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Secondary instabilities in rapidly rotating fluids:
inertial wave breakdown
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(Received 9 June 1998)

Inertial waves are a ubiquitous feature of rapidly rotating fluids. Although much is
known about their initial excitation, little is understood about their stability. Experi-
ments indicate that they are generically unstable and in many cases catastrophically
so, quickly causing the whole flow to collapse to small-scale disorder. The linear
stability of two three-dimensional inertial waves observed to break down in the
laboratory is considered here at experimentally small but finite Ekman numbers of
6 10−4. Surprisingly small threshold amplitudes for instability are found. The results
support the conjecture that triad resonances are the generic mechanism for secondary
instability in rapidly rotating fluids but also highlight the ability of geostrophic flows
to derive energy through a finite-amplitude inertial wave. This latter finding may go
some way to explaining the significant mean circulations typically observed in inertial
wave experiments.

1. Introduction
It is well known that inertial oscillations with a frequency less than twice the basic

rotation frequency can exist within a uniformly and rapidly rotating fluid (Kelvin
1880; Poincaré 1910; Cartan 1922). A large body of literature now exists cataloguing
how such modes may either be directly forced (Fultz 1959; Baines 1967; Johnson
1967; Aldridge & Toomre 1969; McEwan 1970; Stergiopoulos & Aldridge 1982,
1987; Rieutord 1991; Manasseh 1992, 1994, 1996; Kobine 1995, 1996; Tilgner 1998)
or produced via a bifurcation (Malkus 1968, 1989; Gledzer et al. 1974; Gledzer
& Ponomarev 1977, 1992; Vladimirov & Tarasov 1985; Vladimirov & Vostretsov
1986; Waleffe 1989; Kerswell 1993, 1994; Aldridge et al. 1997; Kerswell & Malkus
1998). The experimental work performed so far has not only largely confirmed
linear, inviscid, inertial-wave theory but also clearly suggested that inertial waves are
generically unstable above a threshold amplitude. This instability leads to complicated
nonlinear behaviour and typically triggers an abrupt breakdown of the whole flow
to small-scale disorder christened ‘resonant collapse’ by McEwan (1970) (Manasseh
1992).

A triad resonance in which two infinitesimal inertial waves form a three-wave
interaction with the finite primary wave is certainly the natural candidate for this
initial inertial wave instability or secondary bifurcation of the whole flow (e.g. McEwan
1970). The observed resonant collapse phenomenon strongly suggests that the next
or tertiary bifurcation leads directly to a strange attractor rather than a three-
frequency quasi-periodic motion (Ruelle & Takens 1971; Newhouse, Ruelle & Takens
1978). It has been hypothesized that the presence of large geostrophic flows may be
instrumental in this resonant collapse process (McEwan 1970; Kobine 1995). Such
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flows and how they are generated are a longstanding issue in rapidly rotating fluid
mechanics. It is well known that a small-amplitude inertial wave can only directly
drive a mean circulation at second order in its amplitude and then only through
the combined influences of nonlinearity and viscosity (Greenspan 1969). However,
experimental observations sometimes seem to find larger amplitude geostrophic flows
accompanying inertial waves than those which can be understood through formal
asymptotic theory (even including the effects of the Ekman boundary layer eruptions
– see Hollerbach & Kerswell 1995; Kerswell 1995). It is natural to speculate here that
such mean flows may be the direct result of inertial wave instability. Such a secondary
‘geostrophic’ instability could not be a triad resonance in keeping with Greenspan’s
(1969) observation.

Motivated by these issues, the purpose of this paper is to perform a linear stability
analysis for a three-dimensional, finite-amplitude inertial wave in the presence of
small but finite fluid viscosity, 0 < E � 1 (where E is the Ekman number). From the
prospective of the rotating fluid as a whole, this can be viewed as a secondary stability
analysis assuming that the primary inertial wave instability has saturated at some
small amplitude. Closely associated recent work by Lifschitz & Fabijonas (1996) (see
also Fabijonas, Holm & Lifschitz 1997) in inviscid, unbounded rotating systems using
a geometrical optics technique has shown that standing Kelvin waves are generically
unstable to short-wavelength perturbations. Since Kelvin waves are the plane wave
equivalent of contained inertial waves, this overall conclusion should carry over in
some sense and we seek to confirm that here for small but non-vanishing viscosity.
The particular inertial waves chosen, the range of amplitudes and Ekman numbers
considered are all motivated by the bifurcations observed in recent experiments
involving an elliptically distorted rotating cylinder of fluid (Malkus 1989, 1994;
Malkus & Waleffe 1991). In principle, therefore, time series data are available to test
the predictions made here. Despite this particular application, the analysis is kept as
general as possible by not including the initial generating mechanism for the primary
instability; in other words, the underlying basic flow is taken to be uniform rotation
without any elliptical distortion. The objectives are essentially threefold. Firstly and
most obviously, we want to establish that the inertial waves considered are indeed
unstable and to quantify the threshold amplitude for this secondary instability at
experimental Ekman numbers of E 6 10−4. Secondly, we want to understand the
structure of the secondary instability: is it always a triad resonance as conjectured
or are geostrophic flows also excitable? The latter would, as mentioned above, have
immediate implications for the circulations observed experimentally which do not
fit into the second-order framework of asymptotic theory. Finally, we would like to
determine whether the preferred (most unstable) secondary instability is robust over
changes of the primary wave amplitude A. Experiments do plausibly indicate that the
primary wave does saturate long before any secondary instability appears suggesting
the quasi-steady stability analysis pursued here. Results which indicate that the most
unstable secondary disturbance is the same over the range of relevant amplitudes A
would provide some a posteriori justification for this approach.

The plan of the paper is as follows. Section 2 introduces the governing equations for
a rapidly rotating, incompressible, constant-density fluid contained within a circular
cylinder. The structure of the inertial waves (primary instabilities) existant on the
underlying basic state of uniform rotation is then discussed before the secondary
instability analysis of one such primary wave is described. For small but finite Ekman
number, some compromise has to be made on the exact boundary conditions used in
the calculations and this is argued for here. Section 3 details the numerical techniques
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Secondary instabilities in rapidly rotating fluids 285

used and § 4 presents the results which are then discussed in § 5. The Appendix gathers
together a relevant pseudo-asymptotic calculation and numerical data on the viscous
decay rates of two inertial waves for small but finite Ekman number obtained during
the course of the study.

2. Formulation
We consider the motion of a viscous, incompressible, constant-density fluid within

a circular cylinder of radius R and height Rd rotating uniformly about its axis at
rate Ω. The equations of motion for the fluid velocity in the frame of rotation of the
cylinder are

∂u

∂t
+ u · ∇u+ 2k̂×u+ ∇p = E∇2u, (2.1)

∇ · u = 0, (2.2)

with boundary conditions

u = 0|∂V . (2.3)

The basic rotation rate, Ω, cylindrical radius, R, and density, ρ, have been used to
non-dimensionalize the system, with the Ekman number E = ν/ΩR2 appearing as
the non-dimensionalization of the kinematic viscosity ν.

2.1. Primary instability: inertial waves

The inviscid and small velocity limits give rise to the well known inertial wave problem
(Greenspan 1968)

∂u

∂t
+ 2k̂×u+ ∇p = 0, (2.4)

∇ · u = 0, (2.5)

with reduced boundary conditions

u · n̂ = 0|∂V . (2.6)

This is the underlying homogeneous problem which defines the neutral normal modes
of oscillation of a contained rotating fluid and is the basis for understanding the
primary instability of an almost uniformly rotating fluid (e.g. Kelvin 1880; Fultz 1959;
Wood 1966; Johnson 1967; Greenspan 1968; McEwan 1970). Separable solutions exist
(Greenspan 1968) of the form

u =


1
2
i{(λ+ 2)Jm−1(ks)− (λ− 2)Jm+1(ks)} cos (lπz/d)

− 1
2
{(λ+ 2)Jm−1(ks) + (λ− 2)Jm+1(ks)} cos (lπz/d)

iλkd(πl)−1Jm(ks) sin (lπz/d)

 ei(mφ+λt), (2.7)

p = −1

k
Jm(ks) cos (lπz/d) ei(mφ+λt), (2.8)

in cylindrical coordinates (s, φ, z) where

λ =
±2

(1 + k2d2/(πl)2)1/2
,
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286 R. R. Kerswell

and k is a solution, indexed by n such that 0 < kn=1 < kn=2 . . ., of

s
d

ds
Jm(ks) +

2m

λ
Jm(ks) = 0|s=1.

Three numbers, l, n ∈ N, and m ∈ Z, are sufficient to specify the inertial mode and in
particular the frequency λ = λlmn. These indices correspond roughly with the number
of nodes axially, radially, and azimuthally respectively in the pressure eigenfunction.

2.2. Secondary instability

In order to study the prevalence of secondary instabilities, we focus on two particular
inertial waves which are easily excited in the laboratory through the elliptical insta-
bility (Malkus 1989, 1994; Malkus & Waleffe 1991) and therefore for which there
are experimental data. Generically, the elliptical instability manifests itself through
the resonant growth of two different inertial waves which form a resonant triad
with the underlying ‘wave’ of elliptical distortion. A relatively simple ‘subharmonic’
instability arises when the two inertial waves excited are complex conjugates of each
other (Kerswell 1994). For this to be the dominant instability, an inertial wave with
azimuthal wavenumber m = 1 must be tuned by varying the cylinder height d until
its frequency in the rotating frame, λ, is sufficiently close to 1 (where the definition
here of ‘closeness’ depends on the fluid’s viscosity). Two experimental configurations
in which these subharmonic elliptical instabilities have been observed are cylinders
of height d = 1.9121 and d = 3.9796. The excited inertial wave in each of these two
cases is uniquely defined by the azimuthal, axial and radial wavenumbers, m = 1,
α = 2π/d and k =

√
3α, and d is such that the frequency λ = 1 (for E = 0). Since

λlab = λ− m = 0, these waves are conveniently steady in the laboratory frame which
is therefore the natural frame in which to consider their stability.

Ideally, we would like to study the linear stability of these inertial waves in
the experimental regime where the fluid viscosity is small (so the concept of an
inertial wave still makes sense) but finite, that is, typically 0 < E 6 10−4. This,
of course, formally requires numerically resolving E1/2 Ekman boundary layers on
both curved and flat surfaces of the rigid cylindrical container for a general three-
dimensional disturbance, which is still not computationally feasible (Kerswell &
Barenghi 1995). One drastic approach to this problem is to consider the inviscid
stability of the inertial wave, which is well within reach numerically and theoretically
appealing. However, the results prove difficult to interpret on their own given that
some instabilities will disappear or their growth rates be more severely reduced
than others in an non-obvious way under the introduction of viscosity. Therefore,
as a necessary compromise, we primarily consider retaining the fluid’s viscosity
but relax the non-slip boundary conditions on the top and bottom surfaces to
those of the stress-free type. This has the effect of reducing an impractical stability
analysis into now only a difficult one. Qualitatively, the leading viscous damping of
inertial waves is retained at the correct order with their damping rates and frequency
shifts remaining O(E1/2) although the actual numerical coefficients are obviously
reduced somewhat. This is not true, unfortunately, for geostrophic modes whose
viscous dissipation occurs dominantly in the non-slip horizontal Ekman boundary
layers. The viscous damping for these modes is reduced from O(E1/2) to O(E) by
the introduction of stress-free boundary conditions. However, the results we obtain
below using this reduced model can easily be re-interpreted to take account of this
difference. The ‘reduced’ viscous model has also the considerable benefit of making
contact with other current numerical work with similar aims which uses exactly the
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same model but is a complementary time-stepping calculation (Mason & Kerswell
1998).

The inviscid problem studied in this paper considers the linear stability of the steady
flow

U = sφ̂+ A

 −{3J0(ks) + J2(ks)} sinφ cos αz

−{3J0(ks)− J2(ks)} cosφ cos αz

−2
√

3J1(ks) sinφ sin αz

+ O(A2) (2.9)

in the laboratory frame as a function of A for the two inertial waves of interest.
To make the subsequent stability calculation as general as possible, the generating
mechanism for the inertial wave was not included. In other words, we assume
that the inertial wave has been excited to some saturation amplitude where it is
maintained. This amplitude A of the inertial wave is assumed small (in fact A 6 0.075
throughout for E 6 10−4) so that the O(A2) terms can be ignored. Of course, the
leading-order corrections, the second-harmonic and mean-flow terms, are calculable
and can be included for more completeness but this was not attempted here. These
terms will lead to different triad resonances with O(A) smaller growth rates than
those produced by the leading O(A) inertial wave. Interestingly, experimental data
show these inertial waves appearing to maintain their identity up to amplitudes of
A ≈ 0.1 – see figure 1 – which tends to support this simple-minded approach. For the
viscous stability analysis the viscous analogue of this basic flow (2.9) was obtained
numerically by solving the appropriate ‘primary’ eigenvalue problem normalized such
that u(0, φ, z) = −3A sin φ cos αz to be consistent with (2.9). The addition of viscosity,
of course, acts to slightly modify the frequency of the inertial wave by an O(E1/2)
amount. Formally, we should move into a correspondingly slowly rotating frame
to retain steadiness of the inertial mode and proceed from there. However, for our
purposes this is a needless complication which will only act to recalibrate things very
slightly. To simplify matters, we imagine that the cylinder height d and hence the
axial wavelength have changed by O(E1/2) to precisely compensate for the viscous
frequency shift. This is after all how the instability is achieved experimentally.

The linearized viscous equations are

∂u

∂t
+U · ∇u+ u · ∇U + ∇p = E∇2u, (2.10)

∇ · u = 0, (2.11)

subject to non-slip conditions at the sides and stress-free conditions at the top and
bottom surfaces,

u = 0, s = 1; u · ẑ = 0,
∂

∂z
(ẑ×u) = 0, z = 0, d. (2.12)

Separating the time dependence by the usual ansatz u(x, t) = u(x) eσt converts the
problem (2.10)–(2.12) into an eigenvalue problem for σ with Re(σ) > 0 indicating
linear instability. One of the aims of the calculation was to learn how large A could
be as a function of E before an inertial wave loses stability. The particular features of
note here are that the basic state is three-dimensional and parametrized by the free
amplitude of the inertial wave in addition to the Ekman number in the viscous case,
U = U (s, φ, z;A,E). Only the special form of the φ and z dependence of U coupled
with A� 1 rendered the eigenvalue problem numerically feasible at small E.
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Figure 1. A photograph of the elliptically excited inertial wave m = λrot = 1, l = 2 for a cylinder of height-to-radius ratio d = 3.9796 (Malkus 1989,
1994). The dark snaking central line is thought to represent the perturbed rotation axis of the flow. A contour plot of the kinetic energy density
alongside for A = 0.1 in (2.9) gives a reasonable image of this flow. (The deflection of the fluid’s rotation axis from the cylinder’s axis of symmetry is
directly proportional to A.)
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3. Numerics

The problem (2.10)–(2.12) was solved as stated – 3 momentum + 1 continuity
equations – in terms of the primitive variables (u, v, w, p) rather than any reduced
representation of the velocity field such as a poloidal–toroidal decomposition. Expe-
rience indicates that the subsequent eigenvalue problem tends to have more stable
convergence properties and less spurious eigenvalues (Kerswell & Davey 1996). The
equations were imposed by collocation in s, and Galerkin projection in both φ and
z. The latter was used to exploit the limited banded structure of the discretization
matrices so that an inverse iteration scheme was also available in addition to the stan-
dard generalized eigenvalue approach. This crucially allowed eigenvalues necessarily
calculated at great cost by using a generalized eigenvalue algorithm to be checked for
convergence and ‘polished’ to greater accuracy.

Computationally, rather than viewing the interior of the cylinder as the region
{0 6 s 6 1,−π 6 φ < π}, we consider the equivalent domain {−1 6 s 6 1, 0 6 φ < π}.
The solution in −1 6 s < 0 can be constructed from that in 0 < s 6 1 through the
known symmetries of the cylindrical polar coordinate system (for example if m is
odd, u is an even function of s – see the appendix of Kerswell & Davey 1996)
and so we need only collocate the equations over the positive zeros of the 2Nth
Chebyshev polynomial T2N(s) = cos (2N cos−1 s). Boundary conditions need then only
be imposed at s = 1 which is easily built-in to each spectral expansion function. This
approach is in contrast to the normal technique of expanding in modified Chebyshev
polynomials Tn(2s − 1), n = 0, 1, 2, . . . , N, collocating over, say, the Gauss–Lobatto
points sj = 1

2
(cos [jπ/(N− 1)] + 1), j = 1, 2, . . . , N− 1 (e.g. O’Sullivan & Breuer 1994)

and explicitly imposing the regularity conditions

(m± 1)(iu∓ v) = imw = imp = 0 (3.1)

at the axis. By building the appropriate radial parities into the expansions, the correct
axial behaviour automatically follows without need to explicitly impose the regularity
conditions (3.1). Most important of all, however, is that this prescription which
exploits the symmetries in s concentrates the collocation points entirely near s = 1
exactly where the Ekman boundary layer must be resolved. The spectral expansions
for the solutions sought are

u =
N−1∑
n=0

M+M0∑
m=M0

L∑
l=0

 unmlU
(m)
n (s) cos [(l + ∆) αz]

vnmlV
(m)
n (s) cos [(l + ∆) αz]

wnmlW
(m)
n (s) sin [(l + ∆) αz]

 eimφ+σt,

p =
N−1∑
n=0

M+M0∑
m=M0

L∑
l=0

pnml P
(m)
n (s) cos [(l + ∆) αz] eimφ+σt


(3.2)

where ∆ = 0 or 1
2

(recall that α = 2π/d) and the boundary conditions are implicitly
built-in to the spectral functions,

[U(m)
n (s), V (m)

n (s), W (m)
n (s), P (m)

n (s)]

=

{
[Θ2n+3(s), Θ2n+3(s), Θ2n+2(s), T2n(s)] , m even

[Θ2n+2(s), Θ2n+2(s), Θ2n+3(s), T2n+1(s)] , m odd
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290 R. R. Kerswell

and in the inviscid case

[U(m)
n (s), V (m)

n (s), W (m)
n (s), P (m)

n (s)]

=

{
[Θ2n+3(s), T2n+1(s), T2n(s), T2n(s)] , m even

[Θ2n+2(s), T2n(s), T2n+1(s), T2n+1(s)] , m odd

with Θn(s) = Tn(s) − Tn−2(s). (Note when ∆ = 0 wnm0 = 0 ∀n, m, un00 = 0 ∀n
and p000 = 0.) Implicit in the representation (3.2) is the fact that the value of ∆
partitions the eigensolutions into two different families which either have complete
axial wavelengths enclosed within the cylinder (∆ = 0) or an odd number of half-
wavelengths (∆ = 1

2
). Additionally, since U (only) contains components proportional

to e±i(φ+αz) and e±i(φ−αz), the ∆ = 0 family can be further subdivided into eigensolutions
where l+m is even and eigenfunctions where l+m is odd. In summary we may examine
linear stability by solving for the three families separately

1. ∆ = 0, l + m is even, 2. ∆ = 0, l + m is odd, 3. ∆ = 1
2
. (3.3)

These will be referred to as modes 1, 2 and 3 hereafter. Since l + ∆ can only be
zero for ∆ = 0, geostrophic flow instabilities are either of mode type 1 or 2: mode 3
instabilities must be triads.

It is tempting to simplify the calculation further by considering the travelling wave
analogue of the standing inertial wave in an infinite cylinder. The basic flow would
then only have components e±i(φ+αz) or e±i(φ−αz) and the stability analysis would then
be a much easier two-dimensional computation. However, these results would only
be useful if the dominant instabilities realized in the full three-dimensional system
are essentially two-dimensional in the parameter range of interest. Experience showed
this only to be true for very small Ekman numbers E 6 10−5.5 (see below).

4. Results
Numerically, the search for secondary instabilities proceeds by systematically sweep-

ing across the two-dimensional azimuthal–axial wavenumber space with given trun-
cations M and L to find all unstable eigenfunctions. The inclusion of viscosity, which
acts to dampen preferentially the high-wavenumber modes, crucially allows attention
to be focused on the small wavenumbers. Additionally, an initial search quickly indi-
cates that the growing modes are invariably located in the very low axial wavenumber
range. This motivated the expansions used in (3.2) which are built to start at the
lowest possible axial wavenumber. In contrast, the azimuthal wavenumber ‘origin’
M0 must be varied to capture all the important instabilities.

A priori, it is not clear what parameter range in (A,E) space is accessible to this
procedure given equipment limits in speed and memory. The initial identification
of instabilities has to be done using an eigenvalue code which using a truncation
[N,M,L] has storage requirements O(N2M2L2). The truncation in M and L must be
large enough to capture all the Fourier modes coupled together into an eigenfunction
yet small enough to allow enough radial truncation to resolve the Ekman boundary
layers of each Fourier mode. One obvious limiting scenario is E becoming too small,
forcing the radial truncation N to increase more than the product ML can be reduced
as Acrit also decreases. The other is E becoming too large, forcing Acrit and hence ML
to increase faster than N decreases. Fortunately, an initial investigation revealed that
secondary instabilities at experimental Ekman numbers of 10−5 to 10−4 are resolvable
using a 300MB Ultraspark workstation. The search over M0 was started at M0 = −3
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Figure 2. The growth rates of secondary instabilities plotted against amplitude of the underlying
inertial wave for the inertial wave with m = 1, l = 2 in d = 1.9121 at E = 10−4. The dotted line
indicates modes of type 1, dashed line modes of type 2, and the solid line modes of type 3. Each line
is also labelled with a representative frequency (this of course varies slightly with A). The inertial
wave is unstable when its amplitude exceeds ≈ 0.02.

and then concentrated on positive m 6 10. This is sufficient to capture all instabilities
over the range −10 6 m 6 10 since any eigenfunction has a complex conjugate partner
found by reflecting in m = 0 for ∆ = 0 or m = 1

2
for ∆ = 1

2
. Typical truncations for the

full eigenvalue code were [25, 7, 5] (using the notation [N,M,L]) for modes 1 and 2
of (3.3) and [25, 6, 3] for mode 3. Unstable eigenfunctions were verified and ‘polished’
using an inverse iteration code which exploited the finite bandwidth in m. Typical
truncation levels for this were [40, 6, 5] to [30, 9, 7] for modes 1 and 2, and [30, 7, 3] to
[20, 5, 5] for mode 3. All growth rates were resolved to at least 2 significant figures.

4.1. d = 1.9121, E = 10−4

Figure 2 shows that the inertial wave with λ = m = 1, l = 2 in a container
of height-to-radius ratio of 1.9121 is unstable when its amplitude (as defined in
(2.9)) exceeds 0.02 at E = 10−4. Initially, the most rapidly growing instability has
a frequency of ≈ −3.35 until at A ≈ 0.04 it is surpassed by two modes of almost
identical growth rates who have frequencies of ≈ ±1.00 (In fact, by an amplitude
of A = 0.075, the first instability is now completely stabilized.) The (m, ` = l + ∆)
structures of these modes are illustrated in table 1(a–c) which are in effect two-
dimensional spectra. The numbers shown there (and in other later tables of the
same form) indicate how the energy of the eigenfunction is distributed amongst the
constitutive Fourier modes. This helps to identify the character of the instability.
For example, the −3.35 initial instability, table 1(a), is clearly the result of a three-
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1.2 2.1
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0.4 0.332.50.50.1

1 2 3 4 5

m

F

(a)

(b)

0.2 0.1

0.1 0.2

1.0 0.6 0.1

9.7 15.0

72.3 0.7

4

3

2

1

0

–1 0 1 2 3

m

F

(c)
5

4

3

2

1

0

F

0.5

0.1

2.1

0.3

4.5

0.6

79.0

1.1

7.8

3.3

0.1

0.3

0.2

–3 –2 –1 0 1 3
m

Table 1. The structure of the instabilities at d = 1.9121 and E = 10−4. The number shown
at (m, ` = l + ∆) is the percentage of the total modal energy contained within that Fourier
constituent of the eigenfunction (only energies which are larger than 0.05% are shown). The
instabilities are (a) σ = (0.11 × 10−1,−3.337) (truncation [30, 5, 3] M0 = 1) at A = 0.035 (trun-
cations [35, 5, 2] and [20, 5, 4] also give that the growth rate is 0.11 × 10−1 to 2 significant fig-
ures), (b) σ = (0.342 × 10−1,−1.0036) (truncation [30, 8, 5] M0 = −3) at A = 0.075, and (c)
σ = (0.343× 10−1, 1.0036) (truncation [25, 7, 7] M0 = −4) at A = 0.075.

wave resonance between the finite-amplitude inertial wave and inertial modes with
(m, `) values of (3, 1

2
) and (4, 3

2
). The instability with frequency ≈ −1, table 1(b), is

predominantly a geostrophic flow (z-independent) essentially steady in the rotating
frame, whereas the instability with frequency ≈ 1, table 1(c), looks to be effectively
axisymmetric and to have the same axial wavelength as the underlying inertial
wave.

The instability with dominant geostrophic component is clearly not a triad-type
instability since it is straightforward to prove that a geostrophic flow cannot form a
resonant triad with two inertial waves (Greenspan 1969). This is particularly easy to
see in the cylindrical setting. Consider two inertial waves

u± = û±(s, φ) e±i(αz+λt) (4.1)
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which satisfy the inertial wave equation

±iλu± + 2k̂×u± + ∇p± = 0. (4.2)

The curl of (4.2) implies that ∇×u± = (2α/λ) u± which means that the interaction
between these two waves which could possibly drive a geostrophic flow in fact vanishes
identically,

u+×(∇×u−) + u−×(∇×u+) = 0. (4.3)

Instead, the geostrophic component must be the sole leading term in an asymptotic
expansion for A→ 0 of the following form:

u = eA
2σt

[
ûG(s) eimφ + A

∑
j,k=±1

ûjk(s) ei[m+j]φ+ikαz+ijλt + A2v̂G(s) eimφ + · · ·
]

(4.4)

in the rotating frame where we assume a geostrophic component of azimuthal
wavenumber m, σ is the (possibly complex) growth rate on a O(1/A2) timescale
and λ is the underlying inertial wave frequency (= 1 in this paper). To lowest order,
the geostrophic balance for uG(s, φ) = ûG(s) eimφ is

2k̂×uG + ∇pG = 0, (4.5)

which has solution uG = 1
2
k̂×∇pG where pG = p̂G(s) eimφ and p̂G(s) is an arbitrary

function which vanishes at s = 1. At next order, we have the forced equations

ijλujk + 2k̂×ujk + ∇pjk = U jk×(∇×uG) + uG×(∇×U jk), j, k = ±1, (4.6)

where U jk is the ei(jφ+kαz+jλt) component of the underlying flow (2.9) at O(A) in the
rotating frame and ujk(s, φ, t) = ûjk(s) ei(m+j)φ+ikαz+ijλt. At second order in A, we have

2k̂×vG + ∇PG =
∑
j,k=±1

U jk×(∇×u−j−k) + u−j−k×(∇×U jk)− σuG, (4.7)

where vG(s, φ) = v̂G(s) eimφ. The condition for this equation to have a solution is

that k̂ · ∇×RHS of (4.7) should vanish. This is a linear eigenvalue problem for pG(s)
with eigenvalue σ. Numerically solving this at E = 0 and A = 0.075 confirms that
Re(σ) is +0.046 for the geostrophic instability shown in figure 2. This growth rate is
reduced to +0.034 at E = 10−4 albeit with stress-free boundary conditions: realistic
non-slip conditions would dampen the instability further. At E = 10−5 and A = 0.02,
97.2% of the modal energy is observed to reside within the geostrophic component
rather than just 72.3% at E = 10−4 and A = 0.075 consistent with this theoretical
picture. Furthermore, since the (inviscid) geostrophic growth rates are O(A2), we
can anticipate that the threshold amplitude, Acrit, for instability should scale as
O(E1/2) or O(E1/4) depending on whether the boundary conditions on the top and
bottom cylindrical surfaces are stress-free or non-slip respectively. Figure 3 provides
a dramatic confirmation of the scaling Acrit = O(E1/2) in the particular case of the
geostrophic instability isolated here. (Figure 4 indicates the convergence with radial
truncation for this instability at E = 10−6 and A = 10−2.7.)

It should be emphasized that since the (inviscid) geostrophic growth rates are
O(A2), this instability appears asymptotically subdominant to the perfectly tuned
triad growth rates which are O(A) (see § 5). However, the fact that A is finite in
laboratory and numerical experiments, that large numerical coefficients may prefix
these growth rate scalings and that the triads may be imperfectly tuned all can
potentially overturn this situation. Indeed, we see this in figure 2.
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Figure 3. A log-log plot of how the critical amplitude for instability, Acrit, varies with the Ekman
number E for the geostrophic instability of figure 4(b) (d = 1.9121). The slope of the line is
remarkably constant at 0.5± 0.001 confirming the asymptotic prediction Acrit = O(E1/2).

2

0
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–6

–8

10 20 30 40 50 60 70 80 90 100

(a)

(b)

(c)

n

lo
g 1

0|
u n

10
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Figure 4. Convergence with radial truncation is illustrated here for the geostrophic instability. The
absolute value of the spectral coefficients of the radial velocity component, |un10| (see (3.2)), are

plotted on a log scale against spectral degree n at E = 10−6 and A = 10−2.7 for truncations (a)
N = 100 (solid), (b) N = 75 (dash-dot) and (c) N = 50 (dotted). Associated eigenvalues are as
follows:

N Im(σ) Re(σ)

100 − 0.999992 − 0.996523× 10−5

75 − 0.999992 − 0.996520× 10−5

50 − 0.999992 − 0.991621× 10−5
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Figure 5. The growth rates of secondary instabilities plotted against amplitude of the underlying
inertial wave for the inertial wave with m = 1, l = 2 in d = 3.9796 at E = 10−4. The dotted line
indicates modes of type 1, dashed line modes of type 2, and the solid line modes of type 3. Each
line is also labelled with a representative frequency which varies slightly with A. Again the inertial
wave is unstable when its amplitude exceeds ≈ 0.02.

The possibility that geostrophic flows can grow on an inertial wave is extremely
noteworthy since the precise generative mechanism for experimentally observed mean
(time-averaged in the rotating frame) flows remains a recurring issue (Fultz 1959;
Malkus 1968; McEwan 1970; Manasseh 1992, 1994, 1996; Kobine 1995, 1996). Work
by Busse (1968) and Greenspan (1969) points towards a combination of viscous and
nonlinear effects in the Ekman boundary layer driving these flows directly (see also
Kerswell 1995). In this case, the steady (relative to the rotating frame) flow produced
must be strictly second order in the amplitude A of the primary inertial wave which
is not always convincingly borne out in experiments. The possibility of a secondary
‘geostrophic’ instability immediately removes this strict O(A2) expectation for the size
of the mean flow. Instead, for example, one could naively anticipate potentially much
larger saturation amplitudes for the mean flow (presuming they exist) which scale as
the square root of the initial growth rate, βA−νE1/2, where β and ν are O(1) numbers
representing the ‘inviscid’ growth rate and viscous decay rate respectively.

4.2. d = 3.9796, E = 10−4 and 10−5

Figure 5 illustrates the stability situation for the inertial wave λ = m = 1, l = 2 in
the cylinder of height-to-radius ratio 3.9796 at E = 10−4. Again, the inertial wave is
unstable by an amplitude of A = 0.02 to a mode 3 instability which this time has
a frequency ≈ −2.79. Table 2 indicates that this is a triad instability between the
underlying finite-amplitude inertial wave and inertial waves with (m, `) = (2, 3

2
) and
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1.4 27.8 0.3

0 1 2 3 4

F

m

E = 10– 4 A = 0.075 r = (0.30 × 10–1, –2.79) E = 10– 4.5 A = 0.05 r = (0.24 × 10–1, –2.76)

2.5 2.6 0.3

1.5 68.8

0.5 0.6 0.3 27.1 0.1

1 2 3 4

F

m

E = 10– 5 A = 0.02 r = (0.91 × 10–2, –2.75) E = 10– 5.5 A = 0.01 r = (0.42 × 10–2, –2.74)

F

m

F

m

2.5 0.4 0.1

1.5 72.9

0.5 0.1 0.1 26.5

1 2 3

2.5 0.1

1.5 73.3

0.5 26.5

1 2 3

Table 2. The structure of the (2, 3
2
)–(3, 1

2
) resonance.

5

4

3

2

1

0

0.1 0.2 0.1

0.6 0.9

0.2 3.7 0.7

0.1 2.6 55.2

0.5 20.7 0.7

0.3 3.4 9.6 0.3

2 3 4 5 6 7 8
m

F

Table 3. d = 3.9796, A = 0.075 E = 10−4 σ = (0.14× 10−1,−5.44) (truncation [25, 9, 7] M0 = 1).

(3, 1
2
). This mode remains the most unstable except for a small interval centred on

A = 0.045 where a mode 1 instability of frequency ≈ −5.44 is temporarily preferred:
see table 3. The other instabilities are shown for completeness and to illustrate how
the complexity of the situation develops with increasing A.
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Figure 6. The growth rates of secondary instabilities plotted against amplitude of the underlying
inertial wave for the inertial wave with m = 1, l = 2 in d = 3.9796 at E = 10−5. The dotted line
indicates modes of type 1, dashed line modes of type 2, and the solid line modes of type 3. The
same dominant instability appears at this lower Ekman number.

Video footage is available of the inertial wave breakdown in this geometry (Malkus,
private communication) and with it the possibility of obtaining a time-evolving
frequency spectrum of the flow. Motivated by this, calculations were performed at
E = 10−5 in order to assess how robust the instability picture of figure 5 is with
changing Ekman number (experiments have E = 5 × 10−5). Figure 6 clearly shows
that the most prominent instability at E = 10−4 is also the most unstable at E = 10−5

(note that the critical amplitude is now down at just over 0.006! − at E = 10−6,
it is further reduced to 0.004; see the Appendix). This tentatively suggests that the
(2, 3

2
)–(3, 1

2
) resonance which has a frequency of ≈ 2.7/2.8 is the most important

secondary instability and should be observable in the time series data. The structures
of the nearest competitor instabilities, which coincidentally are not the same as at
E = 10−4, are given in table 4.

It must be emphasized, of course, that this prediction is tentative for a number
of reasons. First, we have not considered the full experimental configuration which
has non-slip boundary conditions on the top and bottom surfaces rather than the
stress-free conditions used here. This means that the numerically calculated growth
rates will be slightly reduced in reality. Whether this additional damping actually
changes the character of the most unstable instability, however, cannot be known
for certain. Given the low wavenumbers of the leading instability identified here, it
seems likely that the instability we have identified remains preferred. Secondly, the
secondary instability analysis offered here assumes that the underlying primary inertial
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0

1.8 0.5
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0.8 40.2

0.7 0.5
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m

F

(a) (b)

4

3

2

1

1.0 0.3

0.7 56.4

0.540.2

0.3 0.5

6 7 8 9

m

F

Table 4. d = 3.9796, A = 0.02 E = 10−5: (a) σ = (0.71× 10−2,−4.60) (truncation [30, 6, 5] M0 = 2)
(b) σ = (0.84× 10−2,−7.42) (truncation [30, 6, 7] M0 = 4).

wave has some steady (small) amplitude whereas in practice this wave is observed to
gradually grow up to an amplitude of ≈ 0.1. Against this, the overall dominance of
one secondary instability as evidenced in figures 5 and 6 over a range of amplitudes
and Ekman numbers is persuasive for its importance in the breakdown observed. A
final related comment is that the initial generating mechanism for the primary inertial
wave has not been considered here in the interests of generality. The streamlines of
the basic experimental flow (Malkus 1989) are not circular but elliptical in fact by
a few percent. This distortion can excite other wave resonances subdominant to the
primary inertial wave seen to grow. Whether these ultimately catch and destroy the
saturated primary instability or whether secondary instabilities of the type described
here are more important remains an outstanding question.

4.3. d = 3.9796, E = 0

An inviscid stability calculation was also performed for the geometry d = 3.9796.
Figure 7 collects together all the inviscid secondary instabilities which have frequencies
in the interval (−10, 0) for the inertial wave amplitude A = 0.05. A number of the
instabilities (labelled) are familiar from the viscous calculations but others are not
(unlabelled). In particular, the instability with frequency −2.76 highlighted above is
not obviously important, which emphasizes the limited use of the inviscid calculation
in isolation.

5. Discussion
In this paper, we have presented instability results for two inertial waves which

support McEwan’s conjecture that an inertial wave is generically unstable to triad res-
onances. This resonant triad mechanism for instability demonstrated here is straight-
forward. In the absence of viscosity, consider a basic underlying inertial wave

u0 = û0(s) ei(m0φ+l0αz+λ0t) (5.1)
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0

Figure 7. Growth rates plotted against frequencies for all secondary inviscid instabilities with
frequencies in the interval (−10, 0) for a primary inertial wave amplitude of A = 0.05. The
circles, crosses and squares correspond to modes 1, 2 and 3 respectively. Instabilities with viscous
counterparts already plotted elsewhere are labelled with a representative frequency.

and assume that this forms an exactly tuned resonant triad with the inertial waves

u1 = û1(s) ei(m1φ+l1αz+λ1t), u2 = û2(s) ei(m2φ+l2αz+λ2t), (5.2)

that is,

m2 = m1 + m0, λ2 = λ1 + λ0, l2 = l1 + l0, (5.3)

where all frequencies are relative to the rotating frame. In the context of this paper,
the underlying inertial wave is fixed in amplitude so we have a velocity field expansion
of the following form:

u = Au0 + ε [a(τ) u1 + b(τ)u2] + O(εA, ε2, A2) (5.4)

where τ = At represents the relevant slow timescale for growth. The amplitude
equations for u1 and u2 are then

ȧ = 〈u1, u2×(∇×u∗0) + u∗0×(∇×u2)〉 b,
ḃ = 〈u2, u1×(∇×u0) + u0×(∇×u1)〉 a,

}
(5.5)

where 〈u, v〉 =
∫ ∫ ∫

u∗ · v dV and the inertial waves u1, u2 are assumed normalized

(〈ui, uj〉 = δij). Seeking solutions of the form (a(τ), b(τ)) = (â, b̂) eστ requires

σ2 =

(−4α2

λ1λ2

)(
l0λ1 − λ0l1

λ0

)2

|〈 u1, u2×u∗0 〉|2 (5.6)
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Figure 8. A log-log plot of how the critical amplitude for instability, Acrit, varies with the Ekman
number E for the (2, 3

2
)–(3, 1

2
) triad instability at d = 3.9796 (solid line). The dotted line is

the asymptotic two-wave estimate given by expression (A 4). The dashed line segment shown for
10−6 6 E 6 10−5.5 is the numerical result obtained by artificially restricting the truncation to include
only the two main Fourier components (2, 3

2
) and (3, 1

2
). This lies directly over the asymptotic result

which has been suppressed there for clarity.

where the relation ∇×u = 2lα/λ u found by curling the inertial wave equation has been
used to simplify the coupling elements. Instability on O(1/A) timescales is assured if
the frequencies λ1 and λ2 (in the rotating frame) are of opposite signs (and of course
the coupling element does not vanish).

In reality, this instability will only occur if the amplitude of the underlying inertial
wave exceeds a certain threshold value determined by the combined effects of viscous
damping and frequency detuning. A calculation for the (2, 3

2
)–(3, 1

2
) triad instability

of § 4.2 (see the Appendix) is entirely typical and illustrates that we can expect
Acrit = O(∆, E1/2) where ∆ is the frequency detuning. Figure 8 contains a favourable
comparison of the numerically calculated threshold amplitude for this triad instability
as a function of E with the asymptotic prediction of (A 4) in the Appendix. (Figure 9
indicates the convergence with radial truncation for the (3, 1

2
) Fourier mode of the

triad instability at E = 10−5 and A = 10−2.1.) The source of the small discrepancy
is undoubtedly the fact that the numerical solution is still not just the two main
resonating waves even down at E = 10−6 when the threshold amplitude is A = 0.00395
(see the Appendix). Forcing this to be so through severe truncation produces a revised
threshold curve overlaying the two-wave asymptotic prediction: see figure 8.

A priori prediction of which secondary triad instability will appear first for a growing
inertial wave is fraught with difficulties. The starting point is to identify inertial wave
pairings with small ∆s which involves extensive numerical searching. If ∆ � E1/2,
which is the geophysically interesting rapid-rotation limit, choosing which of these
potential triads is preferred at a given finite amplitude A then requires knowledge of

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

12
 M

ar
 2

02
2 

at
 1

1:
53

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
98

00
39

54

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112098003954


Secondary instabilities in rapidly rotating fluids 301
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n

lo
g 1

0|
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30
|, 

lo
g 1

0|
v n

30
|

Figure 9. Convergence with radial truncation is illustrated here for the (3, 1
2
) mode of the

(2, 3
2
)–(3, 1

2
) triad instability. The absolute value of the spectral coefficients for the radial (lower

curve) and azimuthal (upper curve) velocities, |un30| and |vn30| (see (3.2)), are plotted on a log scale
against spectral degree n at E = 10−5 and A = 10−2.1 for truncations (a) N = 65 (solid), (b) N = 50
(dash-dot), (c) N = 35 (dotted) and (d) N = 20 (dashed). Associated eigenvalues are as follows:

N Im(σ) Re(σ)

65 − 2.74281 + 0.146207× 10−2

50 − 2.74281 + 0.146207× 10−2

35 − 2.74281 + 0.146244× 10−2

20 − 2.74280 + 0.148398× 10−2

how strongly each pairing is coupled by the underlying inertial wave. If ∆ = O(E1/2),
which is typically the experimental situation, the presence of viscosity acts to further
complicate matters by preferentially stabilizing some triads and destabilizing others
through producing viscous frequency shifts which either increase or decrease ∆. Given
these sorts of uncertainties, an explicit stability calculation is the safest and, in fact,
may be the most efficient way to proceed. Pursuing this here has revealed surprisingly
small threshold amplitudes for inertial wave instability.

We have also found an unexpected form of instability which to leading order
gives rise to a geostrophic flow. This has an inviscid growth rate of O(A2) and
therefore appears asymptotically subdominant to the triad instability. However, since
the geostrophic instability essentially ‘drives itself ’ through intermediary forced flows,
there is not the obvious frequency tuning requirement experienced by the triad reso-
nance mechanism. This difference means for instance that the geostrophic instability
revealed in figure 2 will have a critical amplitude, Acrit, which scales as O(E1/4) or
O(E1/2) depending on whether the rotating cylinder has non-slip or stress-free bound-
ary conditions on its horizontal top and bottom surfaces respectively. In particular,
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Acrit → 0 as E → 0 (for example see figure 3) whereas this is only true for a triad
resonance if it is precisely tuned, that is ∆ = 0. Hence, if a geostrophic instability is
present for a given inertial wave system, it will (almost) always appear before a triad
if E is small enough as the underlying inertial wave grows. The fact that mean flows
can grow at all upon an inertial wave has important implications for interpreting the
sometimes unexpectedly ‘large’ mean circulations observed in rapidly rotating fluid
experiments.

The cylindrical system studied here would seem particularly susceptible to secondary
geostrophic instabilities because of its well-known degeneracy of geostrophic contours.
Essentially, any m-component of the two-dimensional geostrophic flow uG(s, φ) =∑

m[u(m)
G (s) ŝ + v

(m)
G (s) φ̂] eimφ can individually become unstable whereas in a sphere,

for example, the geostrophic flow is only one-dimensional, uG(s) = vG(s) φ̂. Thus
there appears less opportunity for this type of instability to manifest itself in the
geophysically interesting spherical case. Nevertheless, the fact that these instabilities,
which are almost steady in the rotating frame, exist at all has importance for recent
studies suggesting that inertial waves may be excited in the Earth’s outer core
(Aldridge & Lumb 1987; Aldridge, Lumb & Henderson 1989; Aldridge et al. 1997;
Kerswell 1993, 1994). Here the outstanding question is whether diurnal (daily) forcing
by tidal and precessional effects can lead to long (Ohmic diffusion) timescale dynamics
within the outer core. Growth rates of the primary inertial waves on Ohmic diffusion
timescales (Kerswell 1994) already provides one possible route to long-term dynamics.
Secondary instabilities consisting of almost steady geostrophic flows may provide
another.

The author gratefully acknowledges the support of The Royal Society and would
like to thank a referee for particularly careful comments.

Appendix. The (2, 3
2 )–(3, 1

2 ) resonance

We can attempt to understand the (2, 3
2
)–(3, 1

2
) resonance observed in the numerical

calculations by adopting a two-wave expansion of the perturbed velocity field:

u = sφ̂+U(x) + aQ1(s) e2iφ+ 3
2 iαz+σt + bQ2(s) e3iφ+ 1

2 iαz+σt. (A 1)

Here Q1(s) and Q2(s) give the velocity structure of the (2, 3
2
) and (3, 1

2
) inertial waves

and U is the finite-amplitude primary inertial mode. These would seem to be the
leading terms of an asymptotic expansion of the velocity field in the limit of the
spinover amplitude A → 0. However, inviscid detuning of the two inertial waves
means that A has a minimum finite value for the resonance to be marginally stable
and therefore this limit is unavailable. Instead we have what is in effect a Galerkin
truncation where the neglected terms are O(A) smaller than the retained ones. Working
typically at E = 10−6 where Acrit = O(0.004), this is a reasonable approximation.

Substituting the expansion (A 1) into the Navier–Stokes equation and projecting
onto Q1 and Q2 respectively gives[

σ − (iλ1 + s1E
1/2)
]
a = −iAC1 b,[

σ − (iλ2 + s2E
1/2)
]
b = +iAC2 a,

}
(A 2)

where

−iAC1 b =
〈Q∗1 · (−u · ∇U−U·∇u)〉

〈Q∗1 ·Q1〉 , iAC2 a =
〈Q∗2 · (−u · ∇U−U·∇u)〉

〈Q∗2 ·Q2〉 , (A 3)
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(2, 3
2
) (3, 1

2
)

Inertial wave

E si1 sr1 si2 sr2

↓ 0 0.4875 −0.4875 −0.3665 −0.3665
10−8 0.4875 −0.4916 −0.3665 −0.3703
10−7.5 0.4875 −0.4949 −0.3665 −0.3733
10−7 0.4875 −0.5006 −0.3665 −0.3787
10−6.5 0.4875 −0.5108 −0.3665 −0.3882
10−6 0.4875 −0.5289 −0.3664 −0.4051
10−5.5 0.4875 −0.5612 −0.3663 −0.4353
10−5 0.4876 −0.6187 −0.3659 −0.4890
10−4.5 0.4876 −0.7211 −0.3647 −0.5851
10−4 0.4850 −0.9041 −0.3608 −0.7579

Table 5. Numerically calculated viscous frequency corrections to the inertial waves (2, 3
2
) and

(3, 1
2
) which have frequencies ≈ −2.74 in the laboratory frame of a rotating cylinder with

height-to-radius ratio of d = 3.9796. The frequency of (2, 3
2
) is −2.740531976 + (si1 − isr1)E1/2

and −2.744064679 + (si2 − isr2)E1/2 for (3, 1
2
). The theoretical asymptotic values are entered in the

row labelled with ↓ 0.

2.5

1.5�

0.5

0.015

0.000

0.004

0.000

69.428

0.003

0.002

0.000

30.547

0.000

0.000

0.001

1 2 3 4

m

F

Table 6. The structure of the (2, 3
2
)–(3, 1

2
) resonance at E = 10−6 and A = 0.00395 where σr ≈ 0,

σi = 2.742636028) (truncation [55, 3, 2] M0 = 1). Figures shown represent % energy in each Fourier
component.

〈 〉 =
∫ ∫ ∫

dV , the inviscid frequencies λ1 = −2.740531976 and λ2 = −2.744064679,
and s1 = sr1 + isi1 and s2 = sr2 + isi2 are the viscous (complex) frequency shifts for
each inertial wave (Greenspan 1969). For non-trivial solutions (a, b) at criticality
Re(σ) = σr = 0, we find that

Im(σ) = σi =
sr1(λ2 + si2E

1/2) + sr2(λ1 + si1E
1/2)

sr1 + sr2
,

Acrit =

(
Esr1s

r
2

C1C2

[
E(sr1 + sr2)

2 + (λ2 + si2E
1/2 − λ1 − si1E1/2)2

E(sr1 + sr2)
2

])1/2

.

 (A 4)

Loosely speaking, Acrit = O(∆, E1/2) where ∆ = λ2+si2E
1/2−λ1−si1E1/2 is the frequency

detuning. Table 5 and figure 10 indicate how the viscous frequency corrections, s1 and
s2, of the two inertial waves vary with Ekman number. There is clearly convergence
to the theoretical asymptotic values (Kerswell & Barenghi 1995, equation (2.12) with
d→∞) as E → 0 but even at E = 10−6 the difference between actual and asymptotic
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1.0

0.9

0.8
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0.6

0.5

0.5

0.3
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

–log10 (E )

–sr

Figure 10. Viscous decay rates sr1 and sr2 are plotted against − log10 E for the two inertial waves
which constitute the most unstable instability of the primary inertial wave. The upper dotted line
indicates the standard asymptotic result −0.4875 for mode (2, 3

2
) and the circles are numerical data

points. The upper dashed line appearing to go through them is found by incorporating the interior
dissipation contribution, that is, sr1 ≈ −0.4875 − (k2

1 + ( 3
2
α)2)E1/2 (k1 = 5.9415). Similarly the lower

dotted line is the asymptotic result −0.3665 for the mode (3, 1
2
) with squares marking the numerical

data points being and the lower dashed line is sr2 = −0.3665− (k2
2 + ( 1

2
α)2)E1/2 (k2 = 6.1182).

values is still about 10%. Incorporating the O(E) interior dissipation contribution,
i(k2 + `2α2)E, into the frequency resolves this discrepancy (see figure 10) and is
therefore used to evaluate Acrit in (A 4) (C1C2 is 0.28591). Figure 8 compares the
numerical Acrit with the two-wave asymptotic prediction of (A 4). The discrepancy
between the curves is due to the fact that the numerical solution involves more than
just the two main Fourier modes (2, 3

2
) and (3, 1

2
) even at Ekman numbers of E = 10−6

where the critical amplitude is A = 0.00395: see table 6. Artificially restricting the
numerical solution to just the two main Fourier components (2, 3

2
) and (3, 1

2
) (by

choosing the truncation [55, 1, 1] M0 = 2), the critical amplitude curve, shown as the
dashed line segment of figure 8, then overlays the asymptotic prediction.
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