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Tidal excitation of hydromagnetic waves and their 
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We examine the possibility that the Earth’s outer core, as a tidally distorted fluid-filled 
rotating spheroid, may be the seat of an elliptical instability. The instability mechanism 
is described within the framework of a simple Earth-like model. The preferred forms 
of wave disturbance are explored and a likely growth rate supremum deduced. 
Estimates are made of the Ohmic and viscous decay rates of such hydromagnetic waves 
in the outer core. Rather than a conclusive disparity of scales, we find that typical 
elliptical growth rates, Ohmic decay rates and viscous decay rates all have the same 
order for plausible core fields and core-to-mantle conductivities. This study is all the 
more timely considering the recent realization that the Earth’s precession may also 
drive similar instabilities at comparable strengths in the outer core. 

1. Introduction 
One of the outstanding issues in geophysics is the generation of the Earth’s magnetic 

field. Presumed the seat of the geodynamo, the Earth’s outer core has been, and 
remains, an area of intense interest for geophysicists and applied mathematicians alike 
(e.g. see the survey by Braginsky 1991, and reviews by Soward 1991, and Roberts & 
Soward 1992). Recent reports claiming to have identified the signatures of inertial 
waves in superconducting gravimetric data for the Earth (Melchior & Ducarme 1986; 
Aldridge & Lumb 1987; Melchior et al. 1988; Crossley, Hinderer & Legros 1991) have 
refocused interest in the normal modes of oscillation in the outer core (e.g. Smylie et 
al. 1992). Aldridge, Lumb & Henderson (1989) have proposed a simple Poincare model 
for the Earth in which the outer core is approximated as an oblate spheroid containing 
a homogeneous incompressible fluid rotating once a day about its axis of symmetry. 
Although a drastic idealization, this does offer a reasonable starting point to study the 
oscillations of the rotationally dominated outer core. 

In this paper, we outline one possible mechanism for the generation of core 
oscillations within the framework of the Poincare model. The Earth suffers a tidal 
straining due to the gravitational tug of the Moon (and also, but less so, the Sun) which 
should set up an elliptical flow in the outer core (e.g. Suess 1970). Much work has 
addressed the instability of elliptical streamlines whether in the context of an 
unbounded elliptical flow (Pierrehumbert 1986; Bayly 1986; Craik 1989; Waleffe 
1990), an elliptical cylinder (Gledzer et al. 1975; Vladimirov & Tarasov 1985; Malkus 
1989; Waleffe 1989; Kerswell 1993a) or in an ellipsoid (Gledzer et al. 1974; Gledzer 
& Ponomarev 1977; Boubnov 1978; Roesner & Schmieg 1980; Vladimirov & 
Vostretsov 1986); see the review by Craik (1991) and the recent reports by Gledzer & 
Ponomarev (1992) and Malkus (1993). Linear theory has proved successful in 
explaining experimental findings. An elliptical flow fixed in space represents a 
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uniformly rotating flow whose rotational symmetry is disrupted by an e2iB perturbation. 
At small ellipticities, this distortion can be considered as periodically forcing the 
underlying rotating flow at twice the rotational frequency. Instability can then occur 
through the pairwise parametric resonance of waves whose frequencies differ by this 
forcing frequency (Gledzer et al. 1974, 1975; Vladimirov & Vostretsov 1986; Waleffe 
1989). A geometry is termed resonant if two waves exist which satisfy this coupling 
condition. Pure subharmonic instabilities, in which the frequencies of both coupling 
waves are equal to the rotational frequency, form a special subclass of these resonances 
which have been found to be the most unstable (e.g. Waleffe 1989). 

The emphasis in past work has been to establish that some geometries are unstable 
under elliptical distortion and hence only the first few hydrodynamic resonances have 
been identified. Here the focus is a little different. We aim to assess the probability that 
a given geometry, the Earth’s outer core, may harbour an elliptical instability. This 
effectively reduces to addressing two questions. Is there a pair of waves close to 
elliptical resonance in the Earth’s outer core? And if so, will their elliptical excitation 
overcome Ohmic and viscous dissipation? We attempt to answer the first by arguing 
that in any geometry there are probably two waves at, or close to, resonance. This is 
based upon a systematic mapping of the growth rates of the first 60 or so subharmonic 
instabilities against their resonant geometries. The even scatter of these resonances 
over geometry and the likelihood of similar spreads for other instability subsets are 
suggestive of a good covering of all possible geometries by resonant geometries 
susceptible to elliptical instability. 

The answer to the second question depends crucially upon the presence of a magnetic 
field component to the waves, and the size of the accompanying Ohmic dissipation. In 
terms of the excitation rate, the effect of a magnetic field is to stabilize the instability 
slightly for Earth-like parameters (Kerswell 1993 a). Only couplings between fast 
(period = @day)) hydromagnetic waves were found to possess geophysically in- 
teresting growth rates and for these, Ohmic dissipation would appear to swamp any 
excitation (the low-frequency MAC waves studied by Hide 1966, Braginsky 1967 and 
Malkus 1967 are not excited to any significant level). However, a simple hydro- 
magnetic-boundary-layer analysis reveals a much reduced Ohmic dissipation of 
these waves due to their small magnetic component. In fact an intriguing equipartition 
of Ohmic and viscous decay rates seems to emerge, which are then the same order as 
the elliptical excitation rate. So, rather than a conclusive separation of scales in which 
the elliptical instability mechanism overpowers dissipative effects or vice versa, we find 
instead that matters may be delicately poised. 

This study is all the more timely because of the recent realization that a similar 
instability mechanism is operative within precessing spheroidal containers (Kerswell 
1993b). Here the streamlines are not only elliptically distorted but sheared across each 
other introducing an eiH perturbation to the rotating flow. This latter effect can drive 
new pairwise resonances with growth rates comparable to the tidal values in an Earth 
precessing once every 25 800 years. 

The paper is organized as follows. Section 2 sketches the parametric excitation of 
waves in a spheroid due to the effect of an orbiting tidal body. We assume the presence 
of a simple toroidal magnetic field to demonstrate the possibility of hydromagnetic 
wave excitation. By specializing attention to the preferred subset of subharmonic 
resonances, we confirm explicitly the stabilizing effect of a magnetic field observed in 
Kerswell (1993~).  The lowest of these resonances is none other than the well known 
‘middle-moment-of-inertia’ instability of rotating solid bodies. Section 3 is dedicated 
to estimating the effect of Ohmic and viscous dissipations upon fast hydromagnetic 
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waves within a plausible core-like model. Here we are forced to extend our model basic 
magnetic field to include a poloidal component. This is crucial for a realistic estimate 
of the Ohmic dissipation, but, as $2 demonstrates, largely unimportant as far as the 
elliptical growth rate is concerned. A discussion follows in $4. 

2. Tidal (elliptical) instability 
We consider a rotating spheroidal container filled with an incompressible electrically 

conducting fluid, which carries a constant axial electric current. The tidal effect of a 
moon 'orbiting' the spheroid is taken to be the elliptical distortion of both velocity and 
magnetic fields throughout the interior which is locked into a frame rotating with the 
moon. Suess (1971) modelled the tidal effect as just a boundary distortion, claiming 
that a line vortex develops at the axis due to the nonlinear boundary layer formed. 

The system is non-dimensionalized using the basic rotation rate of the fluid SZ = lSZZ,l, 
the mean equatorial radius of the spheroid R, the density p, and the magnetic 
permeability ,u such that in the frame of the tidal body rotating at y Q f ,  the non- 
dissipative equations read 

V - U = V * H = O ,  (2.3) 

where the magnetic field H* = aSZR(p/,u)'/2H and p is a modified pressure. The AlfvCn 
number 01 represents the ratio of AlfvCn speed to fluid rotation speed and in the core 
has a value of a - lop3 for a 100 G toroidal field. Relative to this 'tidal frame', the 
elliptical basic state is 

so that the ratio of axial current to total vorticity is a in the absence of distortion, and 
the boundary of the spheroid is 

x2  y2 z2 

l+p 1-p c2 
+-+-= 1 .  

The elliptical distortion parameter P is the ratio of local strain rate to rotation rate 
produced by the Sun and Moon and is taken as steady at its average value of 5 x lo-' 
in the outer core (see Kerswell 1993a). At this point, linearization about the non- 
axisymmetric state (2.4) leads to a set of disturbance equations in which p enters the 
boundary conditions. Transforming the system to the non-orthogonal elliptico-polar 
coordinates (s, $), where 

x = s( 1 + P)lIZ cos $ ; y = s( 1 - /?)1/2sin $, (2.6) 

alleviates this problem by mapping the elliptical streamlines and field lines into circles. 
Bayly was the first to realize the relevance of this coordinate system to elliptical flow, 
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stimulating the hydrodynamic analysis of a distorted cylinder by Waleffe (1989); 
Vladimirov & Vostretsov (1 986) used this coordinate system independently in the 
Russian literature. The base vectors 

are not orthogonal and are left unnormalized so that the 'cylindrical-polar ' expressions 

hold. As a consequence the advective derivative and divergence operators are then 
identical to the familiar ' cylindrical-polar ' expressions : 

where the new velocity components u, v and w are defined as follows: 

The basic state, 
u = u,~+u?/g+u,z" = us"+vd+wz". 

U, = (1 - 7) sJ, H, = ~6, 

(2.10) 

(2.11) 

(2.12) 

now appears axisymmetric because all the azimuthal (elliptical) variation is hidden in 
6. The complementary set of vectors 

chosen so that for example f - S  = 1, 1.6 = 0 and = 0, is used to project out three 
independent components of the momentum equation. Linearizing about the basic state 
(2.12), and shifting to a frame rotating with the underlying flow, the disturbance 
equations for perturbations in the velocity and magnetic fields u and h are exactly (in 
(i-, 4, Z)-components) 

au 
at 
-+ 2( 1 - + y ) (  - US"+ ~6) - 01~8, h - 2a2( -A, s"+ h, 6) + V p  

= p[e2i(#+[l-~lt)~lr(LV Z P  + iyu) + e-zi(@+rl-ylt)~(~V Z P  -ifu)], (2.14) 

ah - 
--a,u = 0, 
at 

and V * U  = Q - h  = 0, 

where 8, A = 8, A -  A ,  i+ A,S, i.e. 8, s" = 8,J = 0, 

(2.15) 

(2.16) 

a - l a  a 
(1 - p y  ' as s a$ aZ 

i 0  
Y V = s"-+#---+z^--. (2.17) 
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Here, V is a pseudo-gradient operator, and the modified pressure p ,  axial velocity w, 
axial magnetic field h, and z-coordinate have been rescaled as follows: 

P + (1 -P")P, [w, A,, 21 --f (1 -p2)1'z [w, A,, ZI. 

The boundary condition for the velocity field remains 

u .  Al,, = 0. (2.18) 

This, along with the azimuthal form of the imposed magnetic field, forces the magnetic 
boundary condition h.fil,, = 0 through the induction equation: the magnetic field 
disturbance is confined to the spheroidal interior. Defining the 6-vector Y = [u, hIT 
leads to the condensation 

where 

(2.19) 

(2.20) 

(2.21) 

9; = (9:)*, and with quadratic and higher terms in p neglected. Of course both the 
left- and right-hand sides of (2.19) depend on /3 in terms of the base vectors i and 6 if 
nothing else. However, once we have transformed to (s,$,z) coordinates, the 
components of the momentum equation along each of rand ii only feel the presence 
of p through the right-hand-side operator. Subsequently it makes sense to expand in 
terms of /3 within this distorting system, acknowledging the fact that the p-invariant 
leading-order term will vary with /3 back in the physical ( x , y , z )  system. With this in 
mind, we consider a disturbance composed of two waves to leading order, 

(2.22) y ( r , t )  = A(t) y a ( r ) + B ( t )  y b ( r ) + p @ ( r ? t ) + O ( p 2 ) ,  

each of which solves the /3 = 0 version of (2.19). The time-varying amplitudes, A and 
B, are defined such that 

A = (!Pa, Y) and B = (Yb, v>, (2.23) 

where the appropriate inner product is 

as derived in Kerswell (1993a), and the modes are assumed normalized. Hence, in 
particular, 

(!Pa, 0 )  = (Yb, 0 )  = 0. (2.25) 

Equation (2.19) may be alternatively projected onto !Pa and Yb giving the expressions 

(2.26) 
aA 
--(iAa-ua)A = p(Ya,(2Z:+9;) Y,,)B,  

aB 

at  

at 
(2.27) 

to Ow) and where we have inserted the modal decay rates to capture the leading-order 
effect of dissipation; these are the subject of $3. 

--(iAb- V b )  B = p( Y b ,  (3: 9,) Y a )  A 

8-2 
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The waves existant upon our undistorted hydromagnetic basic state, where = 0, 
were first written down by Malkus (1967) who realized that they are a simple extension 
of the Poincar6 modes for a uniformly rotating fluid (PoincarC 1885; Cartan 1922; 
Kudlick 1966; Greenspan 1968, p. 64). In cylindrical coordinates ( r , # , z ) ,  for a 
spheroidal container 

Z2 
r 2 + -  = 1, 

2 

these modes take the (unnormalized) form 

Mx,  0, W, O,p(x, 01 = [Q(P ,  z ) ,  H(r, z),@(r, z)] ei(m$+At), 

where 

(2.28) 

(2.29) 

with Q =  

the pseudo-frequency 
h2 - u2m2 
h-u’m ’ A =  

~ ~ + ( l - ~ ~ ) ( l - A ~ / 4 )  B2 = ~ ~ + ( 1 - ~ ~ ) ( 1 - A ~ / 4 )  
7 A2/4 

A 2  = 
1 - A2/4 > 

0 if n-lml even 
1 if n-lml odd, 

u = {  

(2.30) 

(2.31) 

(2.32) 

(2.33) 

and X; are the N = i(n - Iml - v) distinct squared zeros of the associated Legendre 
polynomial Prl(x) in the open interval (0,l). N gives the number of zeros in r and z 
in a quadrant. For a given set (n,m) there are 

n-1 if m=O 

eigenfrequencies given by the no-normal-velocity boundary condition 

mc2A -- A2c2 N 

u+2F A2c2-~;{4-A2(1 -2)) - 2-A 

(2.34) 

(2.35) 

for m 
The familiar bounding of the inertial mode frequency (Greenspan 1968, p. 52) is 
translated to the pseudo-frequency here, 

-2 < A  < 2. (2.36) 

The matrix elements in (2.26) and (2.27) will vanish unless ma and mb differ by 2; to 

(2.37) 

0 (this is extendable to m < 0 by use of the relationship An,  -m, - - - A n ,  m, k). 

be specific we assume mb = m, + 2. These matrix elements may then be written as 

( y a ,  [e-zi(~+[l-ylt)~* (%V@, 1- - i r e b ) ,  O I T )  = C ,  ePi[l-yIt 
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( y,, [eZi(4+[l-yl 0 4 i V @ ,  +ire,) ,  O]*) = C, eZi[l-Y1 ', 

C, = ~ { l - 2 y [ l - ( 1 - ~ ) ( 2 - A b ) ] 1 } J ,  2+A, 

C -- { 1 - 27 [ 1 - (1 - 2) (2 + A,)  ] ' }  J * ,  
2-2-Ab 

'@* ma ]rZ ] --f"--@,* ar r -+-@,, 
1 

J =  
(( ya, ya> ( yb? yb>>1'2 

and 

1 - 2a2m/h + 2 m 2 / A Z  
(1 - ~ x ~ m / h ) ~ ( 4  - A')' (Y,u,= 

x l l l d V {  [,,, +$ @I2 + [ 2QT ++ @J +(4-t1)2@'} 

22 5 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

A further far less obvious condition is that nb = n, otherwise J vanishes: see Appendix 
A of Kerswell (1993b) for a discussion of this requirement. 

Searching for a solution of (2.26) and (2.27) in the form 

A = A ,  e(a-i[l-yl) t ,  B = B, e(a+i[l-yl) t (2.43) 

leads to the equations 
[r-(1 -y+A,)i+u,]A, = PC, B,, 

[8+(l  -Y-hb)i+U,]Bo = pC,Ao,  

(2.44) 

(2.45) 

P(C, c y 2  > (V, V,)li2, 

or, for no dissipation, when 
(2.47) 

p( C1 Cz)1i2 > - - 2[ - y]),  (2.48) 

i.e. growth at resonance is exponential on a timescale of 1/P providing dissipation and 
detuning are sufficiently small. The above analysis is easily generalized to include 
additional features of the fluid flow, for example stratification (Kerswell 1993 a ;  
Lubow, Pringle & Kerswell 1993), by extending the dimension of the modal vector Y 
and deriving the new inner product analogous to (2.24). Additional entries may then 
appear in the coupling operators 2: and 2; depending crucially upon how the 
ellipticity enters into the underlying flow, but the overall conclusions remain the same. 

n, = nb, mb = m, + 2, (2.49) 

and A, - A, - 2[ 1 - y] is sufficiently small. For a given choice of k, and k,, the latter 
condition leads to a unique value of the geometry c about which there exists an O(P) 
window of instability. The primary effect of the tidal orbital frequency y is to adjust 
this frequency criterion and may even lead to complete stabilization. For a field-less 

To summarize, a resonance will occur between two modes Y, and Y, if 
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C n, k 0- C n, k cr 

0.132 620 20 1 0.561 826 1.649 67 18 5 0.560936 
0.146932 18 1 0.561671 1.802 78 3 1  0.517 857 
0.164 703 16 1 0.561 455 1.843 86 7 2  0.55201 1 
0.187356 14 1 0.561 142 1.931 88 20 6 0.561 002 
0.2 17 2 18 12 1 0.560663 1.979 96 16 5 0.560 128 
0.258 363 10 1 0.559875 2.05776 12 4 0.558 197 
0.318627 8 1  0.558436 2.202 59 8 3  0.552543 
0.404 174 20 2 0.561 793 2.32050 18 6 0.56021 6 
0.415 140 6 1  0.555 348 2.51261 14 5 0.558394 
0.44941 3 18 2 0.561 621 2.529 50 4 2  0.523 684 
0.506302 16 2 0.561 376 2.549 10 9 3  0.552 900 
0.580 138 14 2 0.561008 2.65080 20 7 0.560278 
0.586436 9 1  0.559004 2.887 13 10 4 0.553 151 
0.593004 4 1  0.546530 2.95209 16 6 0.558519 
0.680 103 12 2 0.56041 6 3.221 81 5 2  0.526340 
0.695914 20 3 0.561 722 3.381 53 18 7 0.558603 
0.753 134 7 1  0.556 505 3.54637 12 5 0.553474 
0.7 79 8 50 18 3 0.561 510 3.80402 20 8 0.558 662 
0.823 770 10 2 0.559 360 3.895 78 6 3  0.527785 
0.888292 16 3 0.561 194 4.191 23 14 6 0.553667 
1.000 00 2 1  0.500 000 4.558 83 7 3  0.528662 
1.02600 20 4 0.561 595 4.827 12 16 7 0.553792 
1.03451 14 3 0.560 642 5.2 14 85 8 4  0.529235 
1.04995 8 2  0.557 162 5.45701 18 8 0.553 877 
1.05827 5 1  0.549651 5.86608 9 4  0.529 63 1 
1.16509 18 4 0.561 306 6.082 70 20 9 0.553938 
1.244 77 12 3 0.559771 6.51388 10 5 0.529 91 7 
1.321 88 9 2  0.557575 7.802 55 12 6 0.530 292 
1.35308 16 4 0.560838 9.085 15 14 7 0.530521 
1.42203 20 5 0.561 380 10.3639 16 8 0.530 671 
1.46646 6 2  0.551 159 11.640 1 18 9 0.530775 
1.57749 10 3 0.557 854 12.9144 20 10 0.530849 
1.624 30 14 4 0.559993 

TABLE 1. Growth rates of all m = 1 resonances (n, k)  tabulated against geometry c for n = 2, 3, 4, 5, 
6, 7, 8, 9, 10, 12, 14, 16, 18, 20. The boldfaced entries (2n, 1) correspond to the dotted sequence in 
figure 2. 

fluid, -2 < h < 2 and hence if y > 3 or y < - 1, no coupling can occur at O(p) or 
higher orders (Craik 1989 reports such a stable interval in his unbounded analysis 
incorporating the Coriolis force; there his 52, = y/(l -7)). If we now specialize 
attention to the preferred subset of subharmonic instabilities where 

nu = n, = n, rn, =-mu = 1, A, = -A, = 1-y (2.50) 

then, for example, the lowest subharmonic resonance, which represents a perturbation 
in the rotation axis of the fluid, is excited when 

(2.51) 

For an oblate geometry, the critical y is negative and hence the moon's motion must 
be retrograde to excite this mode. Condition (2.51) is none other than that the phase 
velocity of the mode (and its complex-conjugate partner) matches that of the moon. 
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FIGURE 1.  Growth rates for spinover resonances plotted against geometry c. Oblateness corresponds 
to c < 1 and prolateness to c > 1. A dot is used to mark the initial point on a ridge, a dashed 
horizontal line is drawn at u = 9/16 and a vertical dotted line is used to mark the Earth's geometry 
of c z 1 - 11400. 

Other resonances between dissimilar waves represent a less successful attempt to 
achieve this, and their growth rates are correspondingly reduced. Note that for a sphere 
y = 0, and we recover the ' middle-moment-of-inertia' instability, i.e. solid-body 
rotation about the intermediate principal axis is unstable (c = 1 is between (1 --p)l/' 
and (1 + /3)1/z). 

Setting y = 0, the effect of the magnetic field upon the subharmonic resonances may 
be isolated as being stabilizing: rn = 1 and h = 1 means A = 1 also, and allows the 
decoupling 

(T, = (1-a')a, (2.52) 

where a, is the hydromagnetic growth rate, and (T is the a = 0 hydrodynamic value. 
This special case corroborates the general conclusions of Kerswell (1993a). 

Table 1 contains the first 60 or so subharmonic resonances when y = a = 0. 
Vladimirov & Vostretsov (1986) calculated the n = 2, 3 and 4 cases of the m = 1 
resonances and claim good agreement with experiments. A plot of the growth rate 
verses c displayed in figure 1 clearly shows that both prolate and oblate spheroids can 
harbour elliptical instability if distorted in their equatorial plane : that is, rotation 
about any axis of a slightly ellipsoidal spheroid such that the streamlines are elliptical 
can potentially be dangerous. 

The couplings are organized onto ridges which progressively asymptote to 9/16 from 
below, i.e. the elliptical growth rates do not drop off as the mode order increases. This 
figure of 9p/16 appears to be a growth rate supremum for the spheroidal geometryf- 

t This hypothesis appears to be contradicted by some growth rate results quoted by Vladimirov 
& Vostretsov (1986) which surpass this supremum. However, calculations by the author confirm that 
these rates do in fact respect this maximum. 
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FIGURE 2. Kinetic energy density for the @30,1,5 mode. Two basic features emerge: the intense 
concentration of energy density at the critical latitude and the localization of energy at the rotation 
axis. 

as it is for a cylinder (Waleffe 1989) and for plane waves in an unbounded domain 
(Waleffe 1990). The spheroidal subharmonic modes and their cylindrical counterparts 
asymptote to the same, essentially cylindrical, optimal disturbance and as a result 
possess a similar limiting growth rate. This is illustrated in figure 2 which plots the 
kinetic energy density for the dja0, I ,  mode over the first quadrant of the spheroidal 
domain, revealing the concentration of energy at the rotation axis in the form of a 
string of alternating vortices. The spikes at the boundary are an inherent, but little 
known, feature of inertial waves which is discussed in Appendix A. Least-favoured 
modes in which m = O(n) correspond to equatorially trapped oscillations (Wood 1981 ; 
Zhang 1993) strongly constrained by the curved boundary. 

The ridges of resonances are indexed by the relative value of k to k,,,. If k = k,,,, 
the resonance is on the lowest branch and is the least unstable; k,,,- 1 ridges are 
higher; the k = 1 resonance is the most unstable for a given n. There is a countably 
infinite number of ridges successively layered between the highest ridge k,,, - 9 shown 
in figure 1 and the asymptote at 9/16. The resonances also become more densely 
concentrated upon a particular ridge as its ‘degree’ increases (i.e. closeness to the 
asymptote). Thus increasing n not only introduces further ridges but ridges with an 
increasing density of resonances. Around each resonance is an O(p) danger zone which, 
when projected onto the geometry axis, indicates the probability of instability in a 
given container. This preliminary covering is further enhanced by adding ridges 
corresponding to other types of pairs, for example m = 0, 2 couplings. 
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To summarize, the possibility of elliptical instability is not confined to a few 
dangerous geometries but rather spreads across the whole spectrum of possible 
spheroids so that it becomes reasonable to assume that any geometry is close to a 
resonant geometry. At perfect tuning in the presence of dissipation, equation (2.47) 
indicates that instability will actually only occur if the joint elliptical growth rate 
exceeds the geometric mean of the individual decay rates of the wave pair. We now turn 
our attention to assessing the likely magnitude of these decay rates in the Earth's outer 
core. 

3. Hydromagnetic decay rates 
Owing to the Earth's rapid rotation, the lengthscales involved and the inferred 

diffusivities of the mainly molten iron fluid, the dissipation of wave disturbances occurs 
predominantly in boundary layers at the coremantle interface and inner core surface. 
Gans (1971) has already explored the boundary layers associated with slow MAC 
waves in a spheroidal cavity following on from his initial work on hydromagnetic 
precession in a cylinder (Gans 1970). Loper (1975) considered the hydromagnetic 
torque produced by such layers due to the misalignment of mantle and core rotation 
vectors in his assessment of a precessionally driven geodynamo. Here our aim is an 
appraisal of these layers with a view to estimating the Ohmic and viscous decay rates 
offast hydromagnetic waves in the outer core. 

In what follows, we will not consider the inner core surface: sufficient uncertainty 
already exists at the core-mantle interface to make consideration of the inner core 
unnecessary at this stage especially as it represents only 10 % of the available boundary 
area. We suppose that the boundary is spherical and that the conditions of no-slip 
apply. Magnetically, the ratio of electrical conductivities between mantle and core is 
the important parameter but inevitably poorly known. We concentrate upon the case 
of an insulating mantle but also present estimates which include mantle conductivity. 
Gans (1970) found that the structure of hydromagnetic boundary layers depends 
crucially upon whether the magnetic field permeates the boundary. As this is certainly 
the case in the outer core, we are forced to generalize our basic field of $2 to include 
a poloidal component. The presence of a toroidal field has already been found to only 
slightly adjust the elliptical growth rates and there is no reason to suggest that a 
poloidal field would behave otherwise. However, the magnetic field undoubtedly has 
a significant effect on the dissipation of the wave. The simplest composite field is an 
axisymmetric dipolar field imposed upon a uniform axial current, 

% = arJ+ bz"; (3.1) 

little is gained by considering anything more sophisticated. At this point, it is useful to 
redefine a2 as 4 x  which is the AlfvCn number squared for a 1 G field. The 
parameters b and a then give the dipolar and toroidal field strengths in units of G ;  
typically b z 5 and a z 100. 

The magnetic component of the fast hydromagnetic waves under consideration is 
O(a) smaller than the velocity component. As a result, the viscous decay rate can be 
expected to assume essentially its non-magnetic value, that is O(E1l2),  where the 
Ekman number E = v / f zL2  with v = lop6 m2 s-l, fz = 7 x lop5 rad s-' and 
L = 3.5 x lo6 m, and hence be comparable to the elliptical driving rate at 9/3/16. On the 
other hand, the Ohmic decay rate is an a priori unknown function of the Ohmic 
diffusivity measured by E:2, where the magnetic Ekman number Em = q/fzL2 z 
with = 1 m2 s-l, and the parameter CL is the AlfvCn number. The magnetic decay rate 
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could be O(EZ2) - 3 x lo-' + O@) - 3 x suppressing any elliptical instability. In 
fact, the Ohmic decay rate will emerge to be the same order as the viscous decay rate 
and hence comparable with the elliptical growth rate. 

The O(1) frequency of fast hydromagnetic waves allows a crucial shortcut to be 
taken in the analysis. In this case, the Lorentz force is only an O(a2) perturbation to 
the momentum equation (rather than O(1) for slow MAC waves) which can then be 
decoupled from the induction equation at leading order. In the rotating frame where 
the fluid is at rest, the linearized equations are 

au 
- + 2 l x u + V p  at = E V 2 U + a 2 ( H - V h + h - V H ) ,  (3.2) 

( 3 . 3 )  

V . u = V - h = O ,  (3.4) 

ah 
- + U S  V X  - X -  VU = Em V2h, 
at 

with u = OI,, 

and magnetic conditions to be discussed. We introduce the notation 

( 3 . 5 )  

u = uo(r) est + iio(r, t )  + e[ u,(r, t )  + iil(r, t )]  + . . . , 
h = h,(r) est + h",(r, t )  + E[hl(r, t )  + h",( r ,  t)] + . . . , 
P = Pdr)  est +P"o(r, t )  + e[p,(r7 0 +p",(r, 41 + . . . 7  

and the expanded frequency 
s = ih+ess,+ ..., 

with the objective of determining the real part of esl as in Greenspan (1968, p. 56). Here 
a tilde refers to a boundary-layer variable and E is a small expansion parameter to be 
determined by the boundary-layer thickness. That is, (u,, h,,p,) represents the inviscid 
ideal hydromagnetic wave in the interior, (ii,, h",,j0) represents the O( 1) correction in 
the boundary layer and so forth. The hydromagnetic waves are defined by the leading- 
order interior problem : 

i ~ u , + 2 R x u , + ~ p ,  = 0, (3.7) 

ihh, ,+u, .VH-H.VuO = 0, ( 3 . 8 )  

(3.9) V * U ,  = V - h ,  = 0, 

with u* i i  = OIzv. 

No boundary condition is needed for h, owing to the explicit form of the induction 
equation. The Lorentz force has been relegated to the next-order set of interior 
equations. 

The leading-order boundary-layer system is 

(3.10) 

(3 .11)  

w 

V - i i ,  = V * h ,  = 0, (3 .12)  
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with a,+ U, = OI,, 

using spherical polars (R ,  19~4) .  The magnetic boundary condition is that 6, + h, fits 
onto an exterior potential field h,  determined uniquely by ho.6]2v- The next-order 
problem within the interior looks like 

(3.13) 
a2 

- + 2L x U, + Vp,  = - S, u, +- (%- Vh, + h, . VA?), 
at € 

- + u ~ . V % - S ' * V U ~  ah1 = -S,h,, (3.14) 
a t  

with (u1+ii1)-6 = Olav7 

where each perturbative effect appears to leading order. As V . i ,  = 0, 

(3.15) 
a 

€-(i i , . f i )+f i .VX(f ixi i ,)  = 0 
aR 

so 
1 fl 

(3.16) 

Note that the boundary condition for the interior magnetic field is again dictated by 
the induction equation, but this will turn out to be unimportant. The O(e) problem in 
the interior is forced by the mass efflux due to the leading-order boundary-layer 
solution ii,. The frequency shift s1 is determined by a solvability condition on this 
problem. Formally, the appropriate hydromagnetic inner product (i.e. the modified 
version of (2.24) taking account of the dipolar field) is required here to suitably weight 
the momentum and induction equations. However, by relegating the Lorentz force to 
a inhomogeneous forcing at this order, the hydrodynamic inner product given by 
Greenspan (1968) ((2.24) with a = 0) is sufficient for the task. In this way, the precise 
boundary condition on h, is redundant: the decay rate depends solely on the mass 
efflux from the boundary layers. If we define 

(3.17) 

and assume that all quantities have the same time dependence as the leading wave then 

(u,, ihu, + 2R x u, + v p , )  + (ihu, + 2R x u, + vp , ,  u,> 

a2 
= -s,(u,, u,) + (u,, (S'. Vh, + h, * 0%)) .  (3.18) 

This simplifies by judicious use of the divergence theorem to 

- JJdSp: 1: dRii-V x (ri  x ii,)+a2 * %- Vh, + h,.VA?] dV 
€S* = s s s . o [  9 (3.19) 

~ ~ ~ l u o ~ ~  d v 

which captures both the correction to the frequency due to neglecting the Lorentz force 
and that due to the dissipative effects. Only the first term in the numerator will 
contribute a real part indicating decay and it is upon this that we now concentrate. 
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The azimuthal structure of the hydromagnetic wave will also carry over to the 
boundary-layer corrections, so that 

[fin, h,,,p",,] = [ f i , ( ~ ) ,  h , ( ~ ) , j , ( ~ ) ]  eint+im@-(l-R)'s(s), (3.20) 

where S(8) is the latitudinally dependent boundary-layer thickness. The system (3.12) 
becomes 

ih l? ,+2fx f i , -a2 -hh ,+-p ,R  = @u,, (3.21) 
X R -  E ,  - E ,  

S S 

Here we have assumed 

.- XR- E m -  ihh,--u - -h,, s O - S z  
(3.22) 

(3.23) 

(3.24) 

so that the normal derivative dominates the tangential terms; recall that our choice 
(3.1) has XR = b cos 0. For this condition not to hold the poloidal field must be of O(S) 
smaller than the toroidal field. For the Earth, S, will be found to be - loe5 and hence 
the criterion is sensibly satisfied over the bulk of the core-mantle boundary. At local 
breakdowns, where for instance XF is changing sign, the layer reverts to a weaker 
toroidal structure. The solenoidality of both velocity and magnetic fields forces 
I?,-@ = ho-R  = 0 throughout the layer. Eliminating 6, through the induction equation 
and taking R x (3.21) to remove PI, leads to the matrix equation 

- [ih - a2Xk(ihS2 -Em)-' - ESP] - ] [;?I = 0. 
-2 i i . l  

[ih - a2Xi(ihS2 -Em)-' - ES2]  -2i i . f  
(3.25) 

[ 
For non-trivial solutions, there is the consistency relationship 

(3.26) 

with solutions 

8 2  = 

- [iEm(h f 2d-  f )  + a22Pi + ihE] f {[iE,(h T 2ri - f )  + + ihE]' + 4EEm h(h T 2ii - f)$1/2 
2h(h f 2fi. f )  7 

(3.27) 

where the sign option in front of the square root is independent of the others. These 
may be separated when Em > E as 

(3.28) 
- [ iEm(hf2 f i . f )+a2Xi+ihE]  

h(h f 2ri. 1) Sk(T) - 
and (3.29) 
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There are four layers: two magnetic and two viscous. We define 

233 

j = 3  
j =  4, 

so that the boundary-layer variables, found as eigenvectors in (3.25), may be written 

where I j  are defined by the induction equation as 

(3.32) 

The decay rate may now be expressed solely in terms of the coefficients (a j :  
j = 1,2,3,4). Dropping the Lorentz frequency correction from (3.19), we write 

~ss,(uo,u,)  = -j/dSp: j:dRI.O x ( I  x 8,) = - j: d$ 1 dOp,* (; --- E) , (3.33) 

where 

4 

w = j:dRfi,.k = z -sinBaj6jeim$. 

This formula may be rearranged through integrating by parts in 6 and realizing that 
the boundary conditions force W = 0 at 0 = 0 , ~ .  Then substituting for v and W gives 
expressions for the magnetic and viscous decay rates: 

j=1 

(3.34) 

For the particular case of the lowest subharmonic mode, these expressions evaluate to 

(3.35) 
x y  1 + x)2 

E m  
i(1 -2x)+-x2 

(3.36) 

a2b2 1's' 
( a2b2) Re Re (ssT) = - Ell2 - __ 

dx , 8 E m  

i( 1 + x ) ~ (  1 - 2x) 
Re (esy) = - E 

where x = cos 6 (see Appendix B). The total decay rate Re ( q ) ,  

R e ( q )  = (3.37) 

increases monotonically as the poloidal field b grows. The most striking feature of this 
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FIGURE 3. Viscous s,, and magnetic s, decay rates for an insulating mantle. The sum s, is also 
plotted to show its monotonic behaviour. 

result is that the magnetic decay rate scales with a2b2Eli2/Em. Although the exact value 
of the accompanying coefficient will be mode-specific, this order scaling is a generic 
feature determined by the small efflux velocity produced in the magnetic layer. The 
ratio a2b2/Em is typically O( 1) for core-mantle-boundary-like fields implying that 
Ohmic and viscous decay rates are of comparable magnitude; in particular, 

a2b2 B2 
1, - - - -N 

E m  QPPY 

at a dipolar field of b - 5 G. The formula (3.37) is also fairly robust, for example any 
potential field will give the equivalent expression 

I" a2 

Em 
Re(m,) = i(l-2x)+-%i(x) 

and hence have the same monotonic behaviour. Figure 3 shows how the component 
decay rates vary with the magnetic field strength at the boundary. The viscous layer 
gradually loses its strength as b increases, although any decrease in viscous dissipation 
is more than compensated by the increase in Ohmic dissipation. At b = 5 G the total 
decay rate is z 3Eli2 compared with the elliptical growth rate of z 9p/16 z 0.9Eli2; 
in the context of the outer core, these figures are close. 

The effect of mantle conductivity can be incorporated into the above analysis 
relatively easily through the inclusion of an extra boundary layer in the mantle. The 
ratio of core-to-mantle electrical conductivities 

(variously estimated as 0(1) to O(10') by Li & Jeanloz 1987, 1988; Peyronneau & 
Poirier 1989 advocate a value of 0(104)) and the high frequency of the hydromagnetic 
waves mean that they can only penetrate a short distance into the mantle (providing 
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Dipolar field, b (G) 

FIGURE 4. The dependence of viscous (dashed lines) and magnetic (solid lines) decay rates on x, the 
ratio of core to mantle conductivity. The value of x is used as a label, x = co refers to the insulating- 
mantle curves. The x = 1E6 viscous decay rate curve is not shown as it covers the insulating-mantle 
line. 

E,x < 1). Figure 4 shows how sy  and sy vary with x; esy remains O(E1/2), but EST 
changes order. A simple scaling analysis captures the leading dependence of sy  on x 
as 

where esT(co) is the magnetic decay rate for an insulating mantle. The magnetic decay 
rate only differs appreciably from that for an insulating mantle when x 4 E,/E - lo6, 
although even at x = lo4 there is only a tenfold increase. Specifically, a total decay rate 
of 3E'" is now achieved at a poloidal field strength of 2 G as opposed to the 5 G field 
needed for an insulating mantle. 

4. Discussion 
In this paper, we have shown how pairs of hydromagnetic waves riding upon a 

toroidal magnetic field may be resonantly coupled by an underlying elliptical strain. 
This elliptical instability is not confined to a few dangerous geometries, but appears 
relevant to all (distorted) spheroidal containers. The preferred form of disturbance is 
a column along the rotation axis of alternating coherent vortices and currents aligned 
with the stretching direction of the tidal straining field. The conditions for resonance 
are modified to maintain this alignment when the ellipticity rotates. Removal of a 
central segment of this columnar structure should accommodate an inner core without 
much disruption to the solution. Elliptical growth rates are typically 9/3/16 (- 0.9E'/2 
taking /3 = 5 x and E = 10-15), in agreement with previous results from cylindrical 
and unbounded domains. 

The elliptical instability is simply a consequence of the e2'+ perturbation to circular 
streamlines produced by a tidal influence. This leads to pairwise couplings between 
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modes whose azimuthal wavenumbers and frequencies differ by 2. A similar form of 
instability is driven by the Earth’s precession whose dominant effect is the introduction 
of a ei4 distortion to the streamlines at the same order as the tidal effects (Kerswell 
1993 b). This gives rise to an equally important set of pairwise ‘precessional’ resonances 
in which azimuthal wavenumbers and frequencies differ by 1. 

The dissipation analysis presented above is directed at global hydromagnetic waves 
with periods on the daily timescale and is as pertinent to these precessional resonances 
as elliptical resonances. The decay rate scalings which emerge appear robust. Contrary 
to initial expectations, Ohmic dissipation does not necessarily swamp these resonances 
for Earth-like scalings by dominating viscosity (the ratio of diffusivities is a million for 
iron). Rather, an interesting equipartition of dissipation seems to emerge between the 
magnetic and viscous layers for plausible core-mantle-boundary field strengths and 
mantle conductivities. If x, the ratio of core to mantle conductivity, is larger than or 
equal to lo6, equipartition occurs at about bepui = 5 G. More generally for x < lo6, 

EE, x 114 

bequi - [7] 2 

where, for example, at x = LO4, bequi is still 2 G. The viscous decay rate is, and stays, 
O(E1/2) = O(p) as the magnetic field varies, increasing only gradually with the order of 
the mode; for example, there is only a factor of 4 increase from Q2, l , ?  to Q3,,, 5 .  

In the context of the Earth’s outer core with all the uncertainties it presents, the 
unexpected closeness of the growth and decay rates is intriguing. We are unable to 
dispel tidal distortion or precession as being too weak to be important but, rather, are 
left to contemplate a possible balance of effects. 

I am grateful to H. P. Greenspan and W. V. R. Malkus for many helpful discussions 
during this work. 

Appendix A 

‘modified’ oblate spheroidal coordinate system (g, r),  defined such that 
The structure of inertial waves in a spheroidal container was first derived in a 

r = A( 1 - <2)1’2( 1 - y2)”2, z = B&, (A 1) 

c2+(1 -c2)(l -A2/4) B2 = c2+(1 -c2)(1 -A2/4) A 2  = 
A2/4 

with 

by Bryan in 1889 following the work of Poincark (1885). In these coordinates the 
spheroidal domain is mapped into a rectangular region: see figure 5. The 
transformation is however singular when 6 = 7 which occurs at the critical latitude 
A = 2fi.z“ on the boundary: in figure 5 this is point a2 in the first quadrant and a4 in 
the second. Greenspan (1968, p. 191) demonstrated using a plane wave analysis that at 
this latitude incoming energy is reflected along the boundary instead of back into the 
interior. As the modal wavelength decreases, the wave ‘sees’ the singularity more and 
more, resulting in progressively more singular behaviour at this point. The critical 
latitude A = 2ii-2, corresponding to a latitude of 

(l-A2/4) ’ 

is marked in figure 6 coinciding with the kinetic energy spike. 
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5 
1 

1 

II 

FIGURE 5. The oblate spheroidal coordinate transformation. Critical points are a2 and a4. Notation 
is such that, for example, elliptical arc cl-c2 in the (R, Z)-plane corresponds to the straight line c l k 2  
in the (q,5) system. 

The existence of a critical latitude for an inertial wave is well known when 
considering its Ekman boundary layer which has to be rescaled locally there (Roberts 
& Stewartson 1963). However, Wood (1977) seems to be the only previous author to 
appreciate that the inviscid structure of the mode also contains its signature. He 
considered the asymptotic structure of inertial modes with n 9 1 and m = O( l), finding 
that the velocity field takes on a cylindrical structure in which the speed is a factor 
O(n1I2) larger near the rotation axis where r = O(l/n) than in the interior. He also 
found a local O(n) intensification of the velocity field at O(l/n2) distances normal to 
the boundary at the critical circle. These features are clearly realized in figure 2. Not 
unexpectedly, the critical circle plays a dominant role in the boundary-layer dissipation 
of these inertial modes. 
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FIGURE 6. Kinetic energy density on the boundary verses latitudinal angle from the equator z = 0 
for the @31, 1, mode. This plot demonstrates the peaked behaviour at the critical angle 
9jrrit  = tan-'[(0.8644)2//2/3] = 0.4072 marked by the dotted line. 

Appendix B 

lowest subharmonic mode, 
Here we calculate the coefficient functions aj(8) when the leading wave solution is the 

which represents a change in the rotation axis of the fluid. This mode has a frequency 
A = 1 in a spherical geometry. The induction equation prescribes the concomitant 
magnetic component as 

-ibsinB 
(B 2) 

The normal component of this field at the boundary uniquely specifies the exterior 
potential field in the mantle as 

- ib sin 8/R3 
h, = V {$sin 8 ei@} = [ ib cos 8/2R3 ] ei@. (B 3) 

- b/2R3 

The magnetic boundary conditions then become 

0 
6&=, = [ 3ih cos 812 -a ] ei@, 

- 3b/2 - ia cos 8 g , , ~ ,  4 
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and the full system for the coefficients aj may now be written down: 

a,+a2+a3+a4 = - U o o  = - 1, (B 5 )  
(B 6) 

(B 7) 
(B 8) 

The relative magnitudes of the r indicate the degree to which the layers are coupled. 
Substitution of the appropriate layer thicknesses (3.28), (3.29) into the expression for 
I ;  reveals that 

i(al-a2+a3-aa,) = -uo, = -icos8, 
4 a,  + 4 a2 + r, a3 + 4 a4 = hp,- h,, = 3ib cos 8/2 - a, 

i(T, a, - & a2 + a3 - 4 a4) = h,,-h,, = - 3b/2 - iacos 8. 

Hence except for an error of O(a2b2E1I2/Ez2) - O(10-5b2), the velocity field in the 
viscous layer is determined by the no-slip conditions as follows: 

(B 10) a =--1 ,(1 +cos8), a4 = -f( l  -cos8). 

Equations (B 7) and (B 8) then yield 

. (B 11) 
(2G - 2g + 3ib) (1 + cos 8) 

4 4  
(24  - 2 ~ -  3ib)( 1 -cos 8) 

4 4  
a, = > a, = 

Finally, for the mode (B 1) 

Substitution of these results into (3.34) leads to the final expressions (3.35) and (3.36). 
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