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1 Introduction

A general problem in physics is to deduce the macroscopic properties of a quan-
tum system from a microscopic description. Such systems can only be described
mathematically on a scale much smaller than the scales which are probed exper-
imentally or on which the system naturally interacts with its environment. An
obvious reason is that systems consist of particles whose individual behaviour
is known and also whose interactions with neighbouring particles is known. On
the other hand experimental probes interact only with systems containing large
numbers of particles and the apparatus only responds to their large scale aver-
age behaviour. Statistical mechanics was developed expressly to deal with this
problem but, of course, only provides a framework in which detailed methods of
calculation and analysis can be evolved.
These notes are concerned with the physics of phase transitions: the phenomenon
that in particular environments, quantified by particular values of external param-
eters such as temperature, magnetic field etc., many systems exhibit singulatities
in the thermodynamic variables which best describe the macroscopic state of the
system. For example:

(i) the boiling of a liquid. There is a discontinuity in the entropy,

∆S =
∆Q

Tc

where ∆Q is the latent heat. This is a first order transition;

(ii) the transition from paramagnetic to ferromagnetic behaviour of iron at
the Curie temperature. Near the transition the system exhibits large-range
cooperative behaviour on a scale much larger than the inter-atomic distance.
This is an example of a second order, or continuous, transition. Scattering
of radiation by systems at or near such a transition is anomalously large
and is called critical opalescence. This is because the fluctuations in the
atomic positions are correlated on a scale large compared with the spacing
between neighbouring atoms, and so the radiation scattered by each atom
is in phase and interferes constructively.
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Most of the course will be concerned with the analysis of continuous transitions
but from time to time the nature of first order transitions will be elucidated.
Continuous transitions come under the heading of critical phenomena.
Broadly, the discussion will centre on the following area or observations:

(i) the mathematical relationship between the sets of variables which describe
the physics of the system on different scales. Each set of variables encodes
the properties of the system most naturally on the associated scale. If we
know how to relate different sets then we can deduce the large scale prop-
erties from the microscopic description. Such mathematical relationships
are called, loosely, renormalisation group equations, and , even more
loosely, the relationship of the physics on one scale with that on another is
described by the renormalisation group. In fact there is no such thing
as the renormalisation group, but it is really a shorthand for the set of
ideas which implement the ideas stated above and is best understood in the
application of these ideas to particular systems. If the description of the
system is in terms of a field theory then the renormalisation group approach
includes the idea of the renormalisation of (quantum) field theories and
the construction of effective field theories;

(ii) the concept of universality. This is the phenomenon that many systems
whose microscopic descriptions differ widely nevertheless exibit the same

critical behaviour. That is, that near a continuous phase transition the
descriptions of their macrosopic properties coincide in essential details. This
phenomenon is related to the existence of fixed points of the renormalisation
group equations.

(iii) the phenomenon of scaling. The relationship between observables and pa-
rameters near a phase transition is best described by power-law behaviour.
Dimensional analysis gives results of this kind but often the dimensions of
the variables are anomalous. That is, they are different from the obvious
or “engineering” dimensions. This phenomenon occurs particularly in low
dimensions and certainly for d < 4. For example in a ferromagnet at the
Cutire temperature Tc we find

M ∼ h
1
δ ,

where M is the magnetisation and h is the external magnetic field. Then
the susceptibility, χ = ∂M

∂h
, behaves like

χ ∼ h
1
δ
−1.

Since δ > 1, χ diverges as h → 0. The naive prediction for δ is 3. δ is
an example of a critical exponent which must be calculable in a success-
ful theory. The coefficient of proportionality is the above relations is not

universal and is not easily calculated. However, in two dimensions the con-
formal symmetry of the theory at the transition point does allow many
of these parameters to be calculated as well. We shall not pursue this topic
in this course.
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Note. The general ideas of relating physical phenomena on widely differing
scales by renormalisation group methods is widely applicable in many fields. For
example:

(i) general diffusion models such as diffusion on fractal structures and the large
scale effects of diffusive transport processes in fluid flow;

(ii) turbulence in fluids. The fluid velocity field, u(x, t), of fully developed
turbulence has energy density, as a function of wavenumber k,

k2E(k) ∼
1

V

∫

dxdyu(x, t) · u(y, t)eik·(x−y)

with e(k) ∼ k−
5
3 for large k.

This result is derived by “naive” dimensional analysis (Kolmogorov). How-
ever, a full solution of the Navier-Stokes equation can correct the exponent:

E(k) ∼ k−
5
3
−η,

where η is the anomalous term.

2 The Phenomenology of Phase Transitions

Statistical systems in equilibrium are described by macroscopic, thermodynamic,
observables which are functions of relevant external parameters, e.g., tempera-
ture, T, pressure, P, magnetic field, h. These parameters are external fields

(they may be x, t dependent) which influence the system and which are under
the control of the experimenter.
the observables congugate to these fields are:

entropy S congugate to temperature T
volume V congugate to pressure P
magnetisation M congugate to mag. field h

Of course V and P may be swopped round: either can be viewed as an external
field.
More common thermodynamic observables are the specific heats at constant pres-
sure and volume, respectively CP and CV ; the bulk compressibility, K; and the
energy density, ǫ.
Equilibrium for given fixed external fields is described by the minimum of the
relevant thermodynamic potential:

E for fixed S,T
F for fixed T,V
Φ for fixed T,P
W for fixed S,P
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A phase transition occurs at those values of the external fields for which one
or more observables are singular. This singularity may be a discontinuity or a
divergence. The transition is classified by the nature of the typical singularity
that occur. Different phases of a system are separated by phase transitions.
Broadly speaking phase transitions fall into two classes:

(1) 1st order

(a) Singularities are discontinuities.

(b) Latent heat may be non-zero.

(c) Bodies in two or more different phases may be in equilibrium at the
transition point. E.g.,

(i) the domain structure of a ferromagnet;

(ii) liquid-solid mixture in a binary alloy: the liquid is richer in one
component than is the solid;

(d) the symmetries of the phases on either side of a transition are unre-
lated.

(2) 2nd and higher order: continuous transitions

(a) Singulaities are divergences. An observable itself may be continuous
or smooth at the transition point but a sufficiently high derivative
with respect to an external field is divergent. C.f., in a ferromagnet at
T = Tc

M ∼ h
1
δ , χ =

(

∂M

∂h

)

T

∼ h
1
δ
−1.

(b) There are no discontinuities in quantities which remain finite through
the transition and hence the latent heat is zero.

(c) There can be no mixture of phases at the transition point.

(d) The symmetry of one phase, usually the low-T one, is a subgroup of
the symmetry of the other.

An order parameter, Ψ, distinquishes different phases in each of which it takes
distinctly different values. Loosely a useful parameter is a collective or long-range
coordinate on which the singular variables at the phase transition depend.
In a ferromagnet the spontaneous magnetisation at zero field, M(T ), is such an
order parameter, i.e.,

M(T ) = lim
h→0+

M(h, T )

then |M(T )| = 0 for T ≥ Tc, and |M(T )| > 0 for T < Tc.

Note: ℑ(T − Tc)
1
2 will not do.
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Ψ is not necessarily a scalar, but in general it is a tensor and is a field of the
effective field theory which describes the interactions of the system on macro-
scopic scales (i.e., scales much greater than the lattice spacing). The idea of
such effective field theories is common to many areas of physics and is a natural
product of renormalisation group strategies.

Examples

(1) The Ising model in 3 dimensions.

The theory is defined on the sites of a 3D cubic lattice and the variable on
the site labelled by n is σn ∈ Z2. There is a nearest neighbour interaction
and an interaction with an external magnetic field, h. Then the energy is
written as

H = J
∑

n,µ

σnσn+µ − h
∑

n

σn,

where µ is the lattice vector from a site to its nearest neighbour in the
positive direction, i.e.,

µ ∈ (1, 0, 0) (0, 1, 0) (0, 0, 1).

The order parameter is the magnetisation,

M =
1

V

∑

n

σn,

where V is the number of sites in the lattice. Note, that whilst the σn are
discrete, M is a continuous variable, −1 ≤M ≤ 1 in the limit V → ∞.

(2) H2O

Look at the two phases of liquid and vapour. The order parameter is the
density, ρ, which is large for the liquid phase relative to its value for the
vapour phase.

The properties of both systems, their similarities and differences are best exhib-
ited by showing the various phase diagrams.
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PHASE DIAGRAMS

µ is the chemical potential, and µ = µc(T ) is the line of first order transitions in
the (µ, T ) plot for H20. It corresponds to the line h = 0 in the (h, T ) plot for the
Ising model.
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(i) Approach along (a) gives a 1st order transition whilst approach along (b)
through the critical point gives a 2nd order transition.

(ii) The order parameters are:

magnetisation M density ρ

The congugate fields are:

magnetic field h chemical potential, µ or

pressure, P

(iii) The behaviour near T = Tc (t = ((T − Tc)/Tc)

(a) t→ 0−, h = 0± t→ 0−, µ− µc(T ) = 0±

M(T ) ∼ |t|β ρ(T )− ρc ∼ |t|β+

ρ(T )− ρc ∼ |t|β−

Clear symmetry in curve No obvious symmetry but
experimentally β+ = β−

(b) t→ 0+, h = 0 t→ 0+, µ = µc(T )

Susceptibility

χ =
(

∂M
∂h

)

T
χ = K(T )

K0(T )

K(T ) = 1
ρ

(

∂ρ
∂P

)

T

K0(T ) is for ideal gas

Then

χ(t) ∼ |t|−γ

Note that for the Ising model with t → 0−, h → 0+ we find χ(T ) ∼ |t|−γ′

with γ′ = γ. It should be remarked, howver, that γ′ is not defined for all
models.
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(c) t = 0, h→ 0+ t = 0, µ− µc → 0+

M ∼ h
1
δ ρ− ρc ∼ (µ− µc)

1
δ

β, γ, δ are examples of critical exponents.

(iv) Coexisting phases

(a) States between the curves I and II are physical but metastable. They
do not violate thermodynamic inequalities. In the PV plot this is
equivalent to

(

∂P

∂V

)

T

< 0

which means that the compressibility is positive. This inequality is
derived from entropy being a maximum in equilibrium. Howver, these
states are unstable against changing to the mixed system, e.g., domains
in the Ising model (or ferromagnet), and liquid-gas mixture for water.

The continuous curves shown are the (h,M) and (P, V ) curves for a
pure phase. E.g., the Van-der-Waals equation of state:

(

P +
a

V

)

(V − b) = cT

(b) The Maxwell construction gives the true equilibrium curve taking into
account the formation of the mixed system. The mixture is of the two
phases A and B. The rule for finding the interpolation is illustrated in
the case of H2O:

PA = PB, µA = µB ⇒ µA − µB =
∫ B

A
v dP = 0,
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where v = V/N , and N is the number of particles. This is the equal

areas rule of Maxwell.

What happens is that boundaries between phases or domains form.
In each domain the magnetisation is oriented differently and so the
bulk average magnetisation can be any value in the range −|M | to
|M |, where |M | is the magnetization of a pure domain. The walls do
increase the energy of the system by ∆ǫ and there is also an increase
in the entropy, ∆S. since there are many ways of realising the mixed
state. However, the resultant change in the free-energy, ∆F = ∆ǫ −
T∆S , depends on the surface area of the walls and is negligible in
the limit of very large volume. Of course, the actual way in which
domains, or bubbles, form and move is very important (e.g. in the
early universe, cosmic string formation etc.) but needs more analysis
than the embodied in the Maxwell construction.

2.1 The general structure of phase diagrams

A thermodynamic space,Y , is some region in an s-dimensional real vector space
spanned by field variables y1, . . . , ys (e.g., P, Y, T, µ, . . .). In Y there will be points
of two, three, etc. phase coexistence (c.f. A and B in H2O plot above), together
with critical points, multicritical points, critical end points, etc.. Q is the totality
of such points. The phase diagram is the pair (Y,Q).
Points of a given type lie in a smooth manifold, M , say. The codimension, κ,
of these points is defined by

κ = dim(Y )− dim(M).

E.g., two phase ponts have κ = 1; critical points (points that terminate two phase
lines) have κ = 2.
There do not exist any known rules for constructing geometrically all acceptable
phase diagrams, (Y,Q): we cannot construct all the phase diagrams which could
occur naturally.

2.1.1 Structures in a phase diagram: a description of Q

I assume that there are C components in the system, and hence there are (c+1)
external fields: µ1, . . . , µc, T . Then dim(Y ) = (c+ 1).

(a) Manifolds of multiphase coexistence.

The Gibbs phase rule states that the coesistence of m phases in a system
with C components has

f = c+ 2−m

where F id the dimension of the manifold of m-phase coexistence.

proof: dim(Y ) = (c + 1) and hence the manifold has codimension κ =
(c+1− f). But κ = (m− 1) since k external fields must be tuned to bring
about m-phase coexistence.
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(b) An ordinary critical point has κ = 2 and occurs when two coexisting
phases become identical:

(c) A critical end-point occurs with codimension κ when two coexisting
phases become identical in the presence of (κ− 2) other phases:

An example of all these structures in a three dimensional phase diagram is
shown below.
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thus the critical end-point terminates a line of critical points and also ter-
minates a line of triple points.

Note that a phase diagram can often only be properly understood if plotted
in the space of all relevant parameters. E.g., the Gibbs rule might seem to
be violated since too many phases are coexisting at one point. However, if
the space is enlarged in dimension this will be seen as a special case which
only occurs for a particular cross-section of the enlarged space;

(d) A tricritical point has κ = 4. Its nature is most easily seen first in three
dimensions. This is already a special case since we can only be sure it
will appear in four dimensions. We suppose we have taken the appropriate
cross-section of the 4D space. this often occurs naturally since some of the
parameters are naturally set to the special values necessary to show up the
tricritical point: e.g., by symmetry considerations.
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The hatched surfaces are 1st-order surfaces: surfaces of two phase coexis-
tence. Thus the 1st order line in 2D is really a line of triple points (three
phase coexistence) in higher dimensions.

A less special 2D cross-section of the same model will be:
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Here we have set h = 0 (see 3D plot) but have changed the value of a fourth
parameter u.

(e) A bicritical point is a critical point at which two critical lines terminate.
A typical phase diagram is: A model which has a phase diagram like this

is given by the Hamiltonian

H = −J
∑

<ij>

si · sj +
1

2
g
∑

i

(

(szi )
2 −

1

2
((sxi )

2 + (syi )
2)
)

< ij > means nearest neighbour pairs, i.e., it labels the links on the lattice.

si is a vector at the i-th site with |si| = 1.

For low T thermal fluctuations can be ignored and it is safe to just find the
configuration (i.e., set of values) of spins {si} which minimises H. Since
J > 0 the first term causes the spins to align with each other to give
ferromagnetic ordering.

g < 0 Ordering is prefered along z-axis. This is phase B.
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g > 0 Ordering is prefered in the xy-plane ⊥ z-axis.
This is phase A.

g = 0 Neither A nor B prefered: two-phase coexistence.

For high T ordering is absent: it is destroyed by thermal fluctuations. For
g 6= 0 as T increases we must have a second order transition from ferro-
magnetic to paramagnetic phases. The surfaces to the low-T side of the
lines of critical points are first-order surfaces. This can be seen by impos-
ing a magnetic field h on the system with components both ‖ and ⊥ to
the z-axis and adding the magnitude, h, of h (including sign) as a third
orthogonal axis to generate a 3D phase plot of which our 2D plot is the
h = 0 cross-section. Then as h changes sign the magnetisation, M, changes
discontinuously at h = 0. This occurs as the surfaces in our 2D phase dia-
gram on the low-T side of the critical lines are punctured, and hence they
are in fact first-order surfaces. Of course, because the order parameter is a
vector the possible patterns of behaviour and the competition between the
effects of the terms governed by the coupling, g, and by h is, in general,
complicated. An r-critical point is where r critical lines terminate.

(f) A critical point of n-th order has κ = n+ 2 and is complicated.

3 Landau-Ginsberg theory and mean field the-

ory

The Landau-Ginsberg theory is a phenomenological theory describing all types
of phase transition which can be derived from the more complete theory. It is
a classical approach which breaks down in its simple form for low dimensions.
However, it can be used for developing the structure of phase transitions and
phase diagrams. Landau theory gives the correct prediction for critical indices in
dimensions d > dc, where dc is a critical dimension which is different for different
kinds of critical point. E.g., for an ordinary critical point dc = 4, and for a
tricritical point dc = 3.
Mean field theory is a method of analysing systems in which the site variable
(spin etc.) is assumed to interact with the mean field of the neighbours with
which it interacts. In a spin model each of the neighbouring spins has the value
of the mean magnetisation per spin, m. The problem now reduces to that of
a single spin in an external field and can easily be solved. By demanding that
the mean value of the spin in question is m the solution yields a non-linear
equation expressing this assumption of self-consistency and from which m can be
calculated as a function of T. The approximation of the method is that it ignores
fluctuations in the spins about their mean. It will turn out that Landau theory
suffers from the same deficiency as we shall demonstrate. Mean field theory and
Landau theory give the same, classical, predictions for critical exponents.
We shall consider the following example.
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Let the order parameter be M , and expand the free energy, A, as

A = A0 +
1

2
A2M

2 +
1

4
A4M

4 +
1

6
A6M

6 + . . . ,

with A2 ∝ (T − Tc).
There are no terms with odd powers of M . These can be present in principle
but can be consistently excluded by symmetry considerations if the microscopic
Hamiltonian is invariant under M → −M . If odd powers of M are present then
generally the theory has only first order transitions, although higher order transi-
tions cannot be totally excluded. Tc is a complicated function of the couplings in
the original, microscopic, Hamiltonian as are the other coefficients, A2n. It is an
assumption that A2 is analytic in T : an assumption that can only be plausibly
justified under certain circumstances. This assumption as well as others is wrong
if the dimension is low enough.

Equilibrium is given by minimising A:

dA

dM
= 0.

The observable value of the order parameter, M(T ), is the solution of this equa-
tion. Then

|M(T )| =
∣

∣

∣

∣

A2

A4

∣

∣

∣

∣

1
2

(

1 +
1

2

A6A2

A2
4

+ . . .

)

.

Thus as T → Tc

|M(T )| ∼ |T − Tc|
1
2 ⇒ β =

1

2

We can rewrite the expression for M(T ) as

M(T ) =
∣

∣

∣

∣

A2

A4

∣

∣

∣

∣

1
2

m(x), where x =
A6A2

A2
4

.

If we assign to M a dimension of (−1) and dimension d to A then the coefficients
A2n have dimension (d+ 2n). Thus in this artifical dimensional analysis we find
that x is dimensionless and that the critical exponent is predicted on dimensional
grounds. The analysis above is only possible if A4 > 0, in which case A6 only
occurs in the correction terms. If A4 < 0 then we require A6 > 0 to stabilize
the calculation and the results are different (see below). In the former case since
only A2 and A4 are important the critical exponent follows uniquely from the
dimensional argument.

A4 > 0

If a field h is applied then the symmetry is broken and

A = A0 − hM +
1

2
A2M

2 +
1

4
A4M

4.
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At T = Tc (A2 = 0) the condition for equilibrium is

−h+ A4M
3 = 0 ⇒ M ∼ h

1
3 ⇒ δ = 3.

For T > Tc we have (t = (T−Tc)
Tc

)

−h+ a2TctM + A4M
3 = 0.

Then the susceptibility is given by

χ =

(

∂M

∂h

)

h=0

=
1

a2Tc
t−1 ⇒ γ = −1.

The curve of ±M(T ) vs T is a parabola: For T < Tc we find

h = −a2|T − Tc|M + A4M
3,

where in general A4 is a function of T which does not vanish at T = Tc. Thus
the equation of state has the form

h = −a(T )M + β(T )M3 + . . .

Then
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If h is tuned from positive to negative the true minimum describing equilibrium
changes from one to the other, but it takes time to re-establish th equilibrium
especially if the intervening barrier is high. Consequently, the system can be in a
metastable state corresponding to the local but not global minimum. This is the
phenomenon of hysteresis. What happens is clear from the equation of state:

(i) For h1 there is unique minimum and the state is stable.

(ii) For h2 there are two minima (a) and (c) and a maximum (b). State (c)
is stable and (a) is metastable, but (b) is unstable corresponding to a
maximum of A and thermodynamic inequalities are violated here.

(iii) Follow what happens as h decreases from h1 through h2 and h3 and eventu-
ally becomes large and negative: M varies smoothly as a function of h and
metastability (supercooling) occurs, then at (d) the state becomes unstable
and any fluctuation precipitates the change to the true equilibrium state.

Plots of A vs M for the different h values make this interpretation clear:

The Maxwell construction tells us that the stable state is not most generally
characterised by a constant M . Locally M is a constant but it can change
globally giving a domain structure. The Maxwell construction corresponds to
the situation when h = 0 and there are two degenerate minima associated with
the two different domains that can co-exist. Thus at h = 0 any value of M
between these minima is possible and corresponds to an appropriate mixture of
domains. The above analysis relies on the smoothness and differentiability of all
functions A, h,M and can never directly address the mixed-phase system.
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A4 ≤ 0

As T decreases A(M) behaves qualitatively differently depending on whether
A4 > 0 or A4 ≤ 0:

Hence the system passes from a second-order transition to a first-order transition
as A4 changes sign and becomes negative.
The stationary points are at M = 0 and at

M2 =
[

−A4 ±
(

A2
4 − 4A2A6

) 1
2

]

/2A6 ≡M2
±.

The + sign gives the minima and the − sign the maxima.
T0 is determined by A(M) = 0 having a double root at M = ±M+ (note that A0

is set to zero so that A(0) = 0 is the minimum for T > T0). The solution is

A2 =
3

16

A2
4

A6

,

and at the transition

(

∆M2
)2

=M2
+ = −

3

4

A4

A6

Thus the point T = Tc, A4 = 0 separates the first-order line from the second-order
line: this is a tricritical point. To see the tricritical point these two parameters
have to take these special values and this requires tuning two external fields in
the phase diagram.
In the space of physical fields, denoted by T and g (e.g., g can be identified with
a chemical potential controlling the relative abundances in a two component
system), the phase diagram has the form:
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Alternaltively the phase diagram in (A2, A4) space takes the form: vskip 5 truemm

(i) Both trajectories (a) and (b) exhibit a second-order transition.

(ii) Trajectory (a) passes through the TCP and lies entirely within the tricritical
region. The transition is characterised entirely by the properties of the TCP,
and all critical exponents are tricritical ones.

(iii) Trajectory (b) exhibits an ordinary second order transition. However, it
starts in the tricritical region and so initially the divergence of the relevant
quantities is controlled by the TCP. Eventually it passes into the critical
region and the transition is characterised by the line of ordinary critical
points and the critical exponents that are given above.

In other words we only see a transition controlled by the TCP when we apporoach
along a trajectory lying in the tricritical region. For trajectories that pass from
one region to another we see a change in the critical behaiviour. This change is
characterised by crossover exponents.
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At the TCP A4 = 0, and so we have

|M | =
∣

∣

∣

∣

A2

A6

∣

∣

∣

∣

βt

with βt =
1

4
.

New exponents can be defined:

(T0 − Tc) ∼ (−A4)
1
ψ with ψ =

1

2

∆M ∼ |A4|
βu with βu =

1

2
,

where ∆M is the discontinuity in M across the first-order line (A4 < 0).
then for small A4 we can write

|M | =
∣

∣

∣

∣

A2

A6

∣

∣

∣

∣

βt

m(x),

x =
A4

2|A2|
1
2A

1
2
6

To see tricritical behaviour along a trajectory we clearly need x small, i.e.,

A2
4 ≪ 4|A2|A6.

This defines a parabola in the (A4, A6) plane separating the tricritical from critical
regions. This is shown on the figure. In the space of physical parameters it
translates into a similar shaped curve defining the two regions controlled by the
TCP and ordinary critical points respectively.

The general theory of continuous phase transitions can be encoded in terms of
scaling functions and relies on dimensional analysis together with some assump-
tions about the behaviour of the scaling functions for small argument. If naive
or engineering dimensions are used this is generally a recoding of Landau the-
ory but is often used to describe the behaviour of the relevant thermodynamic
variables as a function of the actual external fields and hence parametrises the
experimental observations.
Add a magnetic field, h, with contribution to the free energy of −hM . Then we
can always write

A =
|A2|

3
2

A
1
2
6

F





A4

2|A2|
1
2A

1
2
6

,
hA

1
4
6

|A2|
5
4



 .

The point is that the equilibrium free energy, A, can always be written in terms
of dimensionless ratios in this way. As before assign dimension (−1) to M and
dimension d to A, and then An has dimension (d+n). The above expression is then
a general way of writing the dependence of A at equilibrium on the coefficients
A2n in terms of a scaling function, F . Note that since A6 is always taken as
positive it causes no problem in the denominators.
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We now compare with a standard form parametrising A near the TCP:

A = |T − Tc(g̃)|
2−α F

(

g̃

|T − Tc(g̃)|φ
,

h

|T − Tc(g̃)|∆

)

,

where g̃ ∝ A4, and thus measures the distance from the TCP along the tangent
to the critical line at the TCP. Note that g̃ has been substituted for the field g
as the second independent external field: the critical line is thus parametrised as
Tc(g̃). The TCP then is at position (0, Tt) in the (g̃, T ) plane where Tt = Tc(0).
Labelling the critical exponents at the TCP by suffix, t, we clearly have

αt =
1

2
, φt =

1

2
, ∆t =

5

4
.

The following examples clarify the interpretation.

(i) h = 0, g̃ = 0, T → Tt such that g̃
|T−Tt|φt

≡ x is fixed. Then

A = |T − Tt|
3
2F (x, 0) with F (0, 0) finite.

We see tricritical behaviour and since g̃ ∼ |T − Tt|
φt the trajectory lies in

the tricritical region. φt is the cros-over exponent.

(ii) h→ 0, g̃ fixed, T → Tc.

A = |T − Tc|
3
2 F

(

g̃

|T − Tc|
1
2

, 0

)

.

the argument of F is not under control and so we rearrange the expression:

A =
|T − Tc|

2

g̃
G





|T − Tc|
1
2

g̃
, 0



 ,

where G(z, 0) = zF (1
z
, 0) and G(0, 0) is finite and non-zero. This property

of G is an assumption in the general theory and could be violated. It does
follow from the standard Landau analysis and hence if it turned out to be
false in an experiment it would signal a breakdown of the Landau theory.
The goal then would be to rescue the dimensional analysis approach by
assigning values to the dimensions of the parameters different from the
naive ones but which render the scaling functions F and G well behaved
for small argument.

In this case we find that A shows the normal critical behaviour associated
with an ordinary critical point, namely

A ∼ |T − Tc|
2−α with α = 0.

(iii) T = Tt, g̃ 6= 0, h 6= 0

A = lim
T→Tt

|T − Tt|
2−αt F

(

g̃

|T − Tt|φt
,

h

|T − Tt|∆t

)

,
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but A remains non-zero for h 6= 0 and we must be able to rewrite A in the
limit as

A = h
2−αt
∆t J

(

g̃

h
φt
∆t

)

,

i.e., F must have a singularity that cancels the external factor of |T−Tt|
2−αt .

Thus

A = h
6
5 J

(

g̃

h
2
5

)

.

If we assume J(0) is non-zero and finite then at the TCP

A ∼ h
6
5 and M = −

∂A

∂h
∼ h

1
5 ⇒ δt = 5.

This result can be derived much more directly from the Landau theory: at
T = Tt both A2 and A4 are zero and so we can write

A = −hM + A6M
6.

Thus we find that

∂A

∂M
= 0 ⇒ M ∼ h

1
5 .

However, it is important to see how the parametrisation in terms of scaling
functions works, and, as has already been remarked, this form of parametri-
sation is more general than the naive Landau theory: the assumption that
F (0, 0) etc. are non-zero and/or finite breaks down when Landau theory
ceases to be valid.

A summary of the critical indices is

A ∼ |t|2−α M ∼ (−t)β χ ∼ |t|−γ M ∼ h
1
δ cross-over

α β γ δ φt

CP 0 1
2

−1 3 1
2

TCP 1
2

1
4

−1 5 1
2

(T0 − Tc) ∼ |A4|
1
ψ ψ =

1

2

∆M ∼ |A4|
βu βu =

1

2
.

To finish this section we look in general at the Landau model with one parameter.
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Let the thermodynamic potential be Ψ and the order parameter x. Then

Ψ = a0 + a1x+ a2x
2 + . . . x2q.

We assume that the coefficient of the highest order term is 1. This means that
higher order terms will not affect the phase structure since the coefficient of this
term will not be allowed to vanish at any point in that part of the phase space
in which we are interested. In addition this highest power is even. This ensures
stability, i.e., Ψ has a global minimum characterising equilibrium.
The ai are thermodynamic field variables which span the phase space, Y , and
for a given choice of the ai the stable thermodynamic state is identified with the
value of x which minimises Ψ. Choose a0 such that this minimum is always at
Ψ = 0: this simply fixes the origin of Ψ. Then we can write

Ψ =
q
∏

j=1

[

(x− bj)
2 + dj

]

,

where ∀j the bj are real and the dj are real and non-negative. However, at least
one of the dj is zero since a0 has been chosen appropriately. Then Ψ can be
represented by the configuration of a set of points (bj, dj) in the upper half of the
(b, d) plane. Consider the following examples.

(i) m-phase coexistence

The minimum of Ψ occurs for m distinct values of x. These are identified
with the m coexisting phases and it corresponds to m of the dj being zero.
In general this requires (m − 1) constraints on the dj and hence the man-
ifold of m-phase coexistence has codimension κ = m − 1. For m = 2 the
configuration takes the form:

(ii) A critical point

A critical point occurs if two of the dj are zero and the corresponding bj
coincide:
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For this configuration

Ψ = (x− b)4 + α5(x− b)5 + . . . .

There is no quadratic term (x−b)2 and hence have a second order transition.
This is a more general situation than before where we imposed symmetry
under x→ −x for simplicity.

The additional constraint on the bj means that κ is one more than for two
phase coexistence, i.e., κ = 2.

Remarks

(a) All points ofm-phase coexistence can be continuously transformed into
each other: inspect diagrams of the kind shown in (i) above. Hence
they all lie on one manifold.

(b) There is only one manifold of critical points. This is clear from (ii)
above.

(iii) Critical end-points

or alternatively
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It is not possible to pass continuously between these two diagrams and
hence there are two distinct manifolds of critical end-points separated by a

(iv) Tricritical point

This point has κ = 4: two constraints occur because there are three coexist-
ing phases (i.e., m = 3 ⇒ (m− 1) constraints), and two further constraints
arise because of the requirement that the relevant bj coincide. Howver, κ is
just the number of such constraints.

(v) Multicritical points of order r

r of the dj are zero and the corresponding bj coincide. thus

κ = (r − 1) + (r − 1) = 2r − 2.

clearly we can determine how the manifolds fit together by following the
flow of points in (b, d) space as the ai vary.
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4 The Partition Function and Field Theory

The partition function Z is defined by

Z =
∫

{dφ}e−βH(φ)

where φ(x) is a generic field degree of freedom and β = 1/kT . H(φ) is the
Hamiltonian given by

H(φ) =
∫

Λ−1
dx H(φ(x))

whereH(φ(x)) is the Hamiltonian density.Λ is the large momentum cut-off which,
for a lattice of spacing a, is Λ = 2π/a. In this case the integral will be a sum over
all sites of a discrete Hamiltonian density. The crucial point is that there will,
in general, be a cut-off of some kind.
We shall assume that the coefficients in H depend only on the volume, V , of
the system. Then, for a given temperature T and volume V of a subsystem the
equilibrium probability density for finding the subsystem with field configuration
φ(x) is

p(φ) =
1

Z
e−βH(φ).

Then the entropy S is given by

S = −k
∫

{dφ}p(φ) log(p(φ))

= −k
∫

{dφ}
1

Z
e−βH(φ) (−βH − log Z )

= k (βU + log Z ) ,

where

U =
1

Z

∫

{dφ}H(φ)e−βH ≡ internal energy.

Thus

kT log Z = −U + TS = −V F,

and hence

F = −
1

βV
log Z .

F is the thermodynamic potential appropriate for T and V as independent vari-
ables.

We are interested in the macroscopic properties of the system and so we re-express
Z in terms of a macroscopic variable φ̂(x). This is our “guess” for the order
parameter, but it could be that it will not reveal all the possible phases of the
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system. We are trying to pick out the collective coordinates on which the long-
range/low-momentum physics depends. For a scalar field system this is not too
difficult but when the field has internal degrees of freedom it is much harder.For
example, both the phenomena of superconductivity and He3 superfluidity have
spin-1

2
fundamental fields which pair to form spin-0 bosons which condense. BUT

in the superconductor this pairing is in the 1S0 state whereas in He3 it is in the
3P0 state. Hence different choices must be made in these two cases.
We can choose

φ̂(x) =
1

LD

∫

v
dx′ φ(x′),

where v is a volume centred at x with v = LD ≫ aD.
Alternatively

φ̂(x) =
∫

|p|≤Λ̃≪Λ

dDp

(2π)D
eipx φ̃(p).

Here φ̂(x) is composed of the low-momentum degrees of freedom only : Λ̃ = 2π/L.
The cut-off is now Λ/L and hence it is possible to define the field theory for φ̂ on
a lattice of spacing L. Then

e−βV F =
∫

dφdφ̂ δ
(

φ̂− φ̂(φ)
)

e−βH(φ)

=
∫

dφ̂ e−βH(L,φ̂).

Suppose, for example,

H(φ(x)) =
1

2
(∇φ)2 +

1

2
m2

0φ
2 +

1

4!
g0φ

4 . . .+
1

n!
gnφ

n,

where n is taken as even and where m2
0, gn are the bare or microscopic coupling

constants; i.e., they parameterise field interactions on a lattice of spacing a =
2π/Λ. H(L, φ̂) is much more appropriate to our needs since the unit of length is
now L≫ a. Write

H(L, φ̂) =
1

2
Z−1(L, T )(∇φ̂)2 +

1

2
m2(L, T )φ̂2 +

1

4!
g(L, T )φ̂4 + . . .+ (∇φ̂)4 + . . .

Note that the kinetic term no longer has unit coefficient. Generally at this stage
it is convenient to rescale φ̂ to make this particular coefficient unity:

φ̂→ Z
1
2 (L, T )φ̂.

However, we will not do this rescaling for the moment.
Typically as L becomes large enough

Z−1(L)(∇φ̂)2 ∼
Z−1(L)

L2
φ̂2 ≪ m2φ̂2.
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Hence the effective Hamiltonian is insensitive to ∇φ̂ and so φ̂ can be treated as
a constant. Then

e−βV F =
∫

dφ̂ e−V βH(∞,φ̂),

H =
1

2
m2(∞, T )φ̂2 +

1

4!
g(∞, T )φ̂4 + . . .

We have integrated out over all scales and produced renormalized coupling
constants and an effective Hamiltonian depending on φ̂.
Now

∫

dx e−V S(x) = e−V S(x0)
∫

dξ e−V [ 1
2
S′′(x0)ξ2 + ...]

= e−V S(x0)
∫

dξ e−
1
2
V S′′(x0)ξ2 [1−

1

4!
V S(4)ξ4 + . . .],

= e−V S(x0)
(

2π

V S ′′

)

1
2

[

1−
1

4V

S(4)

(S ′′)2
+ . . .

]

,

where S ′(x0) = 0

Hence

F = H(∞, φ̂0) + O

(

log V

V

)

,

where φ̂0 is the global minimum of H(∞, φ̂). This is Landau’s method with
H(∞, φ̂) as the free energy. function BUT this procedure requires the limit
L → ∞ to be under control. In particular Landau assumes that m2(∞, T ) is
analytic in T . Then all that the integration over scales has done is to fix the
value of Tc. This assumption is wrong for D ≤ Dc and Landau’s method fails.
Note that φ̂0 is the analogue of the magnetisation: it is the order parameter
and can be measured in an experiment.

Since it is the limit L→ ∞ which causes the trouble let us investigate calculating
F with L finite and identify the source of the problem.
Let S(φ̂) = βH(L, φ̂) and define φ̂0 by

(

∂S(φ̂)

∂φ̂(x)

)

φ̂=φ̂0

= 0.

Then

e−βV F = e−S(φ̂0)
∫

dψ e−
1
2
S′′ψ2 + ... ,

where

S ′′ψ2 ≡
∫

dy dz

(

∂2S

∂φ̂(y)φ̂(z)

)

φ̂=φ̂0

ψ(y)ψ(z).
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Assuming φ̂0 is a constant independent of position and taking logs we find

F = H(L, φ̂0) + log
∫

dψe−
1
2
S′′ψ2 + ... .

In H the mass and couplings are analytic in T for fixed L. (This is certainly
plausible and is a reasonable assumption). The integral is calculated using the
loop expansion. Landau assumes that these loops just change Tc and that for
L large enough they may be neglected keeping only the first term in F above.
To illustrate how problems occur consider the effect of an external constant field
J .

HJ(φ) = H(φ)− J
∫

dx φ(x) .

The induced magnetisation is

< φ >J=
1

ZJ

∫

dφ φ(0)e−βHJ (φ) ,

and the susceptibilty is

χ =

(

∂ < φ >J

∂J

)

J=0

= β
∫

dx < φ(0)φ(x) >c .

That is, the integral over the connected two-point function

< φ(0)φ(x) >c=< φ(0)φ(x) > − < φ(0) >< φ(x) > .

The second term arises from differentiation of ZJ in the denominator.
We now define the smoothed field φ̂(L, x) including a renormalization to keep the
coefficient of 1

2
(∇φ)2 in H(L, φ̂) to be unity. Of course, we must remember this

rescaling if we re-express results in terms of the actual magnetisation. Then

φ̂(x) =
Z

− 1
2

1 (L)

LD

∫

L
dx′ φ(x′),

χ = βZ1(L)
∫

dx < φ̂(0)φ̂(x) >c .

We define

ĜL(p) =
∫

dx < φ̂(0)φ̂(x) >c e−ipx ,

Γ̂L(p) = ĜL(p)
−1.

Γ̂L is the truncated two-point function.
[ In general, the n-point function Gn(p1, . . . ,pn) is defined by

Gn(p1, . . . ,pn) =
∫

dx1 . . . dxn < φ(x1)φ(x2) . . . φ(xn) >c e−ipi·xi ,

and the truncated n-point function is defined by

Γn(p1, . . . ,pn) =
Gn(p1, . . . ,pn)

G(p1)G(p2) . . . G(pn)
.



4 THE PARTITION FUNCTION AND FIELD THEORY 30

Gn contains the denominator of the RHS as a factor and Γn is often a more useful
quantity with which to work.]
Then we have

χ−1 =
1

βZ1(L)
Γ̂L(0) .

From now on we will absorb a factor of β
1
2 into φ̂, i.e., replace

φ̂→ β− 1
2 φ̂ .

then m2 → m2 , g → βg etc. and

χ−1 =
Γ̂L(0)

Z1(L)
.

To calculate Γ̂L we need to use perturbation theory.

4.1 The Perturbation Expansion

We start with the definition

< φ(0)φ(x) >=
1

Z

∫

dφ φ(0)φ(x) e−S(φ) .

Let

S(φ) =
∫

dx
1

2
(∇φ)2 +

1

2
m2φ2 +

1

4!
gφ4 ,

where m2 can be negative. The situation m2 < 0 corresponds to spontaneous
breaking of the symmetry φ → −φ in the bare Hamiltonian. However, we shall
see that the effective mass is positive once loop corrections are included.
In order to be able to perform the loop expansion we write

S(φ) =
∫

dx
1

2
(∇φ)2 +

1

2
µ2φ2 +

1

2
(m2 − µ2)φ2 +

1

4!
gφ4

S0(φ) =
∫

dx
1

2
(∇φ)2 +

1

2
µ2φ2,

and choose µ2 > 0.
Then with

Z =
∫

dφ e−S0(φ) e−
∫

dx 1
2
(m2−µ2)φ2 + 1

4!
gφ4 ,

we have

< φ(0)φ(x) >

=
1

Z

∫

dφ φ(0)φ(x) e−S0(φ) e−
∫

dx 1
2
(m2−µ2)φ2 + 1

4!
gφ4

=
1

Z

∫

dφ φ(0)φ(x)
[

1−
∫

dx
1

2
(m2 − µ2)φ2 +

1

4!
gφ4 + . . .

]

eS0(φ)
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This consists of a sequence of gaussian integrals which are best done in momentum
space. they take the form

∫

dφ e−
∫

dydz φ(y)Q(y−z)φ(z) φ(0)φ(x)

= A (detQ)−
1
2 Q−1(x)

and
∫

dφ e−
∫

φQφ φ(0)φ(x)
∫

dz gφ4(z)

= gB (detQ)−
1
2

∫

dzQ−1(z)Q−1(x− z)Q−1(0) .

The denominator cancels the (detQ)−
1
2 leaving a calculable combinatorial coeffi-

cient. In momentum space we have the diagram expansion as follows

G(p) =
∫

dx < φ(0)φ(x) >c e−ipx

= Q̃−1(p)− Q̃−1(p)(m2 − µ2)Q̃−1(p)− CgQ̃−1(p)
∫ dDq

(2π)D
Q̃−1(q)Q̃−1(p) + . . .

or

Γ(p) = Q̃−1(p) + (m2 − µ2) + Cg
∫ dDq

(2π)D
Q̃−1(q) + . . .

Q̃−1(p) is the bare Feynman propagator: Q̃−1(p) = (p2 + µ2)−1.
Then

The expansion shown for Γ is exact to O(g) but corresponds to a sum over selected
1-particle irreducible graphs in G. this can be seen as follows.

G =
1

Γ
=

1

Q+ δm2 + Σ
,

where Σ represents 1-particle irreducible (1PI) diagrams. This means that
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they cannot be separated into two pieces by cutting one line only. E.g., Expand

the above expression to give

G =
1

Q
−

1

Q
(δm2 + Σ)

1

Q

+
1

Q
(δm2 + Σ)

1

Q
(δm2 + Σ)

1

Q
+ . . .

Diagramatically we have

To O(g) :

Note that Γ is truncated because it contains no propagator factors, Q̃−1, for
external legs.

The expansion for Γ(p) can be improved by summing over all bubble insertions

on the internal loop. Then
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The Feynman rules for constructing the diagrams are

1
p2+m2 for each propagator line

∫ dDq
(2π)D

for each closed loop

δD(
∑

pi) momemtum conservation at each vertex

factor C = 1
S

Where S is the number of symmetry operations that leave the graph unchanged,
for example

Note that disconnected contributions to the numerator, e.g.,

are cancelled by terms in the denominator. Hence, only get connected graphs
for expansion of G. For our smoothed theory we have

m2 ≡ m2(L, T ).

Remember that m2 is not necessarily positive. Then

=
ZL(p

2, T )

p2 +m2(∞, T )
.

Here m2(∞, T ) = ξ−2(T ) and is positive. The loop correction renormalizes m2

additively and the resulting effective mass is positive. Now

χ−1 =
Γ̂L(0)

Z1(L)
=

m2(∞, T )

Z1(L)ZL(0, T )

χ−1 vanishes at T = T0 which is given by the vanishing of the renormalized mass:

lim
T→Tc

m2(∞, T ) = 0.

Note that in general limT→Tc ZL(0, T ) = 0 as well but that the numerator domi-
nates. In fact for our present discussion

ZL = 1 +O(g2) ,
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and hence to O(g) ZL = 1.
Then

m2(∞, T ) = m2(L, T ) +
1

2
g
∫ dDp

(2π)D
1

p2 +m2(∞, T )
+ . . . .

Note that the bubble summation removed all reference to µ2. In fact we can
see that by choosing µ2 = m2(∞, T ) in the first place we automatically get the
improved formula from the one-loop expression. the coefficient of 1

2
comes from

the symmetry factor as described above. Using m2(∞, Tc) = 0 we write

m2(∞, T ) = m2(L, T )−m2(L, Tc) +
1

2
g
∫ 2π

L dDp

(2π)D

[

1

p2 +m2(∞, T )
−

1

p2

]

= At−
1

2
gm2(∞, T )

∫ 2π
L dDp

(2π)D
1

(p2 +m2(∞, T ))p2
+ . . .

Where t = (T − Tc)/Tc.
We consider two cases:

D > 4 The integral is dominated by large p and is finite in the limit m2 → 0.
Then

m2(∞, T ) = At+ Bm2(∞, T ).

This is consistent with the Landau behaviour

m2(∞, T ) = Ct

D < 4 The integral is sensitive to low p and is Infra-Red divergent unless m2 >
0:

m2(∞, T ) = At+ BmD−2(∞, T )

This is clearly inconsistent with the Landau assumption: the integral is
important. IR divergences invalidate Landau’s assumption.

D = 4 A marginal case with IR logarithmic corrections

m2(∞, T ) = At+ Bm2 logm2.

Get Landau behaviour modified by logs.

Hence Dc = 4 and for D ≤ 4 IR effects destroy mean-field predictions.
This theory applies to an ordinary critical point in Landau’s theory: the coeffi-
cient of φ2 vanishes. If, for some reason, the φ4 were absent and the interaction
started at the gφ6 term then the loop contribution would be

∼
∫ 2π

L dDp

(2π)D
1

p2 +m2(∞, T )

∫ 2π
L dDq

(2π)D
1

q2 +m2(∞, T )
.
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Subtracting off the value at m2 = 0 and isolating the most IR divergent integral
gives

∫ 2π
L dDp

(2π)D

∫ 2π
L dDq

(2π)D
1

p2(p2 +m2(∞, T ))(q2 +m2(∞, T ))
.

There are no IR problems for 2D − 6 > 0, i.e., D > 3. Hence in this case
Dc = 3. In Landau’s theory this situation corresponds to a tricritical point: the
coefficients of φ2 and φ4 vanish.
In general, for interaction φ2n we find

(n− 1)Dc − 2n = 0,

or

Dc =
2n

n− 1
.

This interaction is relevant only for critical points of order n. For D = 2 all

critical points show anomalous behaviour but forD = 3 only critical and tricritical
points are anomalous, and even then the corrections to mean-field predictions at
the tricritical point are only logarithmic.

It is important to understand heuristically or phenomenologically what is hap-
pening before actually doing detailed calculations. First we define the correlation
length, ξ, a bit more explicitly than before.
For x≫ a

< φ(0)φ(x) >c∼ e−|x|/ξ .

In fact if x = (x0, . . . , xD−1) then

∫

dx1 . . . dxD−1 < φ(0)φ(x) >c→ Ce−x0/ξ ,

as x0 becomes large. This is how we might calculate ξ on a computer.
[ Note

∫

dp
eipx

p2 +m2
= Ae−m|x| .

]

Now, φ̂(L) averages φ over blocks of size LD, but if D ≤ Dc M(L) = Z
1
2
1 (L)φ̂(L)

cannot be identified with the magnetisation of the bulk volume, V , since there
are still fluctuations in the system of wavelengths greater than L which cause
these blocks to interact. In other words a block of size LD is not big enough to
be a good model of a larger system. Only for L≫ ξ will this be true. For D ≤ Dc

there are important fluctuations on all scales L < ξ, and only for D > Dc are
these fluctuations suppressed and Landau’s theory works.
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(1) In the theory with L = ξ we do not expect significant loop corrections.
Hence

< φ(0)φ(x) >c∼ e−m(ξ,T )|x| ,

which identifies ξ−1 = m(ξ, T ).

If we postulate that m(ξ, T ) ∼ ξσ · (T − Tc), then we find

ξ ∼ t−ν , ν =
1

1 + σ
.

Also

χ−1 = Γ(p = 0) ∼
1

Z1(ξ)
m2(ξ, T ) .

Then if Z1(ξ) ∼ ξρ ≡ m−ρ we get

χ ∼ t−α , α = ν(ρ+ 2) .

(2) In general we have

G(x) ≡ < φ(0)φ(x) >c

= C(a)
ξρ

(|x| ξ)(D−1)/2
e−|x|/ξ , a≪ ξ ≪ |x| ,

= C ′(a)
1

|x|2∆φ
, ∆φ = (D − 1− ρ)/2 , a≪ |x| ≪ ξ ,

where A is the lattice spacing, i.e., Λ = 2π/a is the UV cut- off. In all we
do Λ is finite but Λ ≫ m and for all momenta p of interest Λ ≫ |p| (i.e.,
a≪ |x|). Hence we are always working in the limit of very large cut-off.

(a) It is important to realise that ξ sets the scale and not a, otherwise the
correlators would be badly behaved as ξ/a → ∞ and/or |x|/a → ∞.
This is the basic assumption of the scaling hypothesis.

(b) “Naive” dimensional analysis must work.

[∫

dx (∇φ)2
]

= 0 ⇒ [φ] =
1

2
(D − 2) .

Where [] signifies the dimension of the enclosed quantity in units of
momentum. Hence

[< φφ >] = D − 2 .

Thus in the above expression for G(x) we must have

C(a) ∼ a2η , η = ∆φ −
1

2
(D − 2) .

η is the anomalous dimension of the field φ, and ∆φ is the scaling

dimension of φ.
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Now

χ =
∫

dx G(x) ∼
∫

dx
e−|x|/ξ

|x|2∆φ

⇒ χ ∼ ξD−2∆φ .

Comparing with the alternative expression for the behaviour of ξ in (1)
above we find the scaling relation

α = ν(D − 2∆φ) .

(3) The results of (2) can be seen in a different way. We have the general
parametrization

G(p) =
Z(p, ξ)

p2 +m2(ξ, T )
.

We were concerned with p = 0 earlier (χ = G(p = 0)), but now instead
consider Λ ≫ |p| ≫ m. Because Z is dimensionless we have

Z ∼ (ap)−ρ
′

f

(

m

p

)

p≫ m ≡ ξ−1 ,

where p ≡ p. Also from above in (1) we have

Z ∼ (am)−ρg
(

p

m

)

p≪ m ≡ ξ−1 .

This is because Z ∼ Z1(ξ) ∼ ξρ for p = 0.

Note that f and g do not depend explicitly on (ap) or (am) for the reasons
outlined in (2a) above: because of the scaling hypothesis. Then

(a) Z(p = 0,m) is non-zero and finite for m 6= 0.

Z(p,m = 0) is non-zero and finite for p 6= 0.

(b) the scaling hypothesis asserts that m (i.e. ξ) sets the scale and not Λ
(i.e. not a). Hence the above scaling forms must be valid with f(0)
and g(0) non-zero and finite. It then follows that

ρ = ρ′ ,

g(z) =
(

1

z

)ρ

f
(

1

z

)

.

By comparing powers of a we also get

ρ = −2η.

Substituting ρ in terms of α from part (1) gives the scaling relation derived
in (2).
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The important thing to notice in all of this is that each quantity in which we are
interested depends on a in a simple and special way. Namely, a appears raised
to a power as a multiplicative factor only: a does not appear as part of an
argument of any of the functions. These function depend only on the long range

observables. Since a has dimensions it follows that whilst “naive” dimensional
analysis holds when including the factor depending on a, the dimension of the
function it multiplies is not constrained. This means that if we concentrate on the
dimensions of this function (e.g., f or g above) the contributions to its dimension
from the observable quantities can add up to something other than the “naive”
dimension, i.e. the anomalous dimension. Since, in any given system a is
fixed the anomalous dimension is the most natural dimension with which to be
concerned. After all, we can vary ξ by varying T but a is, of course, unchanged. It
is the object of most analyses of critical phenomena to calculate these anomalous

dimensions.

4.2 The Effective Potential and the Legendre Transform

Consider the partition function in the presence of an external source J:

Z(J) =
∫

dφ e−S(φ)+Jφ .

Denote S(φ, J) = S(φ)− Jφ.
Then

Z(J) = e−S(φ(J),J)
∫

dψ e−
1
2
S
(2)
J
ψ2 +... ,

where
(

δS

δφ

)

(φ, J) = 0 when φ = φ(J) ≡ φ(x; J),

and

S
(2)
J ψ2 =

∫

dydz

(

δ2S

δφ(y)δφ(z)

)

φ=φ(J)

ψ(y)ψ(z) ,

ψ(y) = φ(y)− φ(y; J).

Space arguments will be suppressed wherever possible.
Thus

logZ(J) = −S(φ(J), J) + log
∫

dψ e−
1
2
S
(2)
J
ψ2 +... .

The integral generates loop corrections: this is the loop expansion. It is essen-
tially the same as the perturbation expansion we saw before except that here the
expansion is about the minimum of S(φ, J). Then we have terms of the form
∫

dψ e−
1
2
S
(2)
J
ψ2

e−
1
3!
S(3)(J)ψ3 −... =

∫

dψ e−
1
2
S
(2)
J
ψ2

(

1−
1

3!
S(3)(J)ψ3 − . . .

)

= A
[

det(S
(2)
J )

]− 1
2 (1 + . . .).
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We get a set of gaussian integrals which generate the loops. For example, the
1-loop contribution to logZ(J) is

−
1

2

[

det(S
(2)
J )

]

.

In general

< φ(x1) . . . φ(xn) >c=

(

δn logZ(J)

δJ(x1) . . . δJ(xn)

)

J=0

.

(See problem sheet 2a for an explicit example of the 1-loop calculation.)
The tree diagrams are generated by −S(φ(J), J). Once we understand how this
works we can verify the preceding statements. Consider the approximation

W (J) ≡ logZ(J) ≈ WT (J) = −S(φ(J), J) .

φ(J) satisfies

(

δS

δφ

)

φ=φ(J)

= 0 .

This is the field equation and φ(J) is the classical solution. Then

δWT (J)

δJ
= −

δS

δφ(J)

δφ(J)

δJ
+ J

δφ(J)

δJ
+ φ(J)

= φ(J).

This field equation is explicitly of the form

(−∇2 +m2)φ(x; J) +
1

6
gφ3(x; J) = J(x) .

Clearly all derivatives ofW with respect to J can be generated from the previous
equation once this classical equation has been solved. In perturbation theory
we have, in momemtum space

φ(p; J) =
J(p)

p2 +m2
−

g

6(p2 +m2)

∫

dx φ3(x; J) e−ipx .

Or, diagramatically

Iterating this equation gives
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All momenta are integrated with momentum conserved at each vertex. This is just
the tree expansion of W (J). It is generated by the classical field solution,
φ(J): i.e., there are no h̄ factors.
E.g.,

(

δ4WT (J)

δJ(p)δJ(q1)δJ(q2)δJ(q3)

)

J=0

= gδ4(p+ q1 + q2 + q3) ,

This is the tree contribution to the 4-point vertex.
Now, two important points

(1) If WT (J) is the tree approximation to W (J) as outlined above, then WT (J)
is the Legendre transform of S(φ). That is, it follows directly from the
above discussion that

WT (J) = max
φ

(Jφ− S(φ)) ,

which is the Legendre transform of Sφ).

Then define

SH(φ) = max
J

(Jφ−WT (J)) .

Clearly SH(φ) is not a function of J , i.e.,

∂SH
∂J

= 0 .

If S(φ) is convex then SH(φ) = S(φ), otherwise SH(φ) is the convex hull

of S(φ):
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This subtlety has a lot to do with the Maxwell construction and domains
associated with a first order transition. It applies to a complete study of
the symmetry broken phase but we shall not pursue it further here.

(2) For φ = M , a constant, S(M) was the effective potential which is min-
imised to give Landau’s approximation to the free energy. Remember the
form of S(M) with an assumption of analyticity of the coefficients in T is
what was needed: loops just modify Tc. Hence Landau’s method is clas-

sical: it corresponds in form to tree diagrams. In general, SH(φ) is the
effective action of the classical or Landau theory. Note that S(φ) is ex-
actly the action which appears in the expression for Z

Z =
∫

dφ e−S(φ) .

That is, this S(φ) is the Legendre transform of WT (J). There are some
niceties concerning whether one should use S or SH here, but we will not
discuss this further.

W (J) generates the connected diagrams. Then schematically it must have the
diagramatic form
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W (J) =

The vertices of the trees are the 1PI diagrams of the theory, i.e., they contain
sums over all loop contributions but thay cannot be separated into two disjoint
pieces by cutting one line only.
We can generate these tree diagrams with an appropriately chosen effective

action. This is the effective action of the full theory. It is the Legendre

transform of W (J):

SE(φ) = max
J

(Jφ−W (J)) ,

SE(φ) =
∑

n

1

n!

∫

dx1 . . . dxn Γn(x1 . . .xn)φ(x1) . . . φ(xn) .

Hence SE(φ) generates the 1PI diagrams of the theory.
SE(φ) is now treated as a classical action since it is all that is needed to generate
the whole theory by its tree expansion. The equilibrium free energy is

F =
−W (0)

βV
,

and

W (0) = max
φ

(Jφ− SE(φ))J=0 ,

= max
φ

(−SE(φ)) .

Hence the free energy function F (φ) is identified as

F (φ) =
1

βV
SE(φ) ,
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and equilibrium corresponds to minimising F (φ) with respect to φ. This is like
the Landau method but we cannot assume that the effective coupling constants
in SE are analytic in T : they are only for D > Dc.
Note

(1) SE(φ) is always convex and, in fact, is the correct effective action describ-
ing the system for all phases.

(2) If J is a constant function then the magnetisation is given by

M =
dW

dJ
⇒

φ(J) = M .

In general, J(x) and M(x) = dW
dJ(x)

are conjugate variables. This is also
shown by how they appear in the Legendre transformation. This is, of
course, the same relationship that they have in thermodynamics.

4.3 The Ising model

The Hamiltonian is given by

−βH = SiVijSj + JiSi .

Si is that variable at the i-th site with Si = ±1. Ji is the external field and Vij
contains the couplings between neighbours: it need not be nearest neighbour.
Introduce Xi ∈ R and note the identity

∫

∏

dXi e
− 1

4
XiV

−1
ij

Xj+SiXi

= Const · eSiVijSj .

Then

Z(J) =
∑

Si

∫

∏

dXie
− 1

4
(Xi−Ji)V

−1
ij

(Xj−Jj)+SiXi .

Now sum on Si

∑

S=±1

eSX = 2e(logcoshX) ≡ 2eA(X) .

Hence, ignoring all irrelevant multiplicative constants

Z(J) =
∫

∏

dXi e
− 1

4
(Xi−Ji)V

−1
ij(

Xj−Jj)+
∑

i
A(Xi) .

We calculate the free energy by steepest descent (i.e. by expanding about the
minimum of the exponent as we have done before) and keeping only the first term
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is equivalent to Landau theory: that is, to the tree approximation. Minimising
the action gives

1

2
V −1
ij (X̄j − Jj) =

∂A((̄Xi))

∂Xi

.

This defines X̄i which minimises the action. Thus in this approximation

WT (J) = logZ(J)

=
1

4
(X̄i − Ji)V

−1
ij (X̄j − Jj) +

∑

i

A(X̄i) .

But

Mi =
δ logZ(J)

δJi

= −
1

2
V −1
ij (X̄j − Jj) ,

and using the defining equation for X̄ above we get

Mi =
δA

δXi

(X̄i) = tanh(X̄i) .

(Remember, X̄ and M are both functions of J .)
To find the free energy function F (M) we take the Legendre transform of WT (J)

−βNF (M) = max
J

(J ·M−WT (J)) ,

where N is the number of sites. Then

βNF (M) = −VijMiMj +
1

2

∑

i

[(1 +Mi) log(1 +Mi) + (1−Mi) log(1−Mi)] .

Note that βNF (M) in this approximation is the correct quantum action to be
used in the full theory which includes all loops. This is because it defines the
tree diagrams of the theory and hence gives all the bare vertices. the loops are
built up in the usual way from these vertices.
For constant magnetisation Mi =M and M small

βF (M) = −VM2 +
(1 +M)

2

(

(M −
M2

2
+
M3

3
+ . . .

)

+
(1−M)

2

(

(−M −
M2

2
−
M3

3
+ . . .

)

.

F is the free energy per site and V =
∑

j V0j . Then

βF (M) = (
1

2
− V )M2 +

1

12
M4 + . . .

Since V = V (β) we have a second order transition at β = βc given by V (βc) =
1
2
.

In the simplest case

Vij = βκij⇒ βc =
1

2κ
, κ =

∑

j

κ0j.

Notes



4 THE PARTITION FUNCTION AND FIELD THEORY 45

(1) This is the mean-field approximation and we know that the critical expo-
nents are analytic only correct for D > Dc.

(2) The external field method together with the Legendre transform enabled us
to calculate the free energy as a function of the relevant order parameter,
M. Near the transition the Ising model can be described by a scalar field
theory with the full theory based on the action F (φ). F is the function de-
fined above by F (M) for general (i.e. not constant) M ( φ is identified with
M to make the correspondence clear). Thus we have found the action for a
scalar field theory which is, in every way, equivalent to the Ising model near
a continuous phase transition. This is the phenomenon of universality.

Universality: many models which have disparate descriptions on the mi-
croscopic scale exhibit the same critical properties with the same critical
exponents. Near critical points these models are descibed by the same field
theory and belong to the same universality class. Here we have found
that the Ising model and scalar field theory belong to the same universality
class.

(3) Even for D > Dc loop contributions will give corrections to βc. The 1-loop
correction to the tree-level effective action is given by 1

2
detF (2)(φ). This

contribution is the subject of example sheet 2a.

4.4 Calculation of the Critical Index

This section is concerned with the calculation of the critical index ν in the Ising
model. We work with φ4 field theory in D dimensions.

S(φ) =
∫

dx
1

2
(∇φ)2 +

1

2
m2φ2 +

1

4!
gφ4 + . . .

[

m2
]

= 2 [g] = 4−D ≡ ǫ .

We may imagine that we have obtained this action by integrating out the short
wavelength modes. In general all types of interaction are present. Clearly φ has
been renormalized to give the canonical form to the kinetic term. Alternatively,
we can accept that S(φ) has been generated from the Ising model by the trans-
formation described in the previous section. We note for interest that the Ising
model is identical to φ4 field theory in the limit m2 → −∞, g → ∞ such that
6|m2|/g = 1.
Suppose that we have integrated over all momemta p > Λ and that the effective
parameters are m2(Λ, T ) and g(Λ, T ). We shall also allow for multiplicative field
renormalization constant Z(Λ, T ). Now integrate over the next momentum slice.
Write

φ(x) = φ>(x) + φ<(x) .

φ> contains contributions from momenta in the range Λ− δΛ ≤ p < Λ.

φ< contains contributions from momenta in the range 0 ≤ p < Λ− δΛ.
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Then

Z =
∫

dφ<dφ> e−S(φ>+φ<) .

We do the integrals over φ> to get an action as a function of φ< only.

S(φ< + φ>) = S(φ<) + S(φ>) +
∫

dx
[

∇φ>∇φ< +m2φ<φ>
]

+
g

12

∫

dx
[

2φ3
<φ> + 3φ2

<φ
2
> + 2φ<φ

3
>

]

.

The term quadratic in the fields vanishes identically. Since in p-space φ> and φ<
have disjoint support

∫

dxφ>(x)φ<(x) =
∫

dpφ̃<(p)φ̃>(p) = 0 .

Then

Z =
∫

dφ< e−S(φ<)
∫

dφ> e−S(φ>) e−
g

12

∫

dx[2φ3<φ>+3φ2<φ
2
>+2φ<φ3>] .

As before we expand all exponentials of non-quadratic terms

Z =
∫

dφ< e−S(φ<)
∫

dφ> e−
1
2
(∇φ2>+ 1

2
m2φ2>) ·

[

1−
g

4!
φ4
> + . . .

]

·
[

1−
g

12
(2φ3

<φ> + 3φ2
<φ

2
> + 2φ<φ

3
>) +

g2

288
(2φ3

<φ> + 3φ2
<φ

2
> + 2φ<φ

3
>)

2 − . . .

]

.

The integrals over odd functions of φ< vanish and so will be omitted from now
on.
After the dφ> integrals have been done we are left with a polynomial in φ<
and its derivatives. We gather these terms up and absorb them into S(φ<) by a
redefinition or renormalization of the coupling constants.

The important one-loop terms and their diagrammatic representation are

−g
4

∫

dxφ2
>φ

2
<

1
4
φ2
<(x)

g2

32

∫

dxφ2
>φ

2
<

∫

dyφ2
>φ

2
<

1
16
φ2
<(x) φ2

<(y)

g2

36

∫

dxφ>φ
3
<

∫

dyφ3
>φ<

1
12
φ<(x) φ3

<(y)
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is the propagator of φ> and has support in p-space only for
Λ− δΛ ≤ p < Λ. The last of the terms above is zero since φ< has disjoint p-space
support from that of the intermediate propagator.
We can now read off the renormalizations of m2(Λ, T ) and g(Λ, T ) to 1-loop

m2(Λ− δΛ, T ) = m2(Λ, T ) +
g(Λ, T )

2

∫ Λ

Λ−δΛ

dDp

(2π)D
1

p2 +m2(Λ, T )
.

In momentum space we have for the 4-point function

g2

16

∫ dDq

(2π)D
φ̃2
<(q) Γ(q) φ̃

2
<(−q) ,

where

Γ(q) =
∫ Λ

Λ−δΛ

dDp

(2π)D
1

p2 +m2(Λ, T )

1

(p+ q)2 +m2(Λ, T )
,

with the restriction Λ− δΛ ≤ |p+ q| < Λ.
We can expand Γ(q) = Γ(0) + q2Γ′(0) + . . . and then the operator generated is

g2

16

[

Γ(0)
∫

dxφ4
< + 4Γ′(0)

∫

dx(φ<∇φ<)
2 + . . .

]

.

Note that new operators are generated as well as ones we are interested in.
It should be remarked at this point that the analysis of the higher dimension
operators generated in this way is not easy and is better approached by other
renormalisation group techniques which will be touched upon later. However,
there does exist work that has pushed the above style of analysis, i.e., momentum
thinning, successfully to the study of the role of such operators. To 1-loop we do
not encounter these difficulties. Also note that because the graph

is independent of q we do not generate the operator (∇φ<)
2 to 1-loop. More on

this later.
Then we find the equation for g

g(Λ− δΛ, T ) = g(Λ, T )−
3

2
g2(Λ, T )

∫ Λ

Λ−δΛ

dDp

(2π)D
1

(p2 +m2(Λ, T ))2
.

We note that from the equation for m2 the renormalization is positive. Hence
if we want

lim
Λ→0

m2(Λ, Tc) = 0 ,
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we require m2(Λ, T ) < 0: the “bare” mass is negative. The expansion is still fine
since it is only necessary that the gaussian exponent gives convergent integrals.
This demands only that

Λ2 > −m2(Λ, T ) ∀Λ .

It can be verified in what follows that this inequality is always respected.
We now rewrite the two renormalization equations in differential form in terms
of dimensionless quantities.

u2(b, T ) = Λ−2m2(Λ, T )

λ(b, T ) = Λ−ǫg(Λ, T ) ,

where b = log(Λ0/Λ) and ǫ = 4−D. Λ0 is the cut-off for the original theory.
Then we have the evolution equations

du2

db
= 2u2 +

ΩD

2(2π)D
λ

1 + u2

dλ

db
= ǫλ−

3ΩD

2(2π)D
λ2

(1 + u2)2
,

ΩD is the surface area of a unit sphere in D dimensions: Ω4 = 2π2.
In order to integrate these equations the propagator for φ< must take the canon-
ical form 1/(p2 +m2). In general, the renormalized action, SR(φ<) will be of the
form

SR(φ<) = S(φ<) +
1

2
δm2φ2

< +
1

4!
δgφ4

<

−
1

2
δ(log Z)(∇φ<)

2 +
1

4!
δg′(φ<∇φ<)

2 + . . .

Thus we must rescale the field to give the canonical quadratic part. Thus the
new field for the next iteration of the procedure is

φ(x) = (1−
1

2

d log Z

db
δb)φ<(x) .

This defines the renormalized field φ for finite b

φ(x, b) = Z− 1
2 (b, T )φ(x, 0) .

Now we have additional renormalizations of u2 and λ

u2R(b, T ) = Z(b, T )u2(b, T ) λR(b, T ) = Z2(b, T )λ(b, T ) ,

and then it follows that

du2R
db

=
d(log Z)

db
u2R + Z−1

(

du2

db

)

Z=1

dλR
db

= 2
d(log Z)

db
λR + Z−2

(

dλ

db

)

Z=1

.
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However, we have noted that to the order in which we are working,(1-loop),
Z = 1. Since we shall be expanding in ǫ this means that Z = 1 to O(ǫ) and
so d(log Z)/db ∼ O(ǫ2). Henceforth, we set Z = 1 above, and identify (uR, λR)
with (u, λ).
It is important to remark at this stage that the renormalization choices I am
making (e.g. defining the coefficient of the kinetic term to be unity), are not
forced on me by physics: they are convenient for the perturbative-style analysis.
Other choices may be necessary in more complex situations in order to reveal the
structure of more complex phase transitions in the most effective way.
The transformation takes the form

S(φ,m2, gn,Λ0)
integration

−→ S(Z− 1
2φ,m2(b), gn(b), e

−bΛ0)

field renorm.
−→ S(φ,m2(b), gn(b), e

−bΛ0) .

Here Z ≡ Z(b) and gn is the coupling associated with field monomial of order
n. This forms the major part of the renormalization group transformation to be
discussed later. The derived equations are a form of the renormalization group

flow equations for (u2, λ). Note that by dealing with dimensionless quantities

all explicit reference to the cut-off Λ disappears.

Consider a flow equation of the form

dλ

db
= β(λ) .

This equation has fixed points λ∗p where β(λ
∗
p) = 0, e.g.,

If λ∗0 < λ(0, T ) < λ∗2 then limb→∞ λ(b, T ) = λ∗1

If λ∗2 < λ(0, T ) < λ∗4 then limb→∞ λ(b, T ) = λ∗3

Fixed points λ∗p where β′(λ∗p) < 0 are Infra-Red attractive, and alternatively if
β′(λ∗p) > 0 the points are Ultra-Violet attractive.
Note that

(1) In statistical mechanics we are given the UV or bare coupling λ(0, T ),
and the IR or renormalized coupling is an IR point of β(λ).
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(2) In quantum field theory we are given the IR or renormalized coupling
λ(∞, T ): it is a renormalization condition from experiment or other low

energy condition. Since λ(∞, T ) is not generally a fixed point of β(λ) it
must be that the UV or bare coupling is a UV fixed point of β. (It should
be noted that although we have worked exclusively in Euclidean space it is
believed that the divergences are the same as for the Minkowski version of
the theory. This belief can be demonstated in perturbation theory.)

In our calculation we find the fixed points (u∗2, λ∗)

ǫ < 0 (0 , 0) trivial f.p. - IR attractive

ǫ > 0 (0 , 0) trivial f.p. - UV attractive

(−
ǫ

6
,

16π2

3
ǫ) non-trivial f.p. - IR attractive

It is believed that there are no others, not even at λ = ∞. This means for
quantum field theory that there is no UV fixed point to be associated with the
bare coupling except the one at (0, 0) when ǫ < 0. Hence, it follow that

ǫ < 0 λR = 0

ǫ ≥ 0 λR ≤ 16π2

3
ǫ,

where λR = λ(∞, T ). This is the statement of triviality for φ4 quantum field
theory. It means that in dimension four or greater the only consistent renormal-
ized φ4 theory in the limit of infinite cut-off is a free theory: λR = 0. Of course,
we are not required to take the cut-off to infinity, rather we should keep it much
larger than the physical momentum scales on which the theory is being applied.
Even then, for finite Λ the analysis presented gives an upper limit to λR. Such
upper limits have been used to set upper bounds on the Higgs mass in the most
common version of the standard model.

Since ǫ is small we can get a reliable expansion in ǫ for both u∗2 and λ∗. This is
the epsilon expansion

λ∗ =
∞
∑

n=1

anǫ
n .

It is hoped that the radius of convergence is greater than one, thus including
results for D = 3.
Write the equation for u2 as

du2

db
= f(u2) .

We now show how to derive the postulated scaling behaviour from the flow equa-
tions.
For Λξ ≪ 1 all parameters have reached their low-energy renormalized values.
Let

A =
1

Λξ
≫ 1 ⇒ b = log(AξΛ0) .
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We have

u(b, T ) =
m(b, T )

Λ
=

1

Λξ
= A .

This follows since for A≫ 1, m(b, T ) = ξ−1. Then

∫ A2

u2(b̄,T )

du2

f(u2)
= b− b̄

= log(AξΛ̄)

= log(ξ) + C ,

with Λ̄ = e−b̄Λ0 and ξ−1 ≪ Λ̄ ≪ Λ0, but such that

λ(b̄, T ) ≈ λ∗ .

This will always be possible if ξ is big enough. The key point is that we consider
the flow first from Λ0 to Λ̄ so that λ flows very close to its IR attractive fixed
point. We still have the condition that Λ̄ ≫ ξ. We then consider the flow to
Λ ≪ ξ−1. For this part of the flow λ is fixed at its fixed point value λ∗. It is from
this latter part of the flow that the scaling form for ξ as a function of t follows.
The sequence of flows can be summarized thus

Λ0 ≫ Λ̄ ≫ ξ−1 ≫ Λ

λ(0, T ) λ(b̄, T ) ≈ λ∗ λ(b̄, T ) ≈ λ∗

m2(0, T ) m2(b̄, T ) m2(b, T ) = ξ−2

0 → b̄ → b

Mow, for T = Tc, ξ = ∞. Hence it follow from above that

∫ A2

u2(b̄,Tc)

du2

f(u2)
= ∞ .

Thus u(b̄, Tc) = u∗ and the integral has a logarithmic singularity. We write

u2(b̄, Tc) = u∗2 + Bt, t =
T − Tc
Tc

.

Then
∫ A2

u∗2+Bt

du2

f(u2)
= log ξ(t) + C ⇒

dξ(t)

ξ(t)
=

Bdt

f(u∗2 + Bt)

= −
1

f ′(u∗2)

dt

t
.

From above we have that

f ′(u∗2) =

(

∂f

∂u2

)

(u∗2,λ∗)

= 2−
1

3
ǫ .



4 THE PARTITION FUNCTION AND FIELD THEORY 52

Hence we obtain the prediction that

ξ(t) = Dt−ν with ν =
1

2
+

1

12
ǫ .

The solution of the full flow equations looks like

We remark the following points

(1) In a general description, the theory for some intermediate cut-off will be
given by the values of a complete set of coupling constants associated with
all possible field monomials in the action. These couplings, denoted hi, will
be functions of Λ and T , and they flow in such a way that the low-energy
predictions of the theory are independent of Λ. We would expect the flow
equations to take the form

dhi
db

= βi(h) .

The diagram of the flow is then, in principle, an ∞-dimensional space.

(2) The critical surface is the manifold of all theories in coupling constant
space, h, which flow to a fixed point. If there is more than one fixed
point then the critical surface is divided into domains of attraction each
associated with one fixed point. All theories in the critical surface have
ξ = ∞, i.e., they are at a continuous transition. This follows because it
requires b→ ∞ to flow to u2 = A2 which is the reference theory. Hence for
all finite b we must have Λ ≡ bΛ0 > ξ−1 which implies that ξ = ∞.
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(3) As T changes the theory follows a trajectory (dotted line) which intersects
the critical surface at T = Tc. As shown above the critical exponents are
given by the behaviour of trajectories in the neighbourhood of the IR
fixed point. Hence we only need to calculate βi(h) in this neighbourhood.

(4) The number of parameters we need to tune in order to intercept the critical
surface is clearly equal to the number of unstable directions at the fixed
point. In our calculation the number of such unstable parameters is one,
namely the temperature T (i.e., u2(b̄, T ) which is controlled by T ). Thus
the transition corresponds to an ordinary critical point.

A fixed point with two unstable directions requires two external varibles to
be tuned e.g., T, P , and thus corresponds to a tricritical or bicritical point.

(5) The critical surface sparates the two phases i.e., the symmetric phase from
the broken phase.

(6) We expand βi(h) about the fixed point, h∗. This linearizes the flow equa-
tions. Writing ∆i = hi − h∗i

d∆i

db
= Rij∆i +O(∆2) .

The eigenvectors, ep, of Rij define the flow directions and the associated
eigenvalues, µp determine the stability properties

µp < 0 stable, µp > 0 unstable, µp = 0 tricky .

(7) For operator gnφ
2n we have [gn] ≡ dn = n(D− 2)−D. Then βn(h) has the

linear term

βn(h) = −dnhn + . . .

(The hn are the dimensionless versions of the gn.) This coupling will be
stable for dn > 0 unless there are any very large renormalizations from
other terms. Although large corrections cannot be ruled out it is expected
that since, in practical cases, the dn are integers we find that the operators
are stable if

n >
D

D − 2
.

Such operators are said to be irrelevant since their couplings automatically
flow onto the critical surface and do not need to be “tuned”.

D = 4 n > 2 ⇒ φ6, φ8, . . . irrelevant
D = 3 n > 3 ⇒ φ8, . . . irrelevant

This reflects the result of our earlier perturbative calculation of Dc and
the criteria for the validity of Landau theory.
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(7) The flow equations are a coupled non-linear set. The hn of different field
monomials get mixed. This reflects the operator mixing induced by renor-
malization. In the linearized version the eigenvalues of Rij define eigenop-
erators: linear combinations of field monomials which do not mix with each
other. This can be generalized to the full non-linear version of the flow
equations.

(8) In the Landau theory we associate the coefficient of M4 with the low-

momentum dimensionful coupling

g(T ) = Λǫ0 lim
b→∞

e−ǫbλ(b, T ) .

This is because g(T ) is the coefficient of M4 in the effective action derived
by the Legendre transform. (Z = 1 to O(ǫ) otherwise we would need to
include Z2 in the definition of g(T )).

Let

g(b, T ) = e−ǫbλ(b, T ) .

Then the equation for the flow of λ in the neighbourhood of the fixed point
implies

dg

db
= −

3

16π2
eǫbg2 ,

or

1

g(b̄)
−

1

g(b)
= −

3

16π2
eǫb̄
(

eǫ(b−b̄) − 1
)

,

and thus

g(b) =
g(b̄)

1 + a(ǫ)
ǫ

(

eǫ(b−b̄) − 1
) .

a(ǫ) =
3

16π2
eǫb̄ .

Denoting g(T ) ≡ g(∞, T ) we have the following results

ǫ > 0 : g(T ) = 0. Hence Landau’s method fails and the relevant physics is
encoded in how g(b, T ) → 0 as b→ ∞.

ǫ < 0 : We have

g(T ) =
g(b̄)

1 + a(ǫ)
|ǫ|

.

Since here g(T ) is finite and non-zero Landau’s method works. As
before we are assuming that b̄ is large enough so that the equations
we integrated to get this result are valid. In this case g(T ) is actually
independent of b̄.
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ǫ = 0 : g(T ) = 0. Landau theory fails but

g(b) =
g(b̄)

1 + 3
16π2 (b− b̄)

g(b) =
g(b̄)

1 + 3
16π2 log

Λ̄
Λ

.

I.e., only logarithmic violations of Landau theory.

4.5 The Renormalization Group in General

Our procedure so far consists of “thinning” the degrees of freedom by integrating
out the high momentum modes. We can define the transformation (λ < 1)

S(λ)H(φ) = H(λ, φ, λΛ) ,

with H(φ) ≡ H(1, φ,Λ) as the bare or microscopic Hamiltonian. The explicit
λ dependence is there because the couplings have changed in a λ-dependent way.
The S(λ) form a semi-group

S(λ1)S(λ2) = S(λ1λ2) .

There is no inverse because of the existence of fixed points: information lost
cannot be retrieved.
It is convenient to perform a rescaling at this stage

x → x′ = λx length rescaling
q → q′ = λ−1q momentum rescaling

φ→ φ′ φ′(q′) = A− 1
2 (λ)φ(q) field rescaling

λΛ → Λ cut-off rescaling

The cut-off is rescaled back to its original value. The new fields φ′ have support
0 ≤ q′ ≤ Λ in momentum space, i.e., the same support as the original fields
before thinning. A(λ) is chosen by convenience. It may be chosen so that the
coefficient of 1

2
(∇φ)2 in the new Hamiltonian is one, but other choices can turn

out to be more appropriate in more complex theories.
We then define the renormalized Hamiltonian HR(φ,Λ) by

HR(φ
′,Λ) = H(λ, φ, λΛ) .

For example consider the kinetic term in H

Z−1(λ)
∫ λΛ

0

dDq

(2π)D
q2|φ̃(q)|2 .

Change variables to q′ = λ−1q

= Z−1(λ)λD+2
∫ Λ

0

dDq

(2π)D

′

q′2|φ̃(q)|2

= Z−1(λ)λD+2
∫ Λ

0

dDq

(2π)D

′

q′2A(λ)|φ̃′(q′)|2

= A(λ)Z−1(λ)λD+2
∫ Λ

0

dDq

(2π)D
q2|φ̃′(q)|2 .



4 THE PARTITION FUNCTION AND FIELD THEORY 56

If we choose A(λ) = Z(λ)λ−(D+2), then the kinetic term in HR(φ,Λ) has the
canonical form.

The renormalization group transformation is R(λ) where

R(λ)H(φ,Λ) = HR(φ,Λ) .

HR is defined on the same lattice as is H, but all dimensionful observables are
scaled in the appropriate manner.
Define

G(q1, . . . ,qn) =< φ(q1) . . . φ(qn) > .

Then we must have

< φ(q1) . . . φ(qn) > = A
n
2 (λ) < φ(q1

λ
) . . . φ(qn

λ
) >R

computed with H computed with HR

G(q1, . . . ,qn) = A
n
2 (λ)GR(

q1

λ
, . . . , qn

λ
)

With the choice for A(λ) above, HR is a function of the set of dimensionless

couplings which we denote here by g(λ). then

HR(φ,Λ) = H(g(λ), φ,Λ) ,

and

R(λ)H(g0, φ,Λ) = H(g(λ), φ,Λ) , g0 = g(1) .

This defines the RG transformation on the couplings

R(λ) g0 = g(λ)

and since R(λ1)R(λ2) = R(λ1λ2) we have

R(λ2) g(λ1) = g(λ1λ2) .

Thus

R(1− α) g(λ) = g(λ)− αλ
d

dλ
g(λ) + . . . ⇒

βi(g) = −
dgi(λ)

d log λ

= lim
α→0

1

α
[R(1− α)gi(λ)− gi(λ)] .

This defines the function βi(g).

(1) βi has no explicit dependence on Λ if g is a vector of dimensionless couplings.
The gi correspond to the dimensionful couplings scaled by Λ.
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(2) βi does not depend explicitly on λ: the only λ-dependence is through g(λ)
in H. This follows since R(1−α) is independent of λ. The next step along
the flow in coupling constant space cannot depend on λ since λ tells us
how far we have already evolved, or flowed, along the trajectory. However,
the next step depends only on the couplings at that point on the flow and
not on the flow history. This is guaranteed by the semi-group property of
the RG transformation.

Setting b = − log λ we have

dgi
db

= βi(g) .

A fixed point is determined by βi(g
∗) = 0, ∀i. Then

R(λ)H(g∗, φ,Λ) = H(g∗,Λ) ,

and hence from above, when g = g∗

G(q1, . . . ;qn) = A
n
2 (λ)G(

q1

λ
, . . . ;

qn

λ
)

A(λ) = λ−(D+2)Z(λ) .

Then writing Z(λ) = λ2ηφ we have

A(λ) = λ−2(D−∆φ) , ∆φ =
(

D

2
− 1

)

+ ηφ ,

and thus

G(q1, . . . ;qn) = λ−n(D−∆φ)G(
q1

λ
, . . . ;

qn

λ
)

This is the scaling law for Green functions at the fixed point.

∆φ is the scaling dimension of φ(x)
(

D
2
− 1

)

is the engineering dimension of φ(x)

ηφ is the anomalous dimension of φ(x).

The full renormalization group thus consists of two stages.
Momentum space

Λ λΛ Λ
q q λ−1q

S(λ)
−→

rescale
−→

m m λ−1m

φ̃(q) φ̃(q) φ̃′(q′) = A− 1
2 φ̃(q)

= λ(D−∆φ)φ(q)
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Coordinate space

a a/λ a
x x λx

S(λ)
−→

rescale
−→

ξ ξ λξ

φ(x) φ(x) φ′(x′) = λ−DA− 1
2φ(x)

= λ−∆φφ(x)

(1) The special form for φ′ applies at the fixed point.

(2) Since the full transformation, R(λ), leaves Λ,or a unchanged the overall
effect is a rescaling of the physical parameters and observables only.
Λ plays no role in the dimensional analysis based on this rescaling.

(3) A general field combination f(φ(x)) generally “renormalizes” in a compli-
cated way

f(φ)
R
→ f ′(φ) ,

but for special combinations, the scaling fields, a dimension, ∆f , can be
assigned

f ′(φ(x)) = λ∆ff(φ′(x′)) .

This is possible only near a fixed point.
[

(∗) for information only – not directly part of course

(i) Before thinning have term in action of the form
∫

a
dDx hf(φ(x)) ,

where h is a coupling or external field. After thinning this term becomes
∫

a/λ
dDx hf ′(φ(x)) .

Near to the fixed point we can write this term alternatively as
∫

a/λ
dDx hλ∆ff(φ′(x′)) , x′ = λx .

=
∫

a
dDx′ hλ∆f−Df(φ′(x′)) .

But from the RG we are told that this term in the rescaled action must be
∫

a
dDx hλ−∆hf(φ(x)) .

and hence we verify the existence of a scaling dimension for the operator
function f with dimension ∆f which, comparing the last two expressions,
is given by ∆f = D −∆h.
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(ii) An alternate way of seeing this is to use the scaling rules for Green functions
near to a fixed point. These rules are derived in section 5 and you should
refer back to here after reading it. We have

∂

∂h
G(x1, . . . ,xn;h) =

∫

dDy Gf (x1, . . . ,xn, y;h) ,

where Gf means an insertion of f(φ) into the expectation value. By the
association of a dimension ∆f with f we use the scaling rules to write this
in the alternative form:

=
∫

dDy λn∆φ+∆f Gf (λx1, . . . , λxn, λy;λ
−∆hh) .

However, this last expression must also be given by

∂

∂h

[

λn∆φG(λx1, . . . , λxn;λ
−∆hh)

]

=
∫

dDy λn∆φλ−∆h Gf (λx1, . . . , λxn, y;λ
−∆hh)

= λD
∫

dDy′ λn∆φλ−∆h Gf (λx1, . . . , λxn, λy
′;λ−∆hh) .

Comparing these two versions we find ∆f = ∆−∆h as before.
]

(4) The anomalous dimension, ηφ, is computed from Z(λ), the field renormali-
sation constant.

Now consider the flow in the neighbourhood of a fixed point. Write

g = g∗ + v .

Then

dvi
db

= Kij(g
∗)vj .

The eigenvalues of Kij are ∆α with eigenvectors ea.
Then we find

v =
∑

α

hαeα ⇒

dhα
db

= ∆α(g
∗)hα no sum on α, ⇒

hα = h(0)α λ−∆α .

Remember that b = log λ , λ = Λ/Λ0 < 1.
If ∆α > 0 the eigencoupling hα is unstable and is repelled by the fixed point
and vice-versa if ∆α < 0. We have recovered the result that we stated before
in a slightly different context namely that every fixed point corresponds to a
continuous transition and can be labelled by the number r of repulsive (i.e.,



4 THE PARTITION FUNCTION AND FIELD THEORY 60

positive) eigenvalues. then r is the number of external fields that must be tuned
so that we see the transition controlled by that fixed point.

In general the Hamiltonian is

H =
∫

dx
∑

n

gnAn(x) = H∗ +
∫

dx
∑

vnAn(x) ,

where the An are general operators and are functions of the fields. Near a fixed
point we can write instead

H = H∗ +
∫

dx
∑

α

hαAα(x) ,

where
Aα =

∑

n (eα)nAn(x) scaling fields
hα = (uα)ngn scaling couplings.

Here we have defined the vectors uα by

eα · uβ = δαβ ⇒ (eα)n(uα)m = δnm .

Now we define [Aα] = ∆Aα and we have that [hα] = ∆α. But H is dimensionless

and so we must have

∆Aα = D −∆α .

∆α is an eigenvalue of the linearized RG transformation.
Denote Green functions by

G(x1, . . . ,xn;h) =< φ(x1 . . . φ(xn) >c ,

where h is the vector of eigencouplings. Near a fixed point we have

G(x1, . . . ,xn;h) = Ā
n
2 (λ)G(λx1, . . . , λxn;λ

−∆αh) ,

where Ā
1
2 = λDA

1
2 . The extra factor of λD occurs when G is fourier transformed

from momentum space to coordinate space. But we have

Ā
1
2 = λDA

1
2 = λ∆φ ,

and hence it follows that

G(x1, . . . ,xn;h) = (λ)n∆φG(λx1, . . . , λxn;λ
−∆αh) .

This is the full scaling result for Green functions evaluated near to a fixed point.
In the next section we shall derive the scaling theory which demonstates that
such results can be obtained even when the bare theory is not near to a fixed
point as long as it is sufficiently close to a critical surface, i.e., near a continuous
phase transition.
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Note for example that the “magnetic field”, h, has dimension

∆h = D −∆φ ,

since the relevant term in the Hamiltonian is −
∫

dx hφ which must be dimen-
sionless.
If Aα is a relevant operator then we must have

∆hα = D −∆Aα > 0 ⇒ ∆Aα < D .

So, for example, φ is a relevant operator.
We can see an immediate aplication of these ideas as follows. Let B(x) have
dimension ∆B which does not necessarily satisfy ∆B < D, i.e., B need not be
a relevant operator. Let A be a relevant operator conjugate to external field
h: ∆A = D − ∆h and ∆A < D. All other parameters except h are fixed at
their critical values, and so as h→ 0 ξ diverges. The corresponding generalized
susceptibility is

∂nχ

∂hn
=
∫

∏

dxi < B(0)A(x1) . . . A(xn) >h .

[This follows since interesting term in H is −h
∫

dx A(x) and we have

< B(0) >=
∫

dφ e−H B(φ(0)).

]
The only length scale in the problem is ξ and hence on dimensional grounds

∂nχ

∂hn
∼ ξ(nD−∆B−n∆A) ,

and for n large enough this will diverge as h→ 0, ξ → ∞ if

n(D −∆A) > ∆B .

This will occur for some n since A is relevant and hence ∆A < D.
Thus singular thermodynamic quantities are associated with relevant operators

and consequently with the unstable or repulsive eigenvalues of the linearized
RG transformation.

5 Scaling theory

Consider the Green function for a field φ(x) which has dimension ∆φ

G(x1, . . . ,xn;g|ξ) =< φ(x1) . . . φ(xn) >c .

G has been labelled by ξ which will be assumed to be large. ξ is a dynamical
variable determined by g, the couplings in dimensionless form. From the RG we
have, in general

G(x1, . . . ,xn;g|ξ) = Ā
n
2 (λ)G(λx1, . . . , λxn;g(λ)|λξ) .
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Now consider a particular value, λ̄, of λ such that for cases where ξ ≫ 1

λ̄≪ 1 and λ̄ξ ≫ 1 and g(λ̄) = g∗ .

This will always be possible if ξ is large enough, although how large it must be
for this to be true is a question we have not addressed. Then we can define the
function F by

G(x1, . . . ,xn;g|ξ) = F (x1, . . . ,xn|ξ) .

Which, from above, means that

F (x1, . . . ,xn|ξ) = Ā
n
2 (λ̄)G(λ̄x1, . . . , λ̄xn;g

∗|λ̄ξ) .

Then a further renormalization gives

F (x1, . . . ,xn|ξ) = Ā
n
2 (λ)F (λx1, . . . , λxn|λξ)

= λn∆φF (λx1, . . . , λxn|λξ) .

The last result follows since this further renormalzation is applied to a theory
near the fixed point (i.e. only the mass, m = ξ−1, is not at its critical value) and
so Ā takes the power-law form dictated by the linearized RG flow equations.
Thus for λξ = p, p≫ 1 and fixed we have

G(x1, . . . ,xn;g|ξ) = ξ−n∆φE(ξ1, . . . , ξn) ,

where ξi = xi/ξ and

E(ξ1, . . . , ξn) = pn∆φF (pξ1, . . . , pξn|p) ,

= pn∆φĀ
n
2 (λ̄)G(λ̄x1, . . . , λ̄xn;g

∗|λ̄p) .

This result is a verification of the scaling hypothesis. As can be seen, all
results are ultimately expressed in terms of a theory with correlation length λ̄p.
In order that this theory lies in that neighbourhood of the fixed point in which
the linearized RG equations apply we must have that λ̄p is sufficiently large. A
diagram of the flow is shown below.

What matters is that the theory with correlation length λ̄p can be so chosen to
lie in the region where the linear RG approximation is good. This region is a
neighbourhood of the fixed point and as long as the flow line emanating from the
bare theory passes through this region then the above analysis can be applied and
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the scaling behaviour derived is valid. Clearly, the range of values of temperature
T (near Tc) for which this happens depends on how close the intersection of the
trajectory of bare theories with the critical surface is to g∗: if it is close to g∗ then
the scaling behaviour will be apparent over quite a wide range of temperatures
near Tc, but the range will narrow as the distance of the intersection from g∗

increases. This range of tempeatures in which the scaling behaviour is observed
and the critical exponents can be measured is caled the critical region.

Now follows a few interesting consequences of scaling theory. Consider the gen-
eralized susceptibility

Γn =
∫

dx1 . . . dxn−1 G(0,x1, . . . ,xn−1;g|ξ) .

We have

Γn ≡ Γn(ξ) ⇒

Γn =
dΓn−1(ξ)

dh
=
dξ

dh

dΓn−1(ξ)

dξ
,

where h is conjugate to φ.
From above

Γn(ξ) =
∫

dDξ1 . . . d
Dξn−1 ξ

(n−1)D−n∆φE(0, ξ1, . . . , ξn−1)

= ξ(n−1)D−n∆φ · Cn ,

where Cn is a constant given by

Cn =
∫

dDξ1 . . . d
Dξn−1E(0, ξ1, . . . , ξn−1) .

Then from above

Γn = [(n− 2)D − (n− 1)∆φ]Cn−1 ξ
(n−2)D−(n−1)∆φ−1 dξ

dh

⇒
dξ

dh
∼ ξD−∆φ−1

⇒ ξ ∼ h−νφ where νφ =
1

D −∆φ

.

Thus the critical exponent associated with the relevant external field h conjugate
to φ, is given in terms of the scaling dimension of φ, namely ∆φ.

5.1 Scaling Relations

(1) From above the magnetic susceptibility satisfies the relation

χ ∼ ξD−2∆φ ∼ t−ν(D−2∆φ) .

Since γ is defined by χ ∼ t−γ we have the relation

νD = γ + 2ν∆φ .
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(2) It follows from scaling theory that

M =< φ >∼ ξ−∆φ ∼ tν∆φ .

Since β is defined by M ∼ tβ we have that

β = ν∆φ .

(3) β (≡ 1/T ) is conjugate to the energy operator ǫ(x) and hence

ξ ∼ t−ν with ν =
1

D −∆ǫ

.

Strictly speaking the only part of ǫ(x) that matters is the most singular,
i.e., the component that has the lowest scaling dimension. In φ4 theory this
is the operator φ2.

(4) The specific heat is

CV = T

(

∂S

∂T

)

V

= −T

(

∂2F

∂T 2

)

V

,

with F = −T log Z. Thus

CV = β2 ∂
2

∂β2
log Z

= β2
∫

dx < ǫ(0)ǫ(x) > ⇒

CV ∼ ξD−2∆ǫ = t−ν(D−2∆ǫ) .

Since α in defined by CV ∼ t−α we find

νD = α + 2ν∆ǫ .

(5) From above M ∼ ξ−∆φ and ξ ∼ h
− 1
D−∆φ . Since δ is defined by M ∼ h

1
δ we

find

δ =
D −∆φ

∆φ

.

Combining these relations we derive the scaling relations

α + 2β + γ = 2

α + 2βδ = 2 + γ .

Note the following

(i) Only two relevant or unstable directions occur in φ4 field theory which
correspond to h and T and are associated with the relevant operators φ and
ǫ respectively.

(ii) All critical indices are controlled by ∆φ and ∆ǫ or equivalently by the di-
mensions assigned to h and T

[h] = D −∆φ and [T ] = D −∆ǫ .

The rest is dimensional analysis. Hence in this case there are only two
independent indices.
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5.2 Renormalized Green Functions

This is a very large topic since the ideas underlying the concept of renormalization
and their impementation are central to the modern theory of analysing both
quantum field theory and quantum and classical statistical mechanics. In this
course we have time only to introduce the main ideas using the critical theory as
the example, and to link these ideas with the notions which have gone before.
We work with a scalar field theories which lie in the critical surface
(ξ = ∞ ⇒ m2 = 0). Of course, the approach can be extended to study
near critical theories and non-leading corrections to the predicted leading scaling
behaviour.
Define Γn(p,g0,Λ) to be the 1PI truncated Green function. We will consider the
effect of the “thinning” procedure but will not rescale the observable quantities.
In other words we shall use the fact that the “thinning” procedure produces a
new theory with the same low-energy predictions as the original one. The effect
of “thinning” is encoded directly in the relation

Γn(p,g0,Λ) = Z−n
2

(

Λ

µ

)

Γn(p,g(µ), µ) .

µ is the new cut-off after thinning and the g(µ) are dimensionsless couplings with
g(Λ) = g0.
The LHS is independent of µ and hence

(

µ
∂

∂µ
+ βi(g)

∂

∂gi
− γ

n
2 (g)

)

Γn(p,g(µ), µ) = 0 ,

where

γ(g) = µ
∂

∂µ
log Z =

(

−Λ
∂

∂Λ
+ βi(g)

∂

∂gi

)

log Z

βi(g) = µ
∂

∂µ
gi(µ) .

This equation satisfied by Γn is the renormalisation group equation.
Note that

lim
Λ→∞

Γn(p,g(µ), µ) = lim
Λ→∞

Z
n
2

(

Λ

µ

)

Γn(p,g0,Λ)

is finite. Γn(p,g(µ), µ) is the renormalized Green function.
Consider φ4 field theory.

(i) γ(g)

d

dp2
Γ2(p, g0,Λ)p2=µ2 = Z−1

(

Λ

µ

)

d

dp2
Γ2(p, g(µ), µ)p2=µ2

= Z−1

(

Λ

µ

)

f(g(µ)) .
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f(g) is a dimensionless function of g and can be calculated in perturbation
theory

f(g) = 1 + ag2 + . . .

There are no divergences because |p| = µ, which is the cut-off. We also
have (calculating in the limit ǫ→ 0)

d

dp2
Γ2(p, g0,Λ)p2=µ2 = 1 + g20 log

(

Λ

µ

)

+ . . .

The corrections introduced by keeping ǫ finite in this calculation give rise
to corrections to γ which are higher order in ǫ. Then from above we get

Z

(

Λ

µ

)

=
1 + ag2(µ) + . . .

1 + αg20 log
(

Λ
µ

)

+ . . .

⇒ γ ≡ µ
∂

∂µ
log Z

= αg20 + 2ag(µ)β(g(µ)) . . .

From the renormalization group equation γ is a finite (i.e., Λ independent)
function of g(µ). This follows because both β(g) and Γn(p, g(µ), µ) are in-
dependent of Λ and the RG equation cannot balance unless γ is independent
of Λ too.

Since g0 = g(µ) + O(g2(µ)) we can make the substitution for g0 in terms
of g(µ) and find

γ(g) = αg2 + 2agβ(g) . . .

(ii) β(g)

Γ4(p, g0,Λ)p2=µ2 = Z−2

(

Λ

µ

)

Γ4(p, g(µ), µ)p2=µ2 .

But

Γ4(p, g(µ), µ)p2=µ2 = µǫ(g(µ) + bg2(µ) + . . .) ,

again a finite function: b is an ǫ-independent number. Note that Γ4 has
engineering or ordinary dimension ǫ: [Γ4] = ǫ. These dimensions are
carried by the µǫ factor.

We also have that

Γ4(p, g0,Λ)p2=µ2 = Λǫg0 −
β0
ǫ
Λ2ǫµ−ǫg20 + . . .

To see how the form of the second term on the RHS arises we note that it
comes from an integral of the form

Const. ·
∫ Λ

µ

d4−ǫ

q4
.
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Ignore the µ-independent terms and terms that are not leading non-trivial
order in ǫ.

[We note in passing that the above equations show to lowest order that

g(µ) =
(

µ
Λ

)ǫ
g0. In the calculation for γ we worked in the ǫ→ 0 limit since

we only required the leading order results in that case. This is why we were
able to use g0 = g(µ) in that calculation. If we want to work to higher
orders in ǫ we must be more careful.]

Then

µǫ(g(µ) + bg2(µ)) ≈ Λǫg0 −
β0
ǫ
Λ2ǫµ−ǫg20 ,

(Note that Z = 1 to the order in which we are working.) Now apply the

operator µ ∂
∂µ

with β = µ∂g(µ)
∂µ

. We get

ǫ(g + bg2) + (β + 2bgβ) ≈ β0

(

Λ

µ

)2ǫ

g20

= β0g
2 + . . . ,

where the expression for g0 in terms of g has been used in the last step.
Hence

β ≈
−ǫg + (β0 − ǫb)g2

1 + 2bg
.

Keeping only non-trivial orders in ǫ, (β0 is O(1)) gives

β = −ǫg + β0g
2 + . . .

We have already computed β0 before when calculating the critical exponent
ν (note that when comparing these two calculations we must remember
that d log µ = −db. This accounts for the sign difference between the two
otherwise identical versions of the flow equation). For µ ≪ Λ we find
g(µ) = g∗ where

β(g∗) = 0 ⇒ g∗ =
ǫ

β0
,

and we found before that g∗ = 16π2

3
ǫ.

A consequence of the two calculations above is that for µ≪ Λ we have

d

d log µ
Z

(

Λ

µ

)

= γ(g(µ)) = γ(g∗) .

Or, writing λ = µ
Λ

Z = Z0λ
γ(g∗) .
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But from the scaling analysis near the fixed point

Z ∼ λ2ηφ .

Thus

ηφ =
1

2
γ(g∗)

∆φ =
(

D

2
− 1

)

+
1

2
γ(g∗) .

From (i) above ηφ =
1
2
αg∗2 since β(g∗) = 0.

We now indicate how to calculate α. Γ2 is given by the graphs

p2 + CΛ2g20 +
(

g20DΛ2 + αp2
)

log
Λ

µ
+ . . .

The calculation of α is somewhat involved and will not be reproduced here. From
Raymomd’s book “A Modern Primer on Field Theory” we find

α =
1

6(16π2)2
⇒

ηφ =
1

2

1

6(16π2)2

(

16π2

3

)

ǫ2

=
1

108
ǫ2 .

What happened to all the couplings corresponding to the irrelevant operators
(i.e., those with dimension ∆ > D)? A calculation of the β functions for these
operators in the same way as in (ii) above shows that the fixed point for these
couplings is at the origin. This is expected because

(i) the operators corresponding to these couplings do not give rise to extra IR
diverrgences: D > Dc for these operators. This implies that Landau’s ap-
proach works and the critical exponents receive no anomalous contributions
from these operators.

(ii) mean field theory works for operators whose associated couplings have their
fixed point at the origin.

ηφ =
1

2
γ(g∗) ,

but only g∗, the φ4 coupling, is non-zero.
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(iii) The corollary is that only the renormalizable operators in the usual sense,
i.e. ∆ < D are relevant since only their couplings flow to IR stable
fixed points which are not at the origin. For those operators with ∆ = D
the fixed point is at the origin but we find log, rather than power-law,
corrections to mean field theory. These operators constitute a special case
but an important one since, for example, scaling violations in Quantum
Chromodynamics are exactly of this kind.


