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THE INSTABILITY OF PRECESSING FLOW 
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Department of Mathematics and Statistics, University of Newcastle upon Tyne. 
NEI 7RU,  England, UK 

(Received 16 November 1992; inJinal form 22 March 1993) 

An explanation is put forward for the instability observed within a precessing, rotating spheroidal container. 
The constant vorticity solution for the flow suggested by Poincare is found to be inertially unstable through 
the parametric coupling of two inertial waves by the underlying constant strain field. Such resonant 
couplings are due either to the elliptical or shearing strains present which elliptically distort the circular 
streamlines and shear their centres respectively. For the precessing Earth’s outer core, the shearing of the 
streamlines and the ensuing shearing instability are the dominant features. The instability of some exact, 
linear solutions for finite precessional rates is established and used to corroborate the asymptotic analysis. A 
complementary unbounded analysis of a precessing, rotating fluid is also presented and used to deduce a 
likely upperbound on the growth rate of a small disturbance. Connection is made with past experimental 
studies. 

KEY WORDS Precession, Earth’s core, inertial waves, rotating fluids 

INTRODUCTION 

The problem of understanding the fluid motion within a precessing spheroidal cavity 
has received considerable attention over the years, motivated initially by its relevance 
to astrophysical and geophysical contexts, and sustained by the wealth of interesting 
phenomena revealed by laboratory experiments (Malkus 1968, and more recently 
Vanyo 1991; Vanyo et al. 1992). Despite the simple geometry and the small number of 
parameters which enter into the physical description, Malkus found that the flow 
possessed some unusual properties including the possibility of a fully disordered state. 
An outstanding issue for geodynamicists then became whether this laboratory picture 
of a disordered flow was more relevant to the precessing Earth’s outer core than 
Poincart’s (1910) elegant laminar solution. 

In an attempt to rationalise the experimental findings, past work has concentrated 
exclusively upon viscous effects. After the initial work of Bondi and Lyttleton (1953), 
Stewartson and Roberts (1963, 1965) established that Poincark’s (1910) elegant con- 
stant-vorticity solution for a precessing, oblate spheroid is realised and may be 
corrected to account for viscosity by the addition of a thin Ekman layer on the 
container walls. Following on from this in a paper which seemed to reach as far as was 
analytically viable, Busse (1968) deduced that a nonlinear, viscous boundary layer 
would induce a small differential rotation upon Poincark’s solution. This differential 
rotation was localised around the cylindrical shear layer (connecting the known 
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108 R. R. KERSWELL 

boundary layer eruptions at k 30” latitude relative to the equator defined by the bulk 
flow vorticity) and was confirmed by Malkus’ dye streak experiments. At this point, the 
observed instability was interpreted as the local breakdown of this shear layer. 

In this paper, we offer an alternative explanation for the observed instability by 
demonstrating that Poincare’s solution is, in fact, inertially unstable. A cursory glance 
at the form of Poincari’s solution does not warn of instability; it appears a simple, 
laminar flow in which the vorticity is spatially and temporally constant in the 
precessing frame and displaced from the container’s axis. A closer inspection reveals 
that the flow actually suffers a constant straining throughout its bulk and it is this 
which may cause the flow to bifurcate at sufficient speeds of precession. 

The mechanism of instability is similar to that which underlies the elliptical 
instability (Gledzer et of., 1975; Vladimirov and Tarasov, 1984; Vladimirov and 
Vostretsov, 1986; Waleffe, 1989; Malkus, 1989; Kerswell, 1993a, b) as conjectured 
recently by Malkus (1993); two inertial Poincare modes of the system are resonantly 
coupled by the underlying strained state. The straining field produced within a 
precessing spheroid consists of an ‘elliptical’ component in the plane of the streamlines 
and a ‘shearing’ component perpendicular to this plane to that the streamlines are 
elliptically-distorted and sheared. However, although the elliptical strain is present it is 
not the primary consequence of precession but rather a secondary, boundary-induced 
effect. Instead, the generic feature of precessional flows appears to be the shearing of the 
streamlines, apparent from the unbounded analysis. This realisation, along with its 
implications for stability, represents the main conclusion of this work. Certainly for 
Earth-like parameters, it is the shearing strain which is by far the most significant 
feature of a Poincare-like solution in the outer core. 

The only previous work to consider the excitation of inertial waves in a precessing 
spheroid is due to Greenspan (1968, p 68) who treated the problem as that of forced 
motion upon uniform rotation due to the time variation of the total angular velocity. 
Consequently, a resonant response was only anticipated (to lowest order) when the 
forcing frequency coincided with an inertial wave frequency. Armed with Poincart’s 
basic state, we treat the problem as one of bifurcation and find that resonant growth of 
two inertial waves can occur when the diflerence in their frequencies coincides with one 
of the ‘distortion’ frequencies of the basic flow (the ellipticity and shearing of the basic 
streamlines give ‘distortion’ frequencies of 2R and R respectively where R is the 
container’s angular velocity). The absence of any basic solution in a precessing, rotating 
cylinder means that the problem can only be treated from the forced standpoint (see 
Johnson, 1967; Gans, 1970; Thompson, 1970 and Manasseh, 1992). This said, in a 
concurrent, independent study, Mahalov (1992) has considered an infinite cylinder in 
which a tilted (sheared) streamline solution can exist under precession. His findings 
appear consistent with the conclusions of this paper. 

Once bounded inertial waves are excited, many studies have documented how they 
tend to dramatically breakdown or collapse to a disordered or turbulent state (see for 
example Johnson, 1967; McEwan, 1970 who coined the term resonant collapse, 
Thompson, 1970; Gledzer et a\., 1974; Scott, 1975; Whiting, 1981; Stergiopoulos and 
Aldridge, 1982; Vladimirov et al., 1987; Malkus, 1989 and Manasseh, 1992). While an 
explanation for this phenomena is beyond the scope of this paper, it seems that the 
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INSTABILITY OF PRECESSING FLOW 109 

disordered state observed by Malkus (1968) in his precessional experiments is yet 
another manifestation of this process. 

The study of rotating masses of fluid has a long and fascinating history, discussed 
most notably by Lamb (1932, chapter XII), Lyttleton (1953) and Chandrasekhar (1969). 
Although the emphasis has been to consider self-gravitating systems, there is much in 
common with the study of contained rotating fluids. In particular, spatially-constant 
vorticity disturbances were a very common tool used to diagnose instability of 
equilibrium configurations. In the same spirit, we construct exact linear disturbances, 
valid for arbitrary precession rates, to determine sufficient conditions for instability. 
These disturbances, of which the constant-vorticity solution is but the simplest, can be 
constructed from finite, closed subsets of the inertial waves of the system. Such a 
technique may be used to examine the stability of any linear, possibly time-dependent, 
basic flow inside a rotating, spheroidal container. 

The paper is organised as follows. In Section 1, we examine PoincarC's solution for a 
precessing spheroid and derive the set of equations which form the basis for the 
subsequent asymptotic analysis. Section 2 demonstrates how a pair of free inertial 
modes may be resonantly excited through the underlying shearing strain. This is 
illustrated for some particular geometries, before the equivalent elliptical coupling 
analysis is sketched in Section 3. Some exact linear solutions for finite precessional 
rates are presented in Section 4, providing an independent demonstration of instability 
and allowing connection with the asymptotics. The key result underlying the construc- 
tion of these exact linear disturbances is proved in Appendix A. Section 5 contains an 
alternative unbounded formulation of the problem. Here, following the experience 
of the elliptical instability, we consider the dominant shearing strain produced by 
precession in an unbounded domain. This acts to confirm the bounded domain analysis 
and allows a likely upperbound on the growth rate to be isolated. Section 6 is reserved 
for discussion. 

1. FORMULATION 

Poincark's (1910) simple solution for the response of a rotating fluid to the precession of 
its container is 

u = o  x r + V A  

with respect to the precessing frame rotating at R. Here 

A 
O = Z -  2 + q  Z x ( f x R 2 )  

q + 2(1 + q ) n 4  

so that the basic rotation of the fluid is 2 and 

(52 x 4*r)(%r) v A =  
q + 2(1 + q)n*a 
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110 R. R. KERSWELL 

in the spheroidal container lrI2 + q(2.r)’ = 1, i.e. the container’s equatorial radius and 
rotation rate nondimensionalize the problem. This solution represents an exact, 
nonlinear, viscous solution for all but a thin boundary layer at the container walls 
necessary to satisfy the conditions on the tangential velocity. As our interest is in the 
inertial aspects of this flow, we will ignore the presence of the corrective viscous 
boundary layer. The flow is two-dimensional in planes inclined at 

21n x 21 
q + 2(1 + q)Q.2 

tan- ’ 

to the container’s equator, which due to the oblateness q gives rise to two effects. Firstly 
the streamlines are elliptical with a major-minor axes ratio of ,/( 1 + B)/( 1 - f i )  where 

2qlR x 21’ 
[q + 2(1 + q)n.2]’ + 2(2 + q)(R x 2)’’ B =  

and secondly the line joining the centres of these streamlines is not perpendicular to 
their plane but rather inclined at an angle 

2q[q + 2(1 + q)n-i]ln x 21 
tan-’ 

[ q  + 2(1 + q)n.2]’ + 4(1 + q)(n x 2)’ 

to this perpendicular. These features represent different strainings of the underlying 
rotation and both give rise separately to inertial instability. The instability of elliptical 
streamlines is now well known (e.g. Pierrehumbert, 1986; Bayly, 1986; Craik, 1989 and a 
more recent review in 1991; Malkus, 1989; Waleffe, 1989, 1990, and Gledzer and 
Ponomarev 1992 who review the Russian literature) and operates via vortex stretching 
in the plane of motion due to the imposed strain field. The strain which shears the 
streamlines in a direction perpendicular to their plane has not been discussed before 
but is by far the more potent influence in the precessing Earth’s outer core. 

To examine the flow field more closely, we enter the precessing frame where the z-axis 
is chosen to coincide with the axis of the container and the x direction taken such that 
the precessional vector may be written as 

n = [Q, ,O,Q,]’ .  

where the superscript T denotes transpose. In a new coordinate system formed by 
rotation of the x - z plane through 

2 f . n  x 2 
q + 2(1 + q p . 2  

tan-’ 
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INSTABILITY OF PRECESSING FLOW 111 

about the y-axis, the velocity is 

and the precession vector is transformed to 

n*=[szy,o,n;]==(l +p2)-1’2[R1 -pn3,0,pQ1 +n3y (1.2a) 

with 

The resultant streamlines are ellipses with sheared centres, 

(1.2b) 

where 

measure the shearing of the streamlines and the elliptical distortion of the streamlines 
respectively. Their relative magnitude depends on the precessional vector R via 

and for the Earth, p - 1.6 x lo-’; the shearing of the streamlines is much the dominant 
effect. 

Consideration of the linear stability of the flow (1.1) is hampered by its lack of 
symmetry; the flow is neither axisymmetric nor invariant in the direction perpendicular 
to its plane. Furthermore, the z-axis of our new coordinates no longer coincides with 
the container’s axis of symmetry leading to an awkward boundary description. One 
possibility is to reconsider the flow back in the original container coordinates. This 
certainly restores the boundary to a manageable form but hides the underlying 
structure of the basic flow. Progress is only viable for small p and even then is unclear. 
In effect, we are forced to apply a perturbation expansion about the wrong basic state in 
this coordinate frame. 
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112 R. R. KERSWELL 

A less obvious but better alternative is to apply the non-orthogonal transformation 

2.5 - 
x = sJ1-Bcoscp + I+BZ' 

y = s J i T j s i n 4 ,  

z = 2, 

which exploits the structure of the basic solution. This transformation serves to stretch 
the elliptical streamlines back into circles and then to shear them into line. The 
boundary is simultaneously converted back into a tractable, axisymmetric form due to 
its definition by an envelope of streamlines. The relevance of the first part of this 
transformation to elliptical flow was realised by Bayly and subsequently used to 
consider elliptically-distorted cylinders (Waleffe, 1989) and spheroids (Kerswell, 
1993b). The new feature is the shearing transformation which slides the circles back into 
line. In this (s, 4,Z) coordinate system, the new velocity components u, u and w are 
defined such that 

u = u,P + up$ + u,e = us + uiJ+ G 

= J C j c o s 4 ~  + JTTjs in49 ,  

iJ= - J C j s i n c p S  + J1+Dcos49, 

where the base vectors 

are neither orthogonal nor of unit length. The basic flow is now by design one of 
uniform rotation in the (s, 4, Z) system, 

where this defines the new rotation rate fi. The price paid for this simplification is the 
new form of the momentum equation, found by projecting onto three i, m and fi, 

ii = 2,  
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INSTABILITY OF PRECESSING FLOW 113 

- -  - -  
chosen, for example, such that 1.E = 1 and I.&= 1.2 = 0. The three components are 
exactly 

- au +(u*V)u---2 YZ (n;+R:E) 
1 [ l + -  ,3; - at s J p v + _ B z )  

Of note here is the invariance of the advective derivative u*V and the incompressi- 
bility condition V-u  = 0. Additionally, the form of the boundary condition remains 

with the boundary returned to its original axisymmetric form except for some rescaling, 
most notably of the oblateness; avis 
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114 R. R. KERSWELL 

To condense the notation a little, we introduce the vector operator 

whose 3 components are precisely the right-hand sides of equations (1.7), (1.8) and (1.9). 
We consider small disturbances u upon the basic state U = &&n a frame rotating with 
this flow. The system may now be written 

w* x u*, u*, -, T p * ,  6, B )  (1.11) 
a a  

where 

(1.12) 

(1.13) 

(1.14) 

and we have rescaled as follows 

X t = t * ,  s=s*, aZ=z*, 

a2 

x 
u=u* ,  u = u * ,  aw=w*, - p = p * .  

At this point, we specialise the analysis to consider both distortion measures E and fl as 
being small. In fact, this is not at all restrictive, requiring only that one ofthe physical 
parameters $2, or q is small. This is best understood physically. If the container is nearly 
a sphere q << 1, the flow is always close to uniform rotation regardless of the tipover 
angle tan-'p of the vorticity and hence of the precession rate. Similarly for a low 
precession rate but finite oblateness q, the tipover angle for the vorticity is only small 
and again deviations from circular streamlines are slight. 
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Three parameter sub-ranges are of particular interest. For the Earth, 

115 

1 
200 

R, = 4 x 10 - << q x - << 1, 

which implies that 

As noted before, here the shearing strain dominates the elliptical strain. Experimen- 
tally, past studies have taken q << 1 and p as 0(1) (Malkus, 1968, q x 1/12 and p z 0.3) 
which is the situation R, = O(q) << 1. In this case, 

/3 = O(&) << 1. (1.16) 

Lastly for the exact linear and quadratic disturbances we consider in Section 4, 
0, << q = O( l), which means 

p = O(Q,) << 1, and p = O(2) << E = O(Q,) << 1. (1.17) 

For clarity, we focus upon the first and last cases where p<< 1 which forces a clear 
separation in orders between the shearing instability growth rates and their elliptical 
counterparts. Both scenarios are encompassed by the hierachy 

& Z , p < < E < <  1, (1.18) 

but are distinquished by the relative magnitude of cZ with B. The smallness of p allows 
us to drop the rescaling factors listed in (1.12)-(1.14), that is, we may take 

without losing any of the leading order behaviour. This simplication cannot be made in 
the experimental parameter range making analysis here messier. However, the elliptical 
coupling calculation is much simplified in this case because E’ << B as will emerge later. 
For the remainder of this asymptotic analysis, we take Q, << q = 0(1) or in other words 
p is small. This puts us in the desired asymptotic regime, regardless of the geometry q, 
allowing connection with the exact linear solution work of Section 4. 

We now divide 9 into its two natural parts by defining the shearing operator LFs 
and elliptical operator LFE as follows 

(1.19) 
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116 R. R. KERSWELL 

where + indicates complex conjugate. These may be written individually as 

with 

and 

O O i ,  a!= 
O 0  l i 0  'I 0 

- i  - 1  0 

with 

A"= i - 1  0 . [: 1 :I 
Note that the elliptical operator does not vanish when f i  is set to 0 because the shearing 
strain contributes at second order to it. If we retain only the leading order form of each 
operator, the system of equations for a small disturbance become 

v - u  = 0, (1.23) 

~ . i i I ~ ~ = o ,  with aV:s2 + ( 1  + q ) z 2 =  1 .  (1.24) 

The reader should note that the original geometry has been recovered in the limit ,u << 1. 
The above set of equations forms the basis for the following two sections. With no 
precession, (1.22)-( 1.24) is the normal mode problem for a uniformly-rotating basic 
state within a spheroidal container. The solutions are neutral oscillations called 
Poincare modes (e.g. Greenspan, 1968). The terms on the right-hand side of (1.22) 
represent the leading order consequences of switching precession on. They act as 
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INSTABILITY OF PRECESSING FLOW 117 

coupling terms which allow the Poincare modes to interact. This interaction can 
become resonant in two particular instances leading to exponential growth of the two 
modes. The first such instance, we call a shearing instability after its cause; the shearing 
of the streamlines in their plane. This aspect of the basic flow is responsible for the 
operators Zs and 3: which resonantly couple two Poincare modes when their 
azimuthal wavenumbers and frequencies differ by 1. Two modes may also be unstable 
through an elliptical instability when their azimuthal wavenumbers and frequencies 
differ by 2. The situation here is a little more involved because as well as the operators 
Z E  and 9; being responsible, the shearing operator also contributes at its second 
order. Leaving this latter effect aside for a moment, one should still note that SE differs 
from the operator which appears in the analyses of elliptically-distorted containers 
(Waleffe, 1989; Kerswell, 1993b) obtained by setting E to 0. However this difference will 
only lead to quantitative changes in the growth rate. Moreover, in the important limit 
q << 1 which forces 

both effects become of lower order. 
With this in mind, we focus upon the novel shearing instability in the following 

section. Here we illustrate how two Poincare modes may be resonantly coupled 
through the operators ps and 9; to produce this instability, and then go on to 
demonstrate the existence of such resonances for specific geometries. The analysis is 
exactly similar for elliptical coupling, examples of which have already been reported 
(Kerswell, 1993b). 

2. THE SHEARING INSTABILITY 

A Poincark mode [u(x, t), p(x, t)] = [Q(x), cP(x)]e'" satisfies the system (1.22)-(1.24) 
when E = B = 0. In an oblate spheroidal container 

Z2 

C2 
r2+(1 + q ) z 2 = r 2 + - =  1, 

these modes take the form 
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118 R. R. KERSWELL 

where p = @(r, z)e""++") and, ignoring normalisation constants, 

Here 

c2 + (1 - c2)(1 - P/4)  c2 + (1 - c')(1 - P/4) 
, , (2.3) 

Ai,m.k = 1 - 1'14 Bi,m.k = A' 14 

0, if n- 1m1 even, 
1, if n-lml odd, 

v = {  

and 2; are the N = +(n - JmJ - v) distinct squared zeros of the associated Legendre 
polynomial P!,"'I(X) in the open interval (0,l). The no-normal-velocity boundary 
condition reduces to the following algebraic problem for the eigenfrequency A 

mc2A 
=- 

N A 2 C 2  
v + 2 c  A'c' - 2; (4 -A2(1 - c')} 2 - A  (2.4) 

when m 2 0 and is extendable to m < 0 by the relationship A,,, -m,k  = - 
subscript k labels the particular eigenfrequency and has a maximum value 

The 

n-1, i f m = 0 ,  
n - Im(, if m # 0, km,(n, m) = 

in particular, kmx(n, f n) = 0; there are no Poincare modes with n = Iml. The pressure 
function given in (2.2) was actually derived as the product of two associated Legendre 
functions in a 'modified' oblate spheroidal coordinate system by Bryan (1889). His 
work built upon the more general study undertaken by Poincark (1885) of the 
oscillations possessed by self-gravitating ellipsoids. The alternative and more useful 
polynomial representation (2.2) was noted by Cartan (1922) and later by Kudlick 
(1966), Aldridge and Toomre (1969), and Greenspan (1968, p 65). 

effects for this section), we consider a disturbance to the flow 
(1.6) which consists of two Poincark modes to leading order in E 

For E # 0 (ignoring 

The time-varying amplitudes, A and B, are defined such that 
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where 

119 

and the Poincark modes are assumed normalised; in particular (Q,, u1 ) = 
( Qb, u1 ) = 0. Equation (1.22) may be alternately projected onto Q, and Qb giving the 
expressions 

and 

If the azimuthal dependence is separated in the Poincark modes as follows 

T imt.4 
3 Qb = 1% ub,  wb l  e T im& Q.= Cu,,u,,wJ e , 

the matrix elements in the expressions (2.6) will vanish unless ma and mb differ by 1; to be 
specific we assume mb = ma + 1 .  These matrix elements may then be written as 

where I is found to be 

Searching for a solution of the form 

A = Aoexp [(6 - 3i) t ] ,  B = Boexp [(5 - +i ) t ]  

leads to the equations 

(2.9) 
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and the conclusion that 

i ( i a  + I.,) 
2 

g =  +J&2(1 +A,)(l - I b ) ~ z ~ 2 - ~ ( ~ ” , - 1 ” , -  1)2. (2.10) 

There is exponential growth on a timescale E if 

In particular, the growth rate is 

when the modes are perfectly turned at 1, = A, + 1 .  
Aside from this frequency condition and the azimuthal wave number prerequisite 

m, = ma + 1, a further condition must be satisfied if resonance is to occur; the interac- 
tion integral I of (2.8) vanishes unless nb = n, [n is the modal degree; see the pressure 
function definition (2.2)]. The explanation for this additional criterion is detailed in 
Appendix A. Briefly, a Poincart mode of index n cannot ‘reach’ other modes of different 
indices through the operators 64, or 9: (or similarly through 64, or 9;). Appendix 
A discusses this result in terms of the partitioning of the Poincart modes into 
non-interacting spaces of equal n-index. The reader should also note the restriction on 
the range of the frequencies I ,  and A,. We require I ,  > 0 and A, < 0 for instability. 

Formally the shearing instability is one of parametric resonance where the periodic 
forcing is due to the distorted basic state, however the condition for resonant coupling 
between two Poincart modes is essentially that of a triad interaction. The ‘third wave’ is 
the distortion of the basic state which has frequency 1 and azimuthal wavenumber 1 
with respect to the rotating frame. For elliptical instability, the ‘third wave’ of the basic 
state possesses a frequency of 2 and azimuthal wavenumber 2 and the resonance 
conditions are modified accordingly. 

2.1 Coupling 

Demonstrating the existence of these shearing resonances amounts to scanning 
geometries q for a particular chosen pair of modes until the coupling criteria are met. In 
contrast to the elliptical case, there is no simple sub-harmonic resonance due to the 
azimuthal condition mb = ma + 1; this cannot be satisfied by mb = m, ma = -m where m 
is an integer. As a result there is no special subset of resonances in which a Poincart 
mode interacts with its complex conjugate as exploited in Kerswell(1993b). Rather, we 
illustrate the general situation by selecting two simple families of couplings and 
determining their critical geometries and growth rates. The first family of couplings, 
between Om+ 2.m,l and Om+ 2 , m +  l.l, is chosen because the resonant geometry may be 
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easily determined. The two modes are 

where X is the sole root of Pz+2(X)  = 0 in (0,l) with frequency 

and mb = @ m + 2 , m + l , l  = z P f l  with frequency 

2 
1 + (rn + 1)c” 

1, = rn > 0. 

Resonances, in terms of the critical geometry 

and frequency A, are tabulated in Table 1 accompanied by the corresponding growth 
rate scaled by the strain E. Table 2 lists a selection of resonances from the other chosen 
family of couplings between @)n,O,k, and Figure 1 displays all the resonances of 
Table 1 and the set of resonances between and @n,l ,kb for which n = 1,. . . , 16, k, 
and k ,  are either 1 or 2, and c < 3. 

Table 1 Resonances between (Pm+2,,,l and (Pn+2,,,+1,1 modes for 
m =  1, ..., 13. 

m 1, C (I 

1 0.8220 0.8465 0.3531 
2 0.7604 0.7371 0.4238 
3 0.7302 0.6593 0.4553 
4 0.7124 0.6012 0.4728 
5 0.7007 0.5559 0.4838 
6 0.6925 0.5194 0.4914 
7 0.6863 0.4891 0.4969 
8 0.68 16 0.4636 0.501 1 
9 0.6778 0.4417 0.5044 

10 0.6748 0.4225 0.5071 
11 0.6722 0.4057 0.5093 
12 0.6701 0.3907 0.51 11 
13 0.6682 0.3773 0.5126 
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122 R. R. KERSWELL 

Figure 1 A plot of the scaled growth rate u = u/& against the spheroidal geometry c = l / f i  for the 
resonances tabulated in Tables 1 and 2. Representing the resonance between the modes @n,o,ka and by 
the label (n, k,, k,,), the solid circles represent (n, 1,l) resonances; the solid squares (n, 2,2) resonances; (n. 1,2) 
for n even and (n. 2,l) for n odd are plotted as hollow circles; (n, 2,l)  for n even and (n, 1,2) for n odd are plotted 
as solid diamonds. Crosses are the @ m + 2 m l  & @n+2n+ 11 resonances. The supremum value deduced in the 
unbounded analysis is shown by the horizontal dotted line. The spherical geometry is marked by the vertical 
dotted line. 

3. THE ELLIPTICAL INSTABILITY 

If q << 1 (8' << B), an elliptical resonance can be treated in isolation from the shear- 
ing effects. To leading order, the elliptical coupling operator reduces to the familiar 
form and second order shearing effects are negligible. Elliptical growth rates are 
then identical to previous elliptical instability computations (Kerswell 1992, 
1993b). 

Capturing the leading order elliptical resonance is a little more involved when 
q=O(l) [i.e. .cZ=O(/?)] because then the shearing operator contributes at its 
second order to the leading order calculation. In this case we start with a velocity 
expansion 

where 

v (x) = 8 , (r ,  z)ei@'- - ')+ , vIz(x) = z)e'('""+')+ , v13(x) =tl3(r,z)ei('"~+')+ 



D
ow

nl
oa

de
d 

B
y:

 [S
ow

ar
d,

 A
nd

re
w

] A
t: 

15
:1

9 
5 

M
ar

ch
 2

00
8 

INSTABILITY OF PRECESSING FLOW 

Table 2 A selection of resonances between @m,o,t and 

123 

n k, k ,  A* C U 

3 
4 
5 
6 
7 
8 
9 

10 
10 
10 
10 
11 
11 
11 
11 
12 
12 
12 
12 
13 
13 
13 
13 
14 
14 
14 
14 
15 
15 
15 
15 
16 
16 
16 
16 

1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

0.6406 
0.2468 
0.6536 
0.3000 
0.6560 
0.3186 
0.6567 
0.3272 
0.1800 
0.5960 
0.4082 
0.6569 
0.3902 
0.7999 
0.5714 
0.3319 
0.1901 
0.5955 
0.4164 
0.6570 
0.3948 
0.7963 
0.5703 
0.3348 
0.1961 
0.5952 
0.421 1 
0.6571 
0.3976 
0.7941 
0.5695 
0.3366 
0.2000 
0.5949 
0.4240 

2.7371 
2.1302 
1.6925 
1.4207 
1.2260 
1.0754 
0.9618 
0.8667 
1.5242 
1.5012 
2.2120 
0.7917 
1.3614 
1.3707 
1.9865 
0.7263 
1.2452 
1.2465 
1.8077 
0.6729 
1.1491 
1.1442 
1.6583 
0.6252 
1.0563 
1.0669 
1.5332 
0.5853 
0.995 1 
0.9840 
1.426 1 
0.5489 
0.9188 
0.9332 
1.3332 

0.5009 
0.2281 
0.4204 
0.2961 
0.3903 
0.3212 
0.3769 
0.3330 
0.0865 
0.4053 
0.3299 
0.3698 
0.3459 
0.0960 
0.4167 
0.3395 
0.0894 
0.3961 
0.3458 
0.3657 
0.3540 
0.0957 
0.4063 
0.3435 
0.0909 
0.3904 
0.3550 
0.3630 
0.3590 
0.0956 
0.3997 
0.3461 
0.0919 
0.3867 
0.3609 
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at O(p) to apparently solve. The two amplitude equations for A and B read 

(3.4) 

to O(p). Of the 0 ( c 2 )  matrix elements, only those containing v12  are important: just the 
first order velocity v 1 2  allows the modes Q, and Qb to interact at the second order 
through the shearing operator. In contrast, v l l  and v13  lead purely to O(E') frequency 
shifts and can be ignored. Thus only the first order problem (3.2) need be solved. 
Appendix C contains an example of such a calculation. 

4. EXACT LINEAR SOLUTIONS 

In this section we construct some exact solutions to the linearised Euler equation 
describing the evolution of a disturbance upon Poincart's basic solution in a precessing 
spheroid. The emphasis here is to provide an alternative demonstration of instability 
under finite rates of precession. In doing so, we are also able to corroborate the 
perturbation analysis presented above for small precession rates in some special cases. 
With this in mind, we keep the analysis as direct as possible by working in the 
precessing frame (where the z-axis is chosen to coincide with the spheroidal axis of 
symmetry) and by considering simple, exact, linear solutions which are valid for 
arbitrary precession rates. 

The component of the precessional vector parallel to the container's angular velocity 
is unimportant so we take R = IzP (that is Iz, = Iz and R3 = 0). Poincart's basic state 
can be written as 
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where then p = 2Q/q The linearised disturbance equations in the precessing frame are 

au 
- + 2112 x u + A.x.VU + A.u + Vp = 0, 
at (4.2) 

v-u = 0, u*Blay= 0, (4.3) 

with 

Z2 

C2 
av:x2+y2+-= 1 =x2+y2+(1+r&2. 

We now consider the eigensolutions, u(x, t) = Q(x)eiAt, where A is the eigenfrequency in 
the precessing frame, of this system as a function of R. If the precession is turned off 
(a = 0), the eigensolutions are the PoincarC modal velocities Qnmk (x)eiAt. The spatial 
components of these velocities naturally partition into orthogonal vector spaces V,, 
where 

V,, = <Qnmk; - n < m < n, k = 1,. . . , kmax(n, m) ) ,  

and dim (V,,) = n2 - 1 using (2.5), under the inner product 

If we understand Qnmk to represent the image of the Poincare eigensolution Qnmk as Cl 
increases from zero, one would naively expect the disturbed eigensolutions Qnmk to be 
non-trivial superpositions of the Q s  taken from various vector spaces V,,. However, the 
actual situation is simpler than this: each eigensolution belongs to one and only one 
vector space which is invariant as changes. In other words, 

V,,= ( Q n m k ;  - n < m  < n, k = 1 , .  . ., kmax(n,m)) 

= ( Qnmk; - n < m < n, k = 1 , .  . . , k,,,(n, m)).  

Reworded, this statement means that a disturbance in V,, at some time t will remain so 
for all subsequent times regardless of the value of R. Appendix A proves this assertion. 

Armed with this result, we can now construct exact solutions to the system (4.2) and 
(4.3) by considering general disturbances within each vector space V,,. By the definition 
of these spaces, the Poincark modal velocities are basis vectors and hence we may write 
the eigensolutions as 
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where a dim(VJ x dim(VJ matrix eigenvalue problem must be solved for 0. However, 
certainly for V2 and V3 upon which we are now to concentrate, it is easier to work with 
different bases. 

4.1 "v;: Linear velocities 

The vector space V2 represents the space of all incompressible velocities which are 
purely linear in the spatial coordinates and which satisfy the boundary conditions (see 
Appendix A). This is the space of spatially-constant vorticity solutions. There are 3 
Poincari. modes which span this space, QZ,-l , l ,QZ,O,l and Qz,l, l .  A suitable basis is 

(4.4) 
ZA z ,  

u1 = ; y - c y e ,  u - - -x+cx2, u3=yf?-x9 ,  
2 -  c 

with each a vortical flow about one of the container axes. Every basis velocity ui is 
incompressible and individually obeys the boundary conditions so a disturbance of the 
form 

where the a;s are spatially-constant, is required only to satisfy the vorticity equation 
[V x (4.211. In this special case of constant-vorticity disturbances, the nonlinear terms 
may also be retained leading to the exact, viscous evolution system 

where K = (1 - cz)/( 1 + cz) and x = a. This dynamical system may be reduced to 
second order by the transformation 

a1 + ia, = reie, a3 = 5, 

which leads to the equations 

This system possesses oscillatory behaviour about c = 5 = 0 indicating overall stability 
of the flow. Hocking (1965) dealt with an associated problem of impulsively-started 
and-stopped precession by assuming that the response would be in terms of a 
spatially-constant, but time-dependent vortical flow, obtaining a similar system to (4.5). 
Greenspan (1968, p 176) treated large-angle precession in the same fashion, integrating 
his equations numerically to find oscillatory solutions. 
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Linearising the system (4.5) and inserting the ansatz 

cc,(t) = aieur 

leads to the three eigenfrequencies 

(rl =o, IT2 = i K ,  o3 = -iK 

indicating linear stability. This, however, would seem to contradict the perturbation 
analysis which predicts a shearing instability between Qz,o,l and Qz,l,l and an 
elliptical instability between Qz,-l , l  and Qz,l, l  at some values of the geometry c. 
Consideration of the modal frequencies at the predicted resonances is sufficient to 
resolve this momentary paradox. Recall that the frequency of interest is that in the 
precessing, rotating frame of the container: we label this ,Inmk. The frequency Anmk has 
been defined as the modal frequency in the precessing frame and therefore 
lnmk = Anmk + m where m is the azimuthal wavenumber. Now Lz,o, l  is precisely 0 for all 
c: it is simply an extra rotation about 2. So, at the shearing resonance, must be 1 
which ensures that one of the interaction integrals between Qz,o,l and Q2,,,, vanishes 
[see (2.7)]. For Qz,- 1 ,1  and Qz,l,l to couple elliptically, A2,1,1 must equal 1, implying 
q = 0 and the spheroid is a sphere. This is the one geometry in which an inviscid fluid 
cannot feel precession of its boundary and so there are no strains to excite these waves 
elliptically. We must consider quadratic disturbances to capture instability. 

4.2 -tT, : Quadratic velocities 

The vector space V3 represents the space of all incompressible, quadratic velocities 
which satisfy the boundary conditions. Its PoincarC modal basis is 

where, if Q = 0, 

2 
'3,Z.l = -'3,-2,1 =- 2c2 + 1 > OY 

> 0, 
10 + 4 J G  

'3,l.l = -'3,-1,1 = 4c2 + 11 

10 - 4 J G  -= 0, 4c2 + 11 '3.1.2 = -'3,-1,2 = 
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We use the same basis for this space as Gledzer and Ponomarev (1992) who studied the 
quadratic velocity instability within an elliptically-distorted spheroid. This basis is 

v1  = (y2 - ZZ/CZ)S - xyf + xz2, 

v2 = (1 - xz - 2y2 -222/cZ)f + xyf + x z l ,  

v3 = x y f  + (22/CZ - x2)f - yzf ,  

v4 = x y f  + (1 - 2x2 - y2 - 2ZZ/CZ)9 + yz2, 

v5 = - (xz/cZ)f + (yz/c2)f +(x2 - y 2 ) 2 ,  

V6 = (xz/c2)f + (yz/c2)f + (1 - 2x2 - 2yz - ZZ/CZ)2, 

v, = (yz/c2)f - xyf ,  

v* = - (XZ/CZ)f + x y 2 .  

-1 .5  -’.* t 
C 

Figure 2 The quadratic frequencies i3~,,k as a function of the geometry c. The uppermost (lowermost) solid 
curverepresents/.,.,,, (i,.- thesecond highest,dashed curvei.,.,,,; thealmost horizontal, dash-dot curve 

and underneath this, the dotted line i3.0.1. The vertical lines are either oflength 1 or 2 in frequency and 
indicate where resonances occur between the modes. The four lines correspond to the four tongues which 
emanate from the f2 axis in Figure 3. 
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1 .o 

0.8 

0.6 

0.4 

I I I 

- 

- 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

R 

Figure 3 The four instability tongues obtained for quadratic velocity disturbances (U indicates instability 
and S stability). The dotted line marks the spherical geometry. 

Again these basis vectors are incompressible velocities which individually satisfy the 
boundary conditions. Substituting the eigensolution 

8 

u =  1 tlivi(x)eu' 
i =  1 

into the vorticity equation gives 8 equations (see Appendix B) and hence an 8 x 8 
matrix eigenvalue problem for 0. This eigenvalue problem depends on two parameters: 
the geometry q and the precession rate R. Figure 3 maps out the regions of stability and 
instability relative to these two external parameters. There are 4 tongues of instability 
emanating from the Q = 0 axis and each can be identified within the framework of the 
perturbation analysis. 

Consider the set (4.6) and their eigenfrequencies plotted in Figure 2. We can expect a 
shearing instability to occur between Q3,0,1 and Q3,1,1 (along with the conjugate 
resonance between Q3,0,2 and Q3,- at q = - 0.866523 (the first entry in Table 2). 
This corresponds to the lowest tongue in Figure 3. The numerically-calculated growth 
rate within this tongue converges to the expected asymptotic value of Q = 0.500868 E as 
52 -0 to confirm this identification. A shearing instability can also occur between 
Q3,1,2 and Q3,2,1 at q =0.3955096 (the first entry in Table 1) with growth rate 
0 = 0.353092 E: this identifies the third tongue. 
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The other two tongues are much thinner and hence indicate higher order instabili- 
ties. These are the elliptical couplings between Q3,- 1,1 and Q3,1,1, and between Q3,0,1 
and Q3,2,1. Both are straightforward to identify by their critical q values, 
q = - 0.692308 and q = 0.678574, and their asymptotic growth rates u = 0.5178528 
and u = 0.630487 8 respectively. The former growth rate is familiar from past work on 
elliptical instabilities (Gledzer and Ponomarev 1992; Kerswell, 1992), whereas the 
growth rate for the Q3,0,1 - Q3,2,1 coupling seems to contradict the assumed suprem- 
um of 0.5625 8 (Kerswell, 1992). The reason is that in this case the shearing operator 
contributes at second order to the elliptical coupling as discussed in Section 3. We 
describe this particular calculation in Appendix C. The absence of shearing effects in 
the case of the coupling Q3,-1,1 -Q3,1,1 is due to the coincidence A3,1,1 = 1: in this 
instance the effect of the shearing operator vanishes. 

Other features of Figure 3 are worthy of note. Instability can only occur for c values 
which lie outside the range 0.87 < c  < 1.29. So both prolate and oblate spheroids are 
unstable provided their distortion from sphericity is sufficiently large. The coalescence 
of the instability tongues emerging from 9 = 0.3955096 and q = 0.678574 could suggest 
an interesting experimental study. A line drawn horizontally across the figure from 
(a, q)  = ( 0 , ~ ~ )  where 0.679 < q, < 0.784 (0.749 < c, < 0.771) starts off in a stable region 
then crosses the elliptical instability tongue Q3,0.1 - Q3,2,1, becomes stable again and 
then enters the shearing instability tongue associated with Q3,1,2 - Q3,2,1 (The rel- 
evance of moving horizontally along the figure in the laboratory is its comparative ease 
relative to vertical motion). Of course, this simple picture ignores the presence of other 
tongues corresponding to different forms of disturbance. We should emphasize that 
such a figure indicates sufficient not necessary conditions for instability. 

5. UNBOUNDED SHEARED, CIRCULAR STREAMLINES 

In this section we consider a rotating, unbounded fluid whose rotation axis is 
precessing. The undisturbed, steady (in the precessing frame) state consists of sheared 
circular streamlines. In the absence of a confining boundary, no elliptical distortion is 
induced permitting a study of just the shearing strain generic to precessing flows. We 
demonstrate the local instability of these sheared circular streamlines to the straining 
field present, confirming that the effect of boundaries is largely secondary. 

The unbounded flow to be considered is 

which is an exact, incompressible, viscous solution of the Navier Stokes equation in a 
frame rotating at S-2 = E%. The flow is rotating about the z-axis which is itself rotating 
slowly at E about the x-axis. This gives rise to the same sheared circular streamlines 
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about the z-axis as produced within a precessing spheroid; see the flow (1.1) when ,u is 
only retained to first order. 

An unbounded, uniformly rotating flow supports a spectrum of inertial oscillations 
consisting of travelling waves whose wave vectors rotate with the flow (e.g. Greenspan, 
1968). Viewed from the inertial frame, these ‘Kelvin’ modes may be written as 

a form of sufficient generality to describe oscillations upon any flow with spatially 
uniform strain rates (Craik and Criminale, 1986, more recently Craik and Allen, 1992, 
and Bayly 1986 in his study of elliptical flow). For our strained, rotating flow, such a 
Kelvin mode is an exact, nonlinear, inviscid, incompressible solution upon the basic 
state if both 

dk 
dt 
- + D T * k  = 0, 

and 
d i  
dt -+D*i+2Q x i i + i k j = O ,  (5.3) 

hold. The fluid is taken as inviscid for consistency with the bounded analysis although 
incorporating viscosity here is readily done. The first equation (5.2) has the solution 

tan a cos t 
k = k o [  tanasint ] 

1 -2~ tanacos t  
(5.4) 

where a is the average angle k makes with the rotation axis. With this, equation (5.3) is a 
Floquet problem for i, 

-=(2Q dtl, x ~ ) j ~ $ - d i j ] + [ ~ - d i j ] D j i ~ I ,  2kikj 
dt 

with only one free parameter; the angle c1. In particular, there is no dependence on I k I 
and the problem is scale invariant as it must be with no inherent length scale in the 
problem. The search for instability proceeds in the standard way (e.g. see Joseph, 1976) 
by examining the eigenvalues p of the matrix M(2n) defined by the problem 

M(0) = I, -- - Ail Mi,, ‘Mi, 
dt 

with 

(5.5) 

2kikj 
A, = 2E [? - - h i j  ] Ell j+  [ -- k2 dij]~j l*  
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Instability occurs if an eigenvalue has a modulus exceeding 1. A couple of observations 
are worthy of note. Firstly, the determinant of M(2n) must be 1 because the time- 
averaged trace of the matrix A is zero; and secondly 

d 
dt 
- ( k i M i j )  = 0, 

or in other words, as M(0) =I, k(0) = k(27r) is a left-eigenvector of M(27r) with an 
eigenvalue of 1. The remaining 2 eigenvalues are then either complex conjugates on the 
unit circle, indicating stability, or a real, reciprocal pair, one of which must lie outside 
the unit circle. This signals instability with a growth rate 0 calculated via 

1 
@(a,&)= -lnIp(a,~)I. 

2n 

Figures 4 and 5 summarise the findings. For all E # 0, there exists a band of angles in 
which the velocity amplitude c1 grows exponentially. Figure 4 shows the (wide) subhar- 
monic and (much narrower) higher order tongues of instability emerging from the axis 
E = 0 characteristic of parametric resonance. The main subharmonic tongue emanates 
from a =  c0s-I 1/4 = 1.3181 where the wavevector k rotates once every two basic 

1.6 

1.4 

a 1.2 

1 .o 

0.8 

0.6 
0.0 0.1 0.2 0.3 0.4 0.5 

E 

Figure 4 The Floquet tongues of instability as a function of the strain E. Within the subharmonic tongue 
emanating from a = cos- ' 1/4, the dashed line indicates the inclination a of largest growth rate (plotted in 
Figure 5) at a given E. The higher order tongues, starting from a = cos- ' 1/2 and cos-' 3/4 are so thin as to 
appear as lines here. 
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0.52 

0.51 

133 

- - 

- - 

I I 1 I 

(T 

0.52 

0.51 

- 

- 
I I 1 I I 1 

Figure5 A plot of the maximum scaled growth rate u = ~ / E  against the strain E.  The intercept is 
a= 5 J i i 3 i .  

rotation periods. Subsequent tongues emerge from similar synchronisation points [e.g. 
the O(E') tongue starts at a = cos-l1/2 where the wavevector rotates on average with 
the basic flow]. Figure 5 describes how the maximum growth rate varies with E within 
the subharmonic tongue. The limit E + O  corresponds to the scaled growth rate 
u = Z/E = 5 f i / 3 2  z 0.6052. The O(E) asymptotic results for E << 1 may be verified 
analytically using the power statement 

obtained through the dot product of ii with equation (5.3). For E = 0, the Kelvin mode 
with wave vector inclined at a to Z and perpendicular to the straining at t = 0, 

k = k ,  [- tan asin t, tanacos t, 1]*, 

is 

uo = 

%os - + 1  t+-cos 1 - -  t 

'-'sin - + I  t+-sin I - -  t 

- 2 (t ) ( t) 
(t ) ? i l .  ( t) - 2 

tan a sin (i) t 

(5.7) 
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where l/y = cosa. When 0 -= E<< 1 we can proceed perturbatively by use of the 
expansion 

i = [io(t) + &il(t)  + O ( E ~ ) ] ~ ~ "  

in (5.6). Averaging over one period leads to the condition that 

Hence, for E +O, growth occurs only at y = 4 or cos a = 1/4 where 

to eliminate secularity in B,. 
As indicated previously, this Kelvin mode has a period of 471 compared to the strain 

field which has period 2n in the rotatingfrarne. The instability is thus, in similarity with 
the elliptical instability, one of subharmonic parametric resonance to this order. 
However in contrast to the elliptical instability, no simple vortex-stretching picture 
emerges due to the modified frequency of excitation. No longer can the growing 
disturbance maintain a net time-averaged vorticity in the stretching direction, but 
rather the vorticity is alternately aligned and anti-aligned with the direction of shear. As 
a result no simple exponentially-growing spinover solution (Waleffe, 1990) of constant 
vorticity is available; any such disturbance possesses only algebraic growth at best. 

The 'unbounded' analysis presented above is in effect an idealisation of a small scale 
disturbance evolving at the centre of a precessing spheroid. As such it may be expected 
to capture the most favoured form of disturbance free from constraining boundaries; as 
was the case for elliptical streamlines. This hypothesis is certainly not contradicted by 
the limited sampling of resonances presented in this paper, whose growth rates all 
respect the unbounded 'supremum' result of 8 = 5 f i / 3 2 ~  - - 0.60528. Furthermore, 
the growth rates deduced by Mahalov (1992) for travelling waves in his infinite cylinder 
study are also all less than this figure. 

6. DISCUSSION 

We have seen that PoincarC's constant-vorticity solution for the motion within a 
precessing spheroid represents a globally strained, rotating flow. This straining field 
consists of two components; a boundary-induced elliptical part which acts in the plane 
of the streamlines, and a shearing part directed across the plane. Both components can 
parametrically resonate pairs of inertial waves with growth rates which scale with the 
magnitude of straining (i.e. E and 1). The mechanism is inertial and local in the sense 
that, regardless of the scale, a patch of elliptical and/or sheared streamlines will 
breakdown to three-dimensional disturbances in the absence of viscous processes. 
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Confined within encircling boundaries, such disturbances could be expected to favour 
the central axis as a site for initial growth and this is centainly what is found for an 
elliptically-distorted spheroid (Kerswell, 1992). Cardin (1992) has indicated that such 
localisation can be seen in recent precessional experiments (Vanyo et al., 1992). Any 
breakdown of the viscous cylindrical shear layer should presumably be localised away 
from this axis. 

This paper has discussed the possibility of instability but only hinted at its proba- 
bility. A mapping of some low-order elliptical (Kerswell, 1993b) and shearing reson- 
ances (Section 2) against the required geometry c suggests a good ‘covering’, bearing in 
mind that surrounding every resonance is a ‘danger zone’ proportional to the relevant 
strain parameter fi or E. Given the many opportunities for resonances within the infinite 
set of modes available, the probability appears high that for a specific container, some 
resonance is close by. Whether of course this resonance is observed depends on the fluid 
viscosity. A pair of inertial waves can only grow if their joint rate of excitation exceeds 
the geometric mean of their viscous decay rates. This may be seen by adding the viscous 
decay rates v for each wave to the amplitude equations (2.9), 

[c? + (f - A b ) i  + VJ B,  = E(1 + AJI* A,. 

The.modified expression for 6 is 

at perfect tuning 1, = 1, + 1 and instability occurs when 

If then seems plausible that there should be a non-zero critical precession rate function 
Qcri,(c,E) (E is the Ekman number) which determines the point of bifurcation of 
Poincart’s solution for any container and fluid. 

Application of the criticality expression (6.1) to Malkus’ experiments produces some 
interesting results. Malkus observed a laminar flow when R = 1 rev/min, 

r,~ = 49/576; p = 0.31; E = 1.2 x lo-’; /3 = 3.7 x f i  = 3.2 x 

where E is the Ekman number of the flow. At these values, the shearing growth rate 
dominates the elliptical growth rate and may be estimated as z 0 . 6 ~  = 0.72 x 
Taking the viscous decay rate for the lowest spinover wave, which corresponds to a 
change in the rotation axis of the fluid observed in the experiments, we have 
v = 2.62@ = 0.83 x the two values are close and of the right relative size for 
sub-criticality. If we use Q = 4/3 rev/min at which Malkus observed a turbulent flow, 
the revised estimate for the shearing growth rate of0.6~ z 1.03 x lo-’  now exceeds the 
viscous damping rate; although crude, these estimates are encouraging. 
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As a model of the Earth’s outer core, the precession of a homogeneous, incompres- 
sible fluid within a spheroidal container is of course a drastic idealization. Not only 
does it neglect compressibility, stratification, Lorentz forces and the solid inner core, 
but the convecting nature of the outer core is completely ignored [of note here is the 
current work by Zhang (1993a, b) who considers the inertial wave problem coupled 
with convection]. Despite these obvious inadequacies, the study of inertial waves 
would seem a reasonable starting point to examine the responses of a rapidly rotating 
core, especially in light of recent reports (Melchior and Ducarme, 1986; Aldridge and 
Lumb, 1987; Crossley et al., 1991). With these caveats, we discuss the possible implica- 
tions of this paper to the Earth. 

For Earth-like parameters, the shearing strain produced by precession can be 
estimated as 

and the magnitude of a typical growth rate as = 0.68 = 2.4 x lo-*. The viscosity of 
the outer core fluid remains one of the least constrained parameters in geophysics; 
estimates for the Ekman number E based on seismic inferences and assumptions of 
water-like viscosity values differ by 8 orders of magnitude. Adopting the latter leads to 
an Ekman number of and viscous decay rates of v = s f i  = 3s x lo-’ where s is 
a coefficient typically of O(1). Thus at this range of core viscosity, the shearing growth 
rates are the same order as the damping rates. If they exceed the damping, we can except 
breakdown of the Poincare solution, perhaps to a hydromagnetic analogue of the fully 
turbulent state found in experiments. This said, the deeper issue remains whether 
Poincark’s solution is actually a relevant model of the convecting outer core’s response 
to precession. 

The picture painted throughout this work has been a linear one describing only the 
behaviour of small disturbances. Efforts are in progress to understand the evolution of 
a resonant pair of inertial waves excited within an elliptically-distorted cylinder 
(Waleffe, 1989; Malkus and Waleffe, 1991; Kerswell, 1992). This isolates the elliptical 
coupling operator in a more accessible geometry for which experimental results are 
available (Malkus, 1989). 
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APPENDIX A 

Here we prove the assertion made in Section 4 that if u is a small disturbance riding 
upon Poincart‘s basic solution whose time evolution is governed by (4.2) then 

u(x, O ) € V ”  * u(x, t )€V-” V t  > 0 (A.1) 
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where V,, is the vector space spanned by {Qnmnk; - n < m < n; k = 1 , .  . . , kmox(n, m)} .  We 
start by arguing for the weaker result 

The spatial component of a Poincark modal pressure function is 

i.e. a polynomial in x, y and z of degree n containing either all even or all odd degree 
terms. Consequently the components of Qnmk are polynomials of degree n - 1 with 
lower order terms differing in degree from n - 1 by 2. The set of all Poincarb modal 
velocities is commonly considered complete, that is, they are imagined to span the 
space of all incompressible velocities which satisfy the boundary conditions (see the 
recent proof by Backus, 1992). Therefore we may write the vector space of all such 
velocities of degree < N - 1 as 

In the precessing frame, the linearised Euler equation reads 

au 
at 
- + ~ ~ x u + A * x * V U + A * U + V ~ = O  

where U = A.x is the basic state and the boundary condition is 

Z 
xux+yu,+--u =Olar (A.4) c2 = 

From these it is clear that if the components of u are polynomials of degree N (and p of 
degree N + 1) then u will remain a polynomial of degree N for all subsequent times: this 
is statement (A.2). The two crucial ingredients for this result are firstly that the basic 
state is purely linear in the spatial coordinates. This ensures that each of the terms in 
(A.3) are polynomials of the same degree; and secondly that the boundary condition 
also possesses this property of homogeneity. 

To arrive at the much stronger result (A.l), we define the operator S, 

P(u) = - A.x*VU - A.u - 2 a  x U, 
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which has the accompanying adjoint 

.F'(u) = A-x-Vu - AT*u - 21L x u 

under the inner product 

The linearised Euler equation for a disturbance then can be written as 

a U  
- = S(u)  - vp 
at 

and its dual 

au 
- = P ( u )  - vp.  
at 

We now prove that VN is invariant under time evolution governed either by (A.7) or by 
its dual (A.8): put more succinctly 

Firstly (A.2) trivially implies (A.l) [or (A.9)] in the special cases N = 2 and N = 3, 
beciuse Wl = (0) and only spaces differing by 2 can possibly be coupled by either (A.7) 
or (A.8). Now we proceed by induction. Assuming the result (A.9) holds for all 
n < N 1, consider a disturbance u (x, t )  which is such that u(x,O)EY~.  Let v = v(x) be 
an arbitrary velocity field in 

N -  1 

0 V n  
n =  1 

so that (v,u(x,O)) = 0. We can find how this overlap integral changes with time by 
taking the inner product of v with (A.7). This gives 

where the pressure term drops due to v being incompressible and having a vanishing 
normal velocity component at the boundary. Rewriting in terms of the adjoint, 

a 
-(v,u) at = (.Ft(v),u>, (A.lO) 
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we can now appeal to one half of our inductive assumption, namely 

to conclude that 

a -(v,u(x,O)) = 0. 
at 

Further time differentiations of (A. 10) show that all higher time derivatives of the inner 
product vanish at t = 0 implying that the orthogonality condition is preserved over 
time. A similar train of thought suffices for the dual result. 

The essential ingredients for this proof are that the possibly time-dependent basic 
flow is purely linear in the spatial coordinates, the boundary conditions have a 
polynomial structure and that the Poincare modes satisfy them. This result will 
therefore hold more generally for any such basic flow in a spheroidal container, 
rotating or not. Although such exact polynomial solutions certainly exist in an 
ellipsoidal container, no simple normal modes exist to construct them as developed 
here, that is, we lose our physically-relevant bases vectors. Instead, a broader set of 
polynomial functions are then the only building blocks with which to work; see 
Lebovitz (1989a, b) for a general discussion of their generation and an application to 
Riemann ellipsoids. 

APPENDIX B 

Here we quote the 8 equations which arise from substituting the eigensolution 

8 

u = 1 aivieu' 
i =  1 

into the vorticity equation given by V x (4.2): 

- 4 3  + 2q)a, - 4 5  + 4q)a, - (1 + 2q)a3 + (3 + 4q)a4 - (1 + q)(3 + 2q)pa, 
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- p(5 + 4q)a3 + p(3  + 2q)a4 - o(3 + q)a, - 4 5  + q)a6 + (1 - q)a7 - (3 + ?)a8 = 0, 

- 3aa, + 5aa2 + 5a3 + 3a4 -pa, - p(2 + 3q)a8 = 0, 

- 5a, + 3a2 - 3aa3 - 5aa, - p(1 + 3q)a, + p(3 + 7q)a6 = 0, 
(B-1) 

- p(4 + 3q)a1 - p(2 + q)a, + 4a, - 2(1+ q)a6 + 4 2  + q)a7 - atlg = 0, 

4p(1 + q)a2 - 4a, - 2(1+ q)a, - aa7 + a(2 + ?)a8 = 0. 

This is a matrix eigenvalue problem for a of the form 

(aB - C)-a  = 0, 

where B and C are the 8 x 8 matrices defined through the system (B. 1). 

APPENDIX C 

In this appendix, we sketch the asymptotic situation in the fourth tongue of Figure 3 
emanating from q = 0.678574 when R + 0. Here .s2 = O(b) and so the shearing operator 
affects the leading order elliptical resonance at  its second order. As described in Section 
3, we need only calculate v12 and its matrix elements in the amplitude equations (3.3) 
and (3.4) to capture the leading order growth: v1 and v13 are responsible for frequency 
shifting only. 

In the notation of Section 3 Q, = Q3,0,1, Qb = Q3,2,1, rn, = 0, mb = 2, A, = L3,0,1 = 
-1.087378, A b = A 3 , 2 , L  =0.912622, L3.1,1 = 1.673081, L 3 , 1 , 2 =  -0.178645 at 
q = 0.678574. We define L = L3,2 ,1  - 1 = L3,0 ,1  + 1 so that 

According to Appendix A, v1 E "v;, and hence 

V , ~ E ( Q ~ , ~ , ~ ;  k =  1,2)eiAr. 

However, for our purposes we need the pressure as well which forces reducing (3.2) to 
an equation solely for this. Representing the right-hand side of (3.2) as 
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where 

the problem for the pressure p(x ,  t )  = p12 (r,  z)ei(4+") becomes 

+-f++(l-;)? i 
r 

with boundary condition 

We can find a solution for p12(r,z)ei4 as a simple linear combination of @3,1,1(x) and 
0 3 , 1 , t ( x ) .  Then v12 is retrieved via the relations 

2i u12 =- ( - i i - - -  P l 2  + iif, + 2fJ 
4 - i t  dr r 

W 1 t  =U(.-.;-). 1 aPlz 

We are now in a position to calculate the matrix elements present in the coupled system 
(3.3)-( 3.4): 
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and 

Putting it all together produces a growth rate of 0.6304878, coinciding exactly with the 
numerical result. 


