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An upper bound on the energy dissipation rate per unit mass, €, for pressure-driven
flow through a channel with rough walls is derived for the first time. For large Reynolds
numbers, Re, the bound - ¢ < cU3/h where U is the mean flow through the channel, h
the channel height and ¢ a numerical prefactor - is independent of Re (i.e. the viscosity)
as in the smooth channel case but the numerical prefactor ¢, which is only a function
of the surface heights and surface gradients (i.e. not higher derivatives), is increased.
Crucially, this new bound captures the correct scaling law of what is observed in rough
pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes
equations (data suggests ¢ ~ 1/(log Re)2U3/h as Re — o0), it is a regular limit for
current bounding techniques. As an application, the bound is extended to oscillatory
flow to estimate the energy dissipation rate for tidal flow across bottom topography in
the oceans.

1. Introduction

In every turbulent flow, there is some key quantity of interest which is either enhanced
or suppressed compared to its laminar value and it is of fundamental interest to under-
stand this effect as a function of the parameters of the problem. Well known examples
include the mass flux along a channel driven by an applied pressure gradient, the heat
flux across a differentially heated fluid layer or the wall shear stress exerted by a fluid
sheared between two parallel plates. One approach is to derive strict inequality infor-
mation on these key global flow quantities as a function of the system parameters in
the hope that this captures the correct scaling relationship. This ‘bounding’ approach
is attractive because it seeks to extract just enough of the physics from the governing
equations to make the correct prediction while eschewing other secondary flow details
which arise from directly solving the governing equations and just may not be attain-
able in the asymptotic regime of interest (e.g. vanishing viscosity). The downside of the
bounding approach is that the bound derived can be too conservative. Well known ex-
amples are the energy dissipation rate € in a smooth pipe where the best (lowest) bound
known predicts that & approaches a finite constant (in units of U3/h) as the Reynolds
number Re becomes large - so called Kolmogorov scaling (Frisch 1995) - whereas data
suggests ~ 1/(log Re)? drop off, and the scaling of the Nusselt number Nu (normalised
heat flux) in Boussinesq convection with Rayleigh number Ra: the bound has Nu < Ra®
with a = % for Ra — oo whereas current data suggests more o ~ 0.31 (e.g. see the
discussion in Waleffe et al. (2015)) with probable dependence on the Prandtl number too
(Grossmann & Lohse 2000).
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The bounding approach owes its roots to a suggestion by Malkus (1954) that turbulent
flows want to maximise their transport and was first applied in convection by Howard
(1963) and in shear flows by Busse (1969,1970) (see Howard 1972 and Busse 1978 for
early reviews). The original approach was based on using certain simple projections of
the governing equations as constraints in an optimisation problem. After initial successes,
it quickly became hard to pose more constrained yet still tractable problems and the field
lanquished in the late 70s and 80s. In the early 90s, a new ‘background’ method intro-
duced by Constantin and Doering (Doering & Constantin 1992, 1994, 1996; Constantin
& Doering 1995) revitalised the field by providing an alternative way to systematically
derive rigorous bounding results (Marchioro 1994; Kerswell 1996, 2002; Wang 1997;
Nicodemus et al. 1997; Hoffmann & Vitanov 1999; Doering and Constantin 2001; Doer-
ing and Foias 2002; Otero et al. 2002; Plasting & Kerswell 2003, 2005; Plasting & Ierley
2005; Wittenberg 2010; Whitehead & Doering 2011; Whitehead & Wittenberg 2014;
Wen et al. 2013). The key idea (traceable back to Hopf) is to decompose the flow variables
into a steady incompressible ‘background’ field which carries the inhomogeneities of the
problem and a fluctuating incompressible part which is unforced and hence of arbitrary
amplitude. The method then proceeds by designing the background field (typically with
a boundary layer of thickness §) so that the influence of the unknown fluctuating field
on the key functional of interest can be bounded (by taking ¢ small enough). While very
successful (e.g. see Wang (1997) for a proof of an upper bound on ¢ for a general domain
where the boundary moves tangentially to itself everywhere), the method does have its
limitations most notably illustrated by the problem of pressure-driven flow across a rough
wall (see also Nobili & Otto (2016) for work in the convection problem). In flow driven
across a rough wall, the background flow must bring an O(1) (relative to § — 0) normal
component of the exterior flow to zero at the rough wall surface over a boundary layer
distance of O(J). Incompressibility then forces the background flow to have an O(1/9)
component locally tangent to the rough wall and control of the unknown fluctuating part
is lost (technically the required spectral constraint cannot be satisfied). Incompressibility
of the background field is the key obstacle here: relaxing the constraint on the background
field causes problems elsewhere (the fluid pressure can’t be eliminated from the analysis)
or when it is not relevant - in the case of convection where only a background temperature
field is needed - there is no problem (Goluskin & Doering 2016).

In the last 5 years, a second new bounding method has been developed by Otto and
Seis (Otto & Seis 2011; Seis 2015) - hereafter referred to as the ‘boundary layer’ method
- which potentially offers a new line of attack on the roughness problem. In this paper
we discuss how this method can indeed be extended to deliver a first rigorous upper
bound on the energy dissipation rate for pressure-driven flow through a rough channel.
Interestingly, the same scaling law emerges for the bound on ¢ in terms of the applied
pressure gradient as for the smooth channel situation (albeit with an enlarged numerical
prefactor dependent on the exact form of the roughness). This is exactly what has also
been found very recently for rough wall convection (using the background technique)
in Goluskin & Doering (2016). Assuming the bound carries over to rough pipe flow,
this then matches the observed scaling law for turbulent data (Moody 1944). There are
two immediate implications: 1) a smooth wall is a singular limit of rough wall flows at
high Re flows yet a regular limit for current upper bounding techniques; and 2) current
upper bounding techniques are actually better at capturing scaling laws than has been
immediately apparent by focussing on the singular case of smooth wall problems (see
Goluskin & Doering (2016) for references which suggest that their rough wall bound
may be consistent with convection data). To illustrate how the new energy dissipation
rate bound can be utilized, we extend the result to oscillatory free-surface flow over one



FIGURE 1. The flow geometry. The top boundary is given by z = g(x,y) and the bottom by
z = f(z,y). The intermediate surface shown in outline is parametrised by A and defined by

rough boundary which is a simple model of tidal flow over topography. Understanding how
topography such as isolated ridges enhance dissipation and especially mixing processes is
an important yet poorly-understood ingredient for ocean circulation modelling (e.g. see
Melet et al. 2016 and references therein).

2. 3D Rough channel flow

Imagine a channel of average height h, periodic extent hL, in the (streamwise) direction
of an applied pressure gradient and periodic spanwise extent hL,. If v is the kinematic
viscosity, then introduce v/h as the unit of speed, h as the unit of length and h?/v as
the unit of time. The governing Navier-Stokes equations become

%;—Fu-Vu—&-Vp—V?u:Gri, (2.1)

V-u=0, (2.2)

where Gr := h3G/v?, the Grashof number, is the non-dimensionalised applied pressure
gradient G driving the flow. For convenience we refer to the cross channel z-direction as
the ‘vertical” direction and the x and y directions as ‘horizontal’ and imagine rough chan-
nel boundaries at z = f(z,y) (the lower boundary) and z = g(z, y) (the upper boundary).
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The roughness functions f and g will be assumed at least C® (3 times differentiable),
periodic over A := [0, L,] x [0, L, such that

//Afdxdy:O & ;//Agdxdyzl (2.3)

(to preserve the average channel height as 1 in non-dimensional units and non-dimensional
volume as A := L, L,) and to be such that the channel is never blocked at any point (i.e.
f < gforany (z,y) € A). In the following we work with a 1-D family of interior surfaces

SA) i=A{(z,y,2)[ 2 = F(z,y,A) := (1 = N f(z,9) + Ag(w,y) for (z,y) € A} (24)

with A € [0,1] which smoothly interpolate between the two rough boundaries: A = 0
giving the lower boundary and A = 1 the upper boundary: see figure 1. Let C(\,y*) be
the line formed from the intersection of S(\) with the y = y* plane. Let V(X) be the
volume enclosed by S(\), S(0) (the lower boundary) and the planes x = 0, z = L,,
y=0and y = L,, and let 9V(\) be the boundary of V(). The flow conditions at the
edges of each surface are periodic so that the flow is invariant under the transformations
r— 2+ L, and y — y+ L,. A long time average is defined as

T
(1)) := lim *A (+)dt. (2.5)

We start the ‘boundary layer’ bounding analysis (Otto & Seis 2011; Seis 2015) by
taking the line integral of (2.1) along C(\,y) (in the direction of increasing x) followed
by an integration over y,

Ly ou Ly
/ / é-[+u-vu+vp—v2u] dsdy:Gr/ / §xdsdy (2.6)
o Jey L0t 0o Jeow)

where s is the arc-length along C()\,y) and § := (X + F,2)/\/1 + F2 is the unit tangent
vector (subscripts indicate partial derivatives so that F, = 0F/0xz with y and A held
fixed). Crucially, this procedure kills the pressure term as

/ §-Vpds = p(vava(Lw’ya /\)’t) _p(07yaF(07ya/\)at) =0 (27)
C(Ay)

by periodicity in x. With this, and converting the line integral to an integration over x,
we get

AGr = %//()“{Jeri) : udmdy+//(§(+F$2) [u-Vu - V2u]dzdy. (2.8)
A A

The first term on the rhs can be dropped after long-time averages, assuming that the
kinetic energy remains bounded in time, to leave

Grz(jl//A(fc—&—FzZ)-[u~Vu—V2u]dxdy) (2.9)

which is an identity for any A € [0,1]. We now generate volume integrals from this
expression which can be related to the long-time-averaged energy dissipation rate per
unit mass (in units of v3/h*)

=1 vazary = (2 [ T Stz aya 2.10
o (2 [ [vupavy = & Vufddydd).  (210)
0 0 z=f(x,y)
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To do this, (2.9) is integrated over A € [0, A] to give

A
AGr = %/0 //A(fc+Fx2)~[u~VuV2u] dz dy d\). (2.11)

This can be converted into a volume integral by converting the integral over A to one
over z with the addition of a (Jacobian) scaling factor 0z/0A|,, = Fx(x,y, \):

AGr = { /// u-Vu-—Vul dedydz) VA € [0,1] (2.12)
A V(A)

where

no X2 Xt [fot (2= f)[In(g - f)]]2 (2.13)

F\ (9—1f)
eliminating A in favour of z (recall g = g(z,y) and f = f(z,y)). The key now is to lift
spatial derivatives off u and onto a by judicious use of the divergence theorem. This leads
to

AGr:l(j{ (a-uw)u-di+u-(n-V)ya—a-(d-V)udS
AV(A)

/// (u-V)a+u-V?adV) VAe0,1] (2.14)

(note the last term requires the roughness functions f and g to be at least C3). Due
to periodicity over (z,y) € [0, L;] x [0,L,], the only parts of 9V(A) which need to be
considered are the lower boundary S(0) where u = 0 and the interior surface S(A).
Hence, in fact

AGT:i</ (a-w)u-ni+u-(0-V)a—a-(a-V)udS
A sy

- / a-(h-Vi)udS
/// (u-V)at+u-V?adV) VAc01]. (2.15)
Now the strategy is to separately average (2.15) over A € [0,¢] and over A € [1 — ¢, 1]

and then compute the difference in order to eliminate the A-independent S(0) boundary
term. Subtracting 1/¢ f(f (2.15) dA from 1/¢ fll_g (2.15) dA gives

1
(176)(?7':1(1/ / (a-u)u-di+u-(h-V)a—a-(i-V)udSdA
A 1—¢JsA

¢
*1/ / (a-wu-d+u-(i-V)a—a- (i-V)udSdA
¢ S(A

1
—1/ /// u-(u-V)a+u-ViadV dA
CJie Iy
4
+1//// u-(u-V)at+u-VZadVdh) (2.16)
¢ Jo V(A)

This is the generalisation of Seis’s (2015) expression (4.10) which can be recovered by
setting a = X, taking S(A) as the horizontal plane z = A over [0, L,] x [0, L,] and fi = Z.
Notably, there are new integrated volume terms because the linear momentum directed
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along C(\, y) is not conserved but these turn out to be subdominant in what follows. From
here, the exercise is to bound the rhs of (2.16) in terms of the energy dissipation rate e
and then to optimise over ¢ € [0, 3] to produce the best bound on Gr as in Seis (2015).
Since our focus is on establishing the scaling exponent of how Gr scales with e rather
than the secondary issue of producing the best estimate for the numerical prefactor, we
proceed by employing straightforward conservative estimates. This has the advantage of
securing our key result quickly and relatively clearly but more careful estimates could
lower the (numerical) bound on Gr but not, we contend, the scaling exponent. Firstly,

o= Aéﬂl—é{%lz/sm 2 ulu-A| deM”/llg/S(A [u- (- V)a dsdA)
/IZ/S(A) V)u| dSdA) //A) la-ulju- | dsdA)
//S(A Va| dSdA)® + / /S(A (i V)u| S dA )
. ///WA)'“' w-walavany+ ([ fff Vel avan)
“f JIL e wral v any s o JIL e salav asyo )

(2.17)

(the red superscripts are just labels). Each of the integrals in (2.17) need to be bounded
by a function of €. We focus on integrals concentrated at the lower boundary and treat
first the integral, I, labelled (V) in (2.17). Firstly converting the surface integral into one

over A
14
g(// la|\/1+ F2 + F2[u|* dedy dA ). (2.18)
0 A

Then using the Fundamental Theorem of Calculus since u(z, y, f(x,y)) = 0 (i.e. on S(0))
and Cauchy-Schwarz gives
2 2
[
f(@.y)

¢
< (/ / la|/1+ F2+ F?
/ / |a| 1+F2+F2(/ 12dz/
fa,y) f(ar-,y)
/ // \a|,/1+F2+F2AFA/ )
faa) 9

max {|a|FM/1+F§+Fy2}/ AdA(///\Vu\%V)
z,y,\eV (L) 0

max 1+ F2,/1+F2+F2% x 10°4e. (2.19)
z,y,\eV (L) Y

Integral I, (labelled *) in (2.17)) is treated similarly albeit with an extra integration in

dxdy dA)

@2
0z

dz ) dxdy dA)

| N

IN

IN
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A giving rise to £2 in the estimate:

4 l rA
</ /// |Vallu]* dV dA ) < <// // F\|Va||u|?dzdy dX dA )
0 V(A) 0o Jo A
0 pA
max {F§|Va|}// AdAdA(// |Vu|?dV)
z,y, eV (L) o Jo

F2\v Lp3 A 2.20
x,yr,r)\lg)]g(ﬁ){ >\| a|} x 6 < ( )

1,

IN

IN

IN

The remaining integrals, Io, I3 and I5, are treated as follows:

F(ay0) [0.Va],/1+ F2 + F?
I, < /// lu| dz dzdy )
f(@y) £y

< [Jff BT dmf

1
8.VaP(l+ 12+ 1) ] { 3

= dV| x| max FZ| x./i02Ac

B ///V(Z /\ (z,y)eA A \/27

1

1 do dy]? 1
<7 A.Val>(1+ F2+ F? 2|7 Ay /L
) -A//Mrg%ﬁl{n R y)} FA} x[u“é?éix } x Ay 56

(2.21)

where i = (—F, X — F,y+2)/,/1+ F2 + F2 and the last two lines follow using the same

type of estimates as in (2.19) and noting that F = g(z,y) — f(z,y) is independent of A
and strictly positive. Respectively

F(z,y,0) |a| 1 +F2 —|—F2
Is < (// / 2 |Vu| dzdxdy )
fz,y) A

1

[ 21+ F2 + F? 2
< /// |a‘(+29J y)dV} x \ Ae
L V(e) Fs
(1+ F2) 1+F2+F2) 3
< /// dAdzdy} % Az
1
dzxdy |2
< 2 2 2 : .
<13/, AI?%)%]{”FI)“*F”FU} i) avE e

and

&
IN

, 1 1
2 2
UL gmeseas [ o v o
0 V(L) V()
1 1
1 2,12 2 2241
[A ///v(e)w a dV} X [(IIT;??AFA} X LA/ 5

1

5

[ //F,\ max V2a2dxdy} X { max FA] x Ay/Leoe. (2.23)
A€[0,£] (z,y)eA

IN
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The estimates for the corresponding integrals centred at the top boundary are exactly
analogous, and grouping the contributions together for each term, we get a simplified
‘inequality’ version of (2.16)

Gr < M{ (B10? + By?)e + (Bal 4 Bs + Bsl?*)Vle } (2.24)

where the coefficients B; represent the O(1) numerical factors (in the sense of Gr — o)
of the ith integral bound (summed for both boundaries) when a factor of A is factored
out and the dominant ¢ and ¢ behaviour (which both are not O(1)) is separated off.
The idea now is to minimise the rhs over the choice of ¢ € (0, 5) in the turbulent limit
Gr — oo. Here, ¢ — oo ( naive scalings suggest Gr < e < Gr?) and the optimal £ — 0
so, working to leading order,

Gr < Bile+ Bs\/e/l + h.o.t. (2.25)

and now it is clear that all the new integral contributions due to the roughness are
subdominant. Instead the roughness manifests itself as adjusted numerical coefficients
for the integrals which arise in the smooth situation (Seis 2015). The minimising ¢ is
(B3/2B1)%/3c1/3 and

w

2v/3
Gr < 7(231332,)1/3 x e2/3 or L x Gri/? < ¢ (2.26)

9Bs+/ B,

[\V]

where

Z Juax, {5\/1+F£,/1+F§+Fy2}, (2.27)

1+F2 1+F2+F2) >
{ // o (228)

(since ¢ < 1, it is sufficient to leading order to replace max,¢o,¢ by the value at A = 0 and
similarly for the upper boundary). The lower bound in (2.26) indicates that turbulence
decreases dissipation for a given applied pressure gradient as per the smooth wall case
(Constantin & Doering 1995; Seis 2015). However, as there, rewriting the result in
terms of the a priori unknown mean flow recovers the familiar upper bound situation.
Taking ([]] f u- (2.1)dV) connects the mean flow U with the applied pressure gradient

and ensuing d1551pat10n rate,
1
= (Z///uf(dv> =¢e/Gr. (2.29)

This can be used to eliminate the pressure gradient (Gr) to get

27 27
< ZBlBg U3 or < ZBlBg (in units of U?/h) (2.30)
so that the bound predicts that the energy dissipation rate becomes independent of the
viscosity as the viscosity goes to zero - Kolmogorov scaling - just as in the smooth wall
calculation (Constantin & Doering 1995, Seis 2015, and Plasting & Kerswell 2005 for
pipe flow).
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3. Oscillatory flow across topography: the tidal problem

As a simple application of the above result, we now consider the ocean tidal problem
of oscillatory flow across bottom topography (and a free top surface). This situation
is modelled by assuming an oscillatory pressure gradient driving the flow directly i.e.
G ~ w*U* where the tidal frequency w* = 27/12hours = 1.4 x 107*s7! and U* =~
0.1lms~'. We consider a symmetrised problem where the top boundary is defined by
g(z,y) =1 — f(z,y) so that the real free surface position on average is the (symmetric)
midplane of the extended domain and %h is then the mean ocean depth. By symmetry, the
maximum dissipation in the extended domain is exactly double the maximum dissipation
in the ‘ocean’ domain. Further restricting the flow in the extended domain to have zero
vertical motion and zero stress across z = % (the horizontal free surface approximation)
can only reduce the maximum dissipation possible (by restricting the competitor space)
so halving the dissipation bound from the unrestricted, extended domain should be an
upper bound on the dissipation in a flat surface ocean (z < %)

Taking a typical ocean depth %h = 1000m, the Grashof number Gr = 1.12 x 107 > 1
and the non-dimensionalised tidal frequency

2, ok
l Kw:= Wt @\/Gr < Gr (3.1)
v U2

where Y := hG/U? is a second non-dimensional number independent of v which is here
O(1). This makes it clear that in the limit ¥ — 0 (with everything else kept fixed),
Gr — oo with w ~ v/Gr. The governing equation for the problem is then

%tl +2Q xu+u-Vu+ Vp— Viu=Grlt)x, (3.2)

the flow is assumed incompressible and a planetary rotation €2 is also included for com-
pleteness (|| = w). The oscillatory function I'(¢) is defined such that

L) =1 3.3
te[g}%w]l ] (3.3)

but is otherwise left unspecified for clarity. As before, the analysis starts by taking the
line integral of (3.2) along C(\,y) and integrating over y as above in §2 but now also
multiplying by T'(¢) to rectify the forcing pressure gradient. This leads to an extended
version of (2.8)

AGrT(t)? at//x+Fz -udrdy
+F(t)//A(5<+sz).[mxu+u.Vuv2u]dxdy (3.4)
Now long time averaging leads to
AGr(T(t)?) = Ft//x+Fz -udzdy)
t)//A(>‘<+FxZ)-[2Q><u+u-Vu—V2u]dxdy> (3.5)

where integration by parts in time has been used to transfer the time derivative onto I'.
Integrating over A € [0, A] and converting to a volume integral over V(A), gives

AGr(T( ///V(A) u-Vu—Viu]+[lax2Q-T,a]-udzdydz) (3.6)
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1r A 1 Transition
I region

. log C;

<>
O(ad)

X

FiGURE 2. Left: the 2D ridge tidal problem with the ocean represented by the region z < %

Right: a cartoon of the Moody diagram for pipe flow (Moody 1944): Cy := 5/(U3/h) lam-
inar flow has C; ~ 1/Re, turbulent smooth pipe data suggests C; ~ 1/(log Re)? at least to
Re = O(10®%) and turbulent rough pipe data has Cy ~ O(1) as Re — co. Three lines are shown
for rough pipe flow with the data increasing to higher C as the representative height of the
roughness increases.

for all A € [0,1]. The first term on the rhs is as before albeit with an extra factor of
I'(¢). Since this is bounded in modulus by 1, the subsequent estimates are unchanged.
The new second term on the rhs is of the form of Is and can be similarly estimated as
adding a new term

1 1
[ //FA max |[Ta x 20 — Fta|2dxdy} X [ max F)\} x A/ 105 (3.7
A€[0,£] (z,y)€A

0 (2.24). Since both © and T'; = O(wI') are O(v/Gr), the leading order version of (2.24)
is potentially modified to

Gr < Byle + (Bs + Bs(>VGr)\/e/{ + h.o.t. (3.8)

The minimiser, however, remains ¢ ~ ¢~/3 with the new term O(Gr~'/2) smaller than
the other two terms. Hence the rotation and oscillation are not important at leading
order in the bound on the energy dissipation rate for tidal flow over topography.

3.1. A simple example

Here we consider a 2D ridge of height a < % and horizontal extent ad

1 2
o af T —35LY\  2a% L
f(z) := asech ( 3 ) T tanh %a5 (3.9)

over x € [0, L] (the second term on the rhs ensures the roughness has zero mean over x):
see figure 2. This roughness function is not periodic over [0, L] but in the steep (6 < 1)
isolated (ad < L) ridge limit this can be ignored. In this limit, it is straightforward to
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approximate B; and Bjs as follows

16 IR EES R R 2a 1/2
Bl*mgﬁ?}i](prf) 2752 B”?{L/(1—2f)3dx ~ L= 20308

(using the fact that 2048/1155 < 2) so the dissipation rate per unit mass is

4aU3

< (i i 3/h4 .
e < L0 = 2a)75° (in units of v°/h%) (3.10)

(including the % to reflect the fact that the ocean is strictly in z < %) This can be

re-expressed using inertial units to give the familiar bound independent of the viscosity

4a

< . . 3 ) )
e < =205 (in units of U”/h) (3.11)

Since this is the leading term due to the ridge (the dissipation bound for zero topography
is O(6°) smaller), this expression can be viewed as giving the enhanced dissipation caused
by the ridge per unit length of the domain [0, L].

4. Discussion

Using a new bounding technique (Otto & Seis 2011; Seis 2015), this paper has derived
an upper bound on the energy dissipation rate (per unit mass) ¢ for pressure-driven flow
through a rough channel with bottom z = f(z,y) and top z = g(z,y) (f and g at least
C3) such that the average height is A in the limit of vanishing viscosity of the form

e < cU3/h

where U is the mean flow through the channel and

c::z max {\/1+F2,/1+F2+F2}
8 ? (zy)eA
1+F2 1+F2+F2) 2
// dx dy
flz,y)?

with F(z,y,\) = (1 — /\)f(x,y) + Ag(z,y) and A := [0,L,] x [0, L,]. The fact that
bound predicts that the dissipation rate approaches a finite limit (in inertial units) as
the viscosity vanishes - so-called Kolmogorov scaling - then captures the observed scaling
of turbulent data in rough pipes - see figure 2 for a cartoon of the classic Moody diagram
(Moody 1944) - and indicates that the well-known discrepancy between the bound and
data scalings in the smooth wall case (Constantin & Doering (1995); Plasting & Kerswell
(2005); Seis (2015) and figure 2) is an exception rather than the rule. Interestingly,
boundary crossflow produced by suction instead of roughness also seems to achieve the
same effect in plane Couette flow: bounds and data have the same Kolmogorov scaling for
non-zero suction but disagree for zero suction (Doering et al. 2000). These observations,
which may also extend to convection although the available data is so far only suggestive
(see Goluskin & Doering (2016)), substantially enhance the credentials of the bounding
approach as a viable way to extract key scaling laws in real turbulent flows where smooth
walls are not generic.

There is, of course, room for improvement. The bound derived here requires C® differ-
entiability of the roughness whereas it would be better (and more realistic) to only require

(SIS
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continuity and piecewise differentiability. This would allow sharp corners such as those
present in roughness created by sand granules to be treated. It is possible that better
functional analytic estimates may achieve this as well as reducing the numerical prefactor
¢ (e.g. by replacing the infinity norm present by a less extreme norm). However, it seems
difficult to see how the exponent in the scaling law (i.e. € ~ Re® U?/h as Re — 00) could
be changed. From a mathematical perspective, formulating the full variational equations
underlying the Otto-Seis ‘boundary layer’ method presents an enticing challenge with
the potential for revealing valuable insights into this new method. It was, after all, only
after the full variational equations were identified for the Doering-Constantin background
method that an intimate connection was made to the Malkus-Howard-Busse bounding
approach (Kerswell 1997, 1998).

A significant challenge for the bounding approach remains, however, deriving a dis-
sipation bound on shearing systems with rough boundaries (e.g. rough plane Couette
flow). Here, unlike pressure-driven flow through a stationary rough channel, one rough
boundary moving relative to another means that there has to be motion locally perpen-
dicular to one boundary and therefore work done by the pressure enters the calculation.
So far all bounding approaches eliminate the pressure as soon as possible so a totally
different approach will be needed. Nevertheless it is reasonable to suppose that a dis-
sipation bound will be derived with Kolmogorov scaling which is what is observed in
rough-walled Taylor-Couette flow. If one or both of the walls are smooth, however, the
observed dissipation rate then drops off like ~ 1/(log Re)? mimicking the situation in
pipe flow (Cadot et al. 1997; van den Berg et al. 2003).

Finally, an application of the new bound has been made to a problem of interest in
ocean modelling. This warrants further development to include stable stratification and a
refocus on the turbulent mixing that can be caused by isolated topography (typically by
internal wave breaking) as this is an important yet poorly-known input in ocean models
(e.g. see Melet et al. 2016 and references therein).

Acknowledgements. Many thanks to the referees who helped eliminate some typos in the
submitted manuscript.
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