vj +
∑

i6=j

vi



 = 0 . (9.1.2.2)

If just “j” were missing then the current would be

I ′ = q
∑

i6=j

vi = − qvj . (9.1.2.3)
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Thus the vacancy or “hole” behaves like a charge −q of velocity vj . Apply an external
field E , then

dI ′

dt
= − q

dvj

dt
= − q2

m∗
E . (9.1.2.4)

(Remember v̇ = qE/m∗ .) However, the missing electron comes from the top of the
band where m∗ < 0 , and so

dI ′

dt
=

q2

(−m∗)
E . (9.1.2.5)

This is similar to an electron of charge q with mass |m∗| near the bottom of a band.
We see that a band in which an electron is missing from the top behaves dynamically
like a single carrier of charge −q and mass |m∗| . I.e., the absence of a particle of
charge q and mass m∗ behaves in most details like a carrier of charge −q and mass
−m∗ . Since m∗ < 0 the carrier has positive mass. Such a carrier is treated as a particle
and is called a “hole”.

We must include holes in our conductivity calculation. Since σ only depends
on the charge squared, carriers of both charges ±q contribute positively to σ . The
conductivity analysis is repeated for holes which have a characteristic relaxation time
τp . Denoting the relaxation time for electrons as τn we can write

I =

(

nq2τn

m∗
n

+
pq2τp

m∗
p

)

E

⇒

σ = q2

(

nτn

m∗
n

+
pτp

m∗
p

)

. (9.1.2.6)

Where

(i) n is the number density of charge +q carriers (electrons) in the conduction band;

(ii) p is the number density of charge −q carriers (holes) in the valence band;

(iii) it is assumed that m∗
n, m∗

p, τn, τp are constant for the states of interest: those occupied
in the conduction band and those vacated in the valence band.

Clearly, σ will be strongly dependent on T unlike the case of metals.

9.2.2 Doping

The carrier density can be increased by impregnating the semiconductor with impuri-
ties. For T 6= 0 it is possible to enhance the number of electrons (n) in the conduction
band or the number of holes (p) in the valence band. From section (9.1.3) we saw
that an impurity atom creates a state in the band gap. An electron in such a state
is localized and does not contribute to the conductivity. Conversely, if the state is
occupied by a hole (i.e., it is empty!) the hole is localized and it does not contribute to
the conductivity either. Bearing these ideas in mind we now discuss the two important
cases of electron carrier and hole carrier enhancement respectively.

Silicon atoms have four outermost electrons which exactly fill the valence band at
T = 0: these are the valence electrons which give the band its name. There are two
kinds of important impurities which are introduced:
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(i) Donor impurites. The impurity in this case has five valence electrons, i.e., one more
than silicon. An example is phosphorous. Each impurity atom gives rise to a localized
state just below the bottom of the conduction band. At T = 0 this state is occupied
by the extra, fifth, electron:

Notice that the Fermi energy moves up towards the top of the gap. This is because
more electrons are present. The localized states are very close to the bottom of the
conduction band, a gap of only δ, and for T > 0 most of the electrons trapped in these
states at T = 0 are thermally excited to states in the conduction band. All that is
needed is that kT ∼ δ. Typically δ = 0.04 eV and at room temperature kT ∼ 0.025 eV.
The number of states available in the conduction band is very much reater than those
due to the impurities and so it is overwhelmingly likely that the electron leaves the
localized impurity state and occupies an extended state in the conduction band.

(ii) Acceptor impurities. The impurity in this case has three valence electrons, i.e., one
less than silicon. An example is boron. Each impurity atom gives rise to a localized
state just above the top of the valence band. At T = 0 this state is unoccupied since
there is one electron lacking compared with the state of pure silicon:

In this case the Fermi energy moves down towards the bottom of the gap since there
are states in this region which are unoccupied, thus reducing the energy at which
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occupation is 50% probable. For T > 0, as above, most of these localized empty states
(i.e., “occupied” by holes) become filled with electrons thermally excited from the top
part of the valence band. This can be thought of as holes localized in the impurity
states being thermally excited to occupy hole states (states associated with positive
effective mass) in the top of the valence band. As before this is overwhelmingly likley
since there are very many more extended hole states in the valence band than localized
impurity hole states.

The outcome is that

(i) silicon doped with donor impurities has, for T > 0, very many electrons in the conduc-
tion band and so the conductivity increases because of n–type carriers. Silicon doped
in this way is called n-type silicon.

(ii) silicon doped with acceptor impurities has, for T > 0, very many holes in the valence
band and so the conductivity increases because of p–type carriers. Silicon doped in this
way is called p-type silicon.

Notation: in either type silicon the number density of electron carriers is denoted n,
and the number density of hole carriers is denoted p. In intrinsic silicon n = p ≡ ni.
We shall now show that at a given temperature np = n2

i . A consequence is that in
n–type n ≫ p and in p–type p ≫ n .

The number density of electrons in the conduction band is

n =

∫ ∞

Ec

g(E)

e(E−EF )/kT + 1
dE . (9.2.2.1)

In this integral the range of E is such that E −EF ≫ kT gives the major contribution
and so we can approximate the Fermi distribution by the Boltzmann distribution:

n =

∫ ∞

Ec

g(E)e−(E−EF )/kT dE . (9.2.2.2)

The density of states per unit volume, g(E), depends on E−Ec (i.e., the distance from
the bottom of the band). In practice the electrons behave very much like free particles
with an effective mass and we can use the form derived much earlier for a free gas, eqn.
(6.1.1.5):

g(E) ∼ A(E − Ec)
1

2 . (9.2.2.3)

This is the form appropriate for three dimensions. Then we can rearrange the expression
above to be

n = e−(Ec−EF )/kT
∫ ∞

Ec

A(E − Ec)
1

2 e−(E−Ec)/kT dE . (9.2.2.4)

Change variables in the integral to x = (E − Ec)/kT and find

n = BT
3

2 e−(Ec−EF )/kT , (9.2.2.5)

with

B =
A

2
(k3π)

1

2 .
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Similarly the number density for holes is

p =

∫ Ev

−∞
g′(E) h(E) dE ,

where

h(E) = 1 − 1

e(E−EF )/kT + 1
≈ e(E−EF )/kT . (9.2.2.6)

Writing g′(E) = A′(Ev − E)
1

2 we find in a similar manner

p = B′T
3

2 e−(EF−Ev)/kT . (9.2.2.7)

EF is determined by the values of n and p.

(i) Intrinsic semiconductor: n = p gives

EF =
Ec + Ev

2
+ kT log

B′

B
. (9.2.2.8)

A result of this kind holds for a general density of states. In this case EF is in the
middle of the band gap up to a generally small correction which reflects the difference
between the properties of the two bands.

(ii) Non-intrinsic semiconductor: To get n ≫ p or p ≫ n the position of EF changes
accordingly. If n ≫ p then from eqn. (9.2.2.6) we see EF ∼ Ec and EF is located near
the top of the band gap. Similarly from eqn. (9.2.2.7), when p ≫ n get EF ∼ Ev and
EF is near the bottom of the gap. In either case from eqns. (9.2.2.6, 9.2.2.7) we get

np = BB′T 3 e−(Ec−Ev)/kT ≡ CT 3 e−∆/kT , (9.2.2.9)

where ∆ is the band gap and C is a material-dependent constant. This is a general
result. So np is independent of EF and hence of the impurity concentrations. Thus if
ni is the electron density in intrinsic semiconductor at temperature T then

np = n2
i . (9.2.2.10)

(Remember, ni = pi .)

In n–type the electrons are the majority carriers and the holes are the
minority carriers.
In p–type the holes are the majority carriers and the electrons are the
minority carriers.

10 Semiconductor Devices

10.1 The pn Junction

(i) n and p type materials are brought into contact and a contact potential φ is built up
across the junction. This general happens when two dissimilar materials are brought
into close contact.
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(ii) The contact potential occurs because n–type has an excess of electrons and p–type an
excess of holes. Electrons flow across the junction from n to p and holes from p to n.
The n–type becomes positive and the p–type negative. Eventually, the charges build
up enough for it to become energetically unfavourable for any more electrons or holes
to change sides: the electrons are impeded by the −ve charge on the p–type and the
holes by the +ve charge on the n–type.

(iii) At equilibrium the electrons crossing from n– to p–type balance those crossing from p–
to n–type and similarly for the holes. The condition for equilibrium is that the Fermi
energies on both sides of the junction are the same. This is a very general condition
that can be justified for all systems. Remember, two systems with different tempera-
tures brought into contact exchange energy until there is one common temperature.
If they have two different Fermi energies (or chemical potentials) they will exchange
particles until there is one common Fermi energy. Both these conditions result from
the idea of particle distributions being most-probable.

[Notation: the direction of all currents is from left to right, i.e., from n– to p–type.
The sign of the current determines the direction in which charge actually flows.]

(iv) The current due to n crossing from n–type to p–type is called the majority
n current.
The current due to n crossing from p–type to n–type is called the minority
n current.

Likewise

The current due to p crossing from p–type to n–type is called the majority
p current.
The current due to p crossing from n–type to p–type is called the minority
p current.

In other words, in equilibrium the barrier inhibits majority carrier flow of electrons
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from n– to p–type and holes from p– to n–type. In contrast, the minority carriers in
each material are pulled over junction as fast as they arrive there by the electric field
due to the potential φ . Equilibrium occurs when the majority current is balanced by
the minority current.

(v) Concentrate on just the electrons.

(a) All minority n in the p–type which reach the junction (x = 0) are attracted
across by the junction field into the n–type. The rate is independent of φ: it
depends only on how fast they get to x = 0 in the first place. This gives the
minority n current In

0 across the junction.

(b) The majority n approaching the junction from within the n–type must have
enough energy to surmount the energy barrier of height qφ . Those that get
across give rise to the majority current IM due to electrons crossing from n– to
p–type. Calculate IM by reference to the figure:

In
M = qC

∫ ∞

Ec+qφ
dE g(E) e−(E−EF )/kT v(E) , (10.1.1)

where g(E) is the density of states, v(E) is the velocity and C is a constant which
is hard to calculate in practice but which accounts for the fact that electrons
impinge obliquely on the junction etc. In equilibrium In

M + In
0 = 0 .

(c) The junction region extends a distance L into the material on either side. (The
magnitude of L depends very strongly on the doping strengths but typically
L ∼ 10−6 to −9 metres.) Both kinds of majority carrier occur in the junction
which combine (i.e., the electrons occupy the hole states) giving a depletion of
carriers and a consequent decrease in conductivity. This region is called the
depletion layer.

(d) Suppose an external voltage V is applied across the junction, say by a battery
contacting on the left and the right. Because the depletion layer has a high
resistance the extra potential drop of V occurs entirely across this region and not
across the bulk of either semiconductor. The effect is to change the barrier height
from qφ to q(φ + V ) . What is the current I(V ) flowing through the device as a
function of V ?

In
0 is independent of the barrier height and hence of V , but now

In
M (V ) = qC

∫ ∞

Ec+q(φ+V )
dE g(E) e−(E−EF )/kT v(E) . (10.1.2)

Since g(E) and v(E) vary only slowly with E compared with the exponential we
have

In
M (V ) ≈ In

M (0) e−qV/kT . (10.1.3)

But In
M (0) + In

0 = 0 and so the total current due to electrons is

In(V ) = In
M (V ) + In

0

⇒
In(V ) = In

0

(

1 − e−qV/kT
)

. (10.1.4)

In
0 is due to the minority of electrons in the p–type and is thus proportional to

their density which we denote n̄p . Hence

In(V ) = Dnn̄p

(

1 − e−qV/kT
)

. (10.1.5)
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(vi) The calculations for holes are along similar lines. The notation is the same as above
with n replaced by p. Then

Ip
M (V ) = − (−q)C

∫ Ev−q(φ+V )

−∞
dE g(E) e(E−EF )/kT v(E) , (10.1.6)

where g(E), v(E) and C are appropriate for the valence band and the charge on the
hole is −e. The extra − sign is because the majority holes cross from right to left which
by our convention carries a − sign. Then, as before, we find

Ip
M (V ) = Ip

M (0) e−qV/kT . (10.1.7)

The equilibrium condition is Ip
M (0) + Ip

0 = 0 and so the hole contribution to the total
current is

Ip = Ip
0

(

1 − e−qV/kT
)

. (10.1.8)

Since Ip
0 is proportional to p̄n, the density of the minority p carriers in the n–type:

Ip = Dpp̄n

(

1 − e−qV/kT
)

. (10.1.9)

The total current is then

I = (Dpp̄n + Dnn̄p)
︸ ︷︷ ︸

I0

(

1 − e−qV/kT
)

.
(10.1.10)

Then

qV > 0 ⇒ I < I0 I is small,

qV < 0 ⇒ I = −I0 e|qV |/kT |I| is large.

The np junction rectifies: it only passes current one way. Pictorially, this can be
seen in the next figure. In the n–type only −ve charges carry the current and in the
p–type the current is carried by only +ve charges. The two kinds of carrier swap rôles
in the depletion layer. If

(i) a −ve voltage is applied to the p–type and hence a +ve voltage to the n–type both kinds
of carrier are attracted to their respective terminals and away from the junction. No
carrier of either charge crosses the junction and so no nett current flows;
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(ii) a +ve voltage is applied to the p–type and hence a −ve voltage to the n–type both kinds
of carrier are repelled by their respective terminals and attracted to the terminal on
the other side. Both kinds of carrier flow across the junction and a large current is
possible.

(iii) When the contact potential is reduced and a large current flows the junction is forward
biased by the applied voltage. When the contact potential is increased and only the
minority current flows occur the junction is reverse biased by the applied voltage.

We have calculated the form of the current characteristic, eqn (10.1.10) which looks
like

Typically, I0 ∼ 100µa at T = 300 0K.

10.2 The npn Transistor

The transistor is a current amplifier. In operation the input is a small fluctuating
current (e.g., from a microphone) and the output is a current proportional to the input
but much larger. In practice the proportionality is not exact unless circuits are designed
properly.

The npn transistor consists of a sandwich of a very thin p–type layer, of thickness
W , between two pieces of n–type silicon.

(i) The system can be though of as two back-to-back pn junctions, the first at A and the
second at B.

(ii) Two DC potentials, represented by the batteries, are applied which forward bias
junction A and reverse bias junction B. The n–type of the forward biased junction
is called the emitter and that of the reversed biased junction is called the collector.
The p–type in the sandwich is the base.

The energy diagram with the various internal carrier currents is thus

(iii) Consider the junction A. Because it is forward biased IE is large and is controlled by
VE . Across A there is an electron current In and a hole current Ip.

(a) The electron current is due to electrons being injected or emitted into the base
where they are minority carriers.
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(b) The hole current is due to majority holes moving across A from p– to n–type.

(c) The electrons emitted into the base diffuse across the base but also combine with
majority holes. However, if the base is thin then all the electrons diffuse to B
before recombination can occur. At B the junction is biased in their favour and
they are pulled across into the collector. Note: in the base they are masquerading
as minority carriers which are helped across B by the contact potential enhanced
by the reverse bias. They then generate IC the external collector current.

(d) Things are different for the holes responsible for Ip. Where do they come from?
Either they must come from the collector across B or are supplied by the base
current IB. In the collector holes are minority carriers so there can only be a very
small minority hole current from collector to base – this can be ignored. Thus
they must be due to IB only. It will turn out that Ip and hence IB is small and
so, since IE = In + Ip, we have IE ≈ In.

The outcome is that IE is controlled by VE according to the characteristic derived for
the pn junction and that from (c) and (d) we expect IE ≈ IC . VE is modulated by the
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signal voltage v(t) and so setting VE = V 0
E + v(t):

IE ≈ IC ≈ − I0 e−q(V 0

E
+v(t))/kT

≈ I0
C

(

1 − qv(t)

kT

)

, (10.2.1)

where I0
C = I0 exp(−qV 0

E/kT ). At T = 300 0K kT/e ≈ 0.025 volts and so

IE ≈ I0
C (1 + v(t)/0.025) , note: q = − e . (10.2.2)

Clearly, a small signal voltage change causes a similar change in IC . Small signals of a
few milli-volts will cause large changes in IC because of the small denominator. This
is the amplification process which we shall examine more carefully below.

First we must look at the current balance more carefully to justify the statement
that IB is small, i.e., IB ≪ IE . The flow diagram is

Then we have

IE = In + Ip , IC = In , IB = − Ip . (10.2.3)

Notation:

n̄p (p̄n) is the equilibrium minority carrier density in p–type (n–type);
p̄p (n̄n) is the equilibrium majority carrier density in p–type (n–type);

Consider the transistor current gain parameter β defined by β = |IC/IB|. From
above

β =

∣
∣
∣
∣
∣

In

Ip

∣
∣
∣
∣
∣

= C
n̄p

p̄n
. (10.2.4)

Here C is a constant and we have used the result from pn junction theory, eqns. (10.1.5,
10.1.9), that In ∝ n̄p and Ip ∝ p̄n: the currents are controlled by the respective
minority carrier densities. From eqn. (9.2.2.10) we have that

n̄p =
Cp

p̄p
, p̄n =

Cn

n̄n
, (10.2.5)

and from eqn. (9.1.2.6) we see that the n– and p–type conductivities are proportional
to the respective majority carrier densities:

σn ∝ n̄n , σp ∝ p̄p . (10.2.6)
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Thus

β = C
n̄p

p̄n
= C

Cpn̄n

Cnp̄p
= C ′σn

σp
. (10.2.7)

The constant C ′ is built from many factors, some of which have been explicitly stated
earlier. At fixed temperature these factors are mainly properties of silicon itself and
we have exposed here the dependence on the important factors under experimental
control. However, C ′ does depend on the width W of the base region and we just state
here the result:

β = D
LR

W

σn

σp
, (10.2.8)

Where LR is a characteristic length in silicon and is the mean distance that an electron
emitted into the base diffuses before it recombines with a majority hole.

In order to ensure IB ≪ IC the transistor is constructed so that β is large. This
means

(i) σp ≪ σn. This is achieved by using only lightly doped p–type for the base;

(ii) making W as small as possible.

Since β is a constant we can trivially write

∣
∣
∣
∣

dIC

dIB

∣
∣
∣
∣ = β . (10.2.9)

(i) A small fluctuation in IB is replicated in IC but amplified by β. The transistor is a
current amplifier.

(ii) For constant VE , IC is not affected by changes in VC . This is because B is reverse
biased and from pn-junction theory the current is insensitive to the amount of reverse
bias. Thus the emitter acts as a constant current source (c.f. a battery is a constant
voltage source) controlled by VE .

(iii) The effective resistance of the emitter–base diode is

RE =
dVE

d(−IE)
≡ dv

d(−IE)
, with IE ≈ Ce−qVE/kT . (10.2.10)
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(The “−” sign is because the positive current flows from the “+” terminal to the “−”
terminal: the battery exposes the sign on the electron charge. I.e., q < 0 ⇒ IE < 0.)

Thus

RE =
kT

eIE
=

0.025

|IE |
= 25Ω , (10.2.11)

for T = 300 0K and IE = 1 milliamp (a typical value).

In the arrangement shown the input voltage is v(t) and the output is V (t). Then

dV

dv
=

dV

d(−IC)

d(−IC)

dv
. (10.2.12)

But IC ≈ IE and so

d(−IC)

dv
≈ 1

RE
⇒ dV

dv
=

R

RE
≈ 40 , (10.2.13)

for R = 1KΩ, IC = 1 ma, T = 300 0K . This is voltage amplification and the voltage
gain is R/RE .


