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A new computational procedure for numerically solving a class of variational problems arising
from rigorous upper bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical
systems, including the Navier–Stokes and Oberbeck–Boussinesq equations, is analyzed and applied
to Rayleigh–Bénard convection. A proof that the only steady state to which this numerical algorithm
can converge is the required global optimal of the relevant variational problem is given for three
canonical flow configurations. In contrast with most other numerical schemes for computing the
optimal bounds on transported quantities (e.g., heat or momentum) within the “background field”
variational framework, which employ variants of Newton’s method and hence require very accurate
initial iterates, the new computational method is easy to implement and, crucially, does not require
numerical continuation. The algorithm is used to determine the optimal background-method bound
on the heat transport enhancement factor, i.e., the Nusselt number Nu, as a function of the Rayleigh
number Ra, Prandtl number Pr, and domain aspect ratio L in two-dimensional Rayleigh–Bénard
convection between stress-free isothermal boundaries (Rayleigh’s original 1916 model of convection).
The result of the computation is significant because analyses, laboratory experiments, and numerical
simulations have suggested a range of exponents α and β in the presumed Nu ∼ PrαRaβ scaling
relation. The computations clearly show that for Ra ≤ 1010 at fixed L = 2

√
2, Nu ≤ 0.106Pr0Ra5/12,

which indicates that molecular transport cannot generally be neglected in the “ultimate” high-Ra
regime.
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I. INTRODUCTION

High-dimensional forced-dissipative nonlinear dynamical systems generally exhibit enhanced transport in turbulent
regimes. For example, the transport of heat and momentum in turbulent shear- and buoyancy-driven flows, respec-
tively, is increased by orders of magnitude over the transport achievable by molecular processes in the absence of fluid
motion. A priori prediction or estimation of this transport enhancement is desirable in a wide range of geo-scientific
and technological applications but is challenging owing to the complexity of the turbulent dynamics. One approach
that has proved effective for certain problems is to derive, via rigorous analysis of – and without directly simulating
– the governing nonlinear partial differential equations, bounds on the achievable transport that all flow solutions
(whether steady, unsteady, turbulent, etc.) must satisfy. The derivation of upper bounds on flow quantities was first
given by Howard [1] (originally motivated by the ideas of Malkus [2]) for Rayleigh–Bénard convection, the buoyancy-
driven flow of a fluid heated from below and cooled from above [3, 4], and extended by Busse et al. to various other
thermal convection processes as well as to shear flow turbulence [5–7]. The Malkus–Howard–Busse (MHB) variational
formulation is strictly true for stationary flows but is presumed to be valid in an infinite (rather than finite) horizontal
layer owing to the hypothesis of statistical stationarity, i.e., the technical assumption that horizontal averages, and
thus also volume averages, are time independent [8]. Several decades later a “background field” method was proposed
by Doering and Constantin [8–13] to produce rigorous upper bounds on energy dissipation and heat transport in a
variety of turbulent flows without any statistical hypotheses, scaling assumptions, or closure approximations. This
approach, which posits a decomposition of the flow variables into a steady background field plus arbitrarily large
fluctuations, is based on Hopf’s method for producing a priori estimates for solutions of the Navier–Stokes equations
with inhomogeneous boundary conditions [14], and hereafter is referred to as the Constantin–Doering–Hopf (CHD)
variational formalism. The link between these two variational schemes (MHB and CDH) has been discussed in detail
by Kerswell [15, 16].

Strictly rigorous albeit sub-optimal bounds often can be obtained within the CDH framework by assuming simple
(generally, piecewise-linear) functional forms for the background (e.g., temperature or streamwise velocity) profiles.
To obtain the optimal achievable CDH bounds, the nonlinear, stationary Euler–Lagrange equations for the optimal
fields must be solved numerically. The required computations are challenging because the solutions of these equations
are non-unique; in contrast, the unique solution of the CDH problem, the global optimizer, not only satisfies the Euler–
Lagrange equations but also a “spectral constraint” requiring a certain linear operator that depends on the global
optimal background field to have strictly non-negative eigenvalues. Consequently, extreme care must be exercised to
ensure that a candidate optimizer satisfies the spectral constraint.

Most prior approaches to numerically solving the CDH problem employ variants of Newton’s method. In practice, to
avoid numerous spurious optimizers, the use of sophisticated numerical continuation software packages is required [17]
since Newton iterations generally will not converge to the true solution unless accurate initial iterates are provided.
A major contribution of the present investigation is to demonstrate that a two-step algorithm recently developed by
Wen et al. [18], in which the Euler–Lagrange equations are advanced in pseudo-time, does not require continuation
even when so-called “balance parameters” are introduced into the upper bound analysis. Of equal importance, for
three canonical turbulent dynamical systems, we prove that the only steady state to which our numerical method can
converge is the true (globally optimal) solution of the variational CDH problem.

We apply our scheme to compute the optimal CDH upper bounds on the heat transport in two-dimensional (2D)
Rayleigh–Bénard convection between stress-free isothermal boundaries, Rayleigh’s original 1916 model [4]. Indeed,
one of the central challenges in studies of Rayleigh–Bénard convection is the determination of the heat transport
enhancement factor, i.e. the Nusselt number Nu, as a function of the Rayleigh number Ra, Prandtl number Pr,
and domain aspect ratio L, representing, respectively, the ratios of driving to damping forces, the momentum to
thermal diffusivity of the fluid, and the horizontal to vertical dimension of the container. The relationship between
Nu, Pr, and Ra is often presumed to be Nu ∼ PrαRaβ in the asymptotic high-Ra regime, but theoretical analyses,
experiments, and simulations have yielded a variety of different scaling exponents α and β. For example, Malkus’

marginally stable boundary layer theory [2, 19] yields a scaling Nu ∼ Pr0Ra1/3 wherein the heat flux is independent

of the fluid layer height. However, theories by Spiegel [20] and Grossman & Lohse [21] suggest that Nu ∼ Pr1/2Ra1/2,
in which case boundary layer effects are negligible and the heat flux becomes independent of the molecular transport
coefficients as Ra→∞. More recently, the study of 2D steady heat-flux-maximizing convective solutions with no-slip
boundary conditions at Pr = 7 by Waleffe [22] indicates Nu ∼ 0.115Ra0.31 for 107 < Ra ≤ 109. Rigorous analyses

of the three-dimensional (3D) Boussinesq equations governing Rayleigh–Bénard convection show Nu ≤ cRa1/2 with
prefactor 0 < c < ∞ uniformly in Pr for no-slip and isothermal [8] or fixed heat flux [23] or mixed temperature [24]

boundary conditions. This bound does not contradict the result Nu ∼ Pr0Ra1/3 obtained from marginally stable

boundary layer theory, but it does rule out the prediction Nu ∼ Pr1/2Ra1/2 at large Prandtl numbers. And indeed,
for convection between no-slip boundaries in the infinite-Pr limit, there exist rigorous upper bounds of the form



3

Nu ≤ CRa1/3, where C depends on log Ra [25, 26] or even only on log(log Ra) [27]. On the other hand in Rayleigh’s

original 1916 model, the heat transport satisfies Nu < cRa5/12 [28, 29]. This 5/12 scaling exponent for the upper
bound also holds for stress-free isothermal boundary conditions in 3D configurations when Pr =∞ [30, 31]. However,
since piecewise linear functions were utilized as the background profiles, the upper bounds obtained by Otero [28] and
Whitehead & Doering [29] are not the optimal ones within the CDH variational scheme. A second contribution of
the present work is the computation of the optimal upper bounds on Nu as a function of Ra and L for 2D stress-free
isothermal boundary conditions and arbitrary Pr. We obtain the optimal bounds by numerically solving the full
background problem using the two-step algorithm developed by Wen et al. [18] and, as indicated above, find that
in practice our scheme is much easier to implement and significantly more efficient than prior approaches employing
Newton iteration and numerical continuation. Consequently, we hope that the computational methodology outlined
here will enable a much broader community of researchers interested in transport in turbulent dynamical systems to
employ the CDH formalism.

The reminder of this paper is organized as follows. In the next section, we derive the Euler–Lagrange equations
for the relevant variational optimization problem, outline the numerical scheme to solve these equations, and prove
that the only steady state to which the numerical algorithm will converge is the true solution. The upper bound
computations for varying Rayleigh number and aspect ratio are described and analyzed in section III, and our
conclusions are given in section IV.

II. PROBLEM FORMATION AND COMPUTATIONAL METHODOLOGY

The 2D (x–z) dimensionless Boussinesq equations for thermal convection are:

1

Pr

(
∂u

∂t
+ u · ∇u

)
+∇p = ∇2u + Rak̂T, (1)

∇ · u = 0, (2)

∂T

∂t
+ u · ∇T = ∇2T, (3)

where u = ûi + wk̂ is the velocity field, P is the pressure, and T is the temperature. At the upper and lower
walls, located at z = 0, 1, the velocity field satisfies no-penetration and stress-free boundary conditions and the
temperature is held fixed at the dimensional values 1 and 0, respectively; and all fields are L-periodic in x, as shown
in Fig. 1. This system is governed by three control parameters: the domain aspect ratio L, the Prandtl number
Pr = ν/κ, the ratio of the kinematic viscosity ν to the thermal diffusivity κ of the fluid, and the Rayleigh number
Ra = αg(Tbot − Ttop)H3/(νκ), the normalized temperature drop across the layer, where α is the thermal expansion
coefficient, g is the gravitational acceleration, Tbot− Ttop is the dimensional temperature change across the layer, and
H is the layer depth. A primary quantity of interest in convection is the Nusselt number Nu, the ratio of the heat
transport in the presence of convective motion to the conductive heat transport in the absence of fluid motion. One
goal of this paper is to compute the optimal upper bounds on the Nusselt number,

Nu = 1 + lim
t̃→∞

1

t̃

∫ t̃

0

〈wT 〉dt,

within the CDH variational framework, where the angle brackets denote the spatial average, i.e. for some function f

〈f〉 =
1

L

∫ 1

0

∫ L

0

fdxdz. (4)

Taking the curl of Eq. (1) yields the evolution equation for the (negative) scalar vorticity compnent Ω = ∂w/∂x−
∂u/∂z,

1

Pr

(
∂Ω

∂t
+ u · ∇Ω

)
= ∇2Ω + Ra

∂T

∂x
, (5)

where Ω|z=0,1 = 0 can be deduced from the no-penetration and stress-free boundary conditions on the velocity field.
Note that homogenous boundary conditions on Ω are not realized for 3D stress-free Rayleigh–Bénard convection;
consequently, the quadratic enstrophy constraint can only be imposed in the 2D stress-free convection problem to
thereby reduce the upper bounds on the heat transport [28, 29, 31].
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FIG. 1. Geometry and boundary conditions for the 2D stress-free convection problem.

A. Upper Bound Theory (CDH Formalism)

In the CDH upper bound theory the temperature T (x, z, t) is decomposed into a time-independent background pro-
file τ(z) carrying the inhomogeneous boundary conditions plus a nonlinear fluctuation θ(x, z, t) satisfying homogeneous
boundary conditions:

T (x, z, t) = τ(z) + θ(x, z, t), (6)

where τ(0) = 1, τ(1) = 0, and θ(x, 0, t) = θ(x, 1, t) = 0. Ensuring that appropriate test background profiles satisfy
a certain spectral constraint produces rigorous upper bounds on global transport properties of the flow (whether
laminar or turbulent).

By combining the energy and enstrophy balances [28, 29], the Nusselt number in this problem can be expressed as

Nu ≡ nu− 1

1− b lim
t̃→∞

1

t̃

∫ t̃

0

Qdt, (7)

where

nu =
1

1− b

(∫ 1

0

(τ ′)2dz − b
)
, (8)

Q =

〈
|∇θ|2 +

a

Ra3/2
|∇Ω|2 +

b

Ra
Ω2 + 2τ ′wθ − a

Ra1/2
Ωθx

〉
, (9)

primes denote ordinary differentiation with respect to z, a subscript denotes partial differentiation with respect to the
given variable, and a and b are scalar “balance parameters” for the global energy and enstrophy constraints. Thus,
if the background profile τ(z) and coefficients a > 0 and 0 < b < 1 can be chosen so that Q ≥ 0 for all functions
θ = ϑ(x, z), Ω = Ω(x, z), and w = W (x, z) satisfying periodic boundary conditions in x and homogeneous Dirichlet
conditions in z and the local constraint

∇2W − Ωx = 0, (10)

which is derived from the definition of Ω and the continuity Eq. (2), then nu is an upper bound on Nu. Since W
is a linear functional of Ω via Eq. (10), Q is indeed a quadratic form in terms of ϑ and Ω. Hence, the positivity
constraint for this quadratic form is equivalent to a spectral constraint for the self-adjoint operator inside Q, namely
the non-negativity of the ground state eigenvalue λ0 of the self-adjoint problem [28]:

−2∇2ϑ+ 2Wτ ′ +
a

Ra1/2
Ωx = λϑ, (11)

−2∇2Ωx +
2b

a
Ra1/2Ωx − Raϑxx +

Ra3/2

a
γxx =

Ra3/2

a
λΩx, (12)

∇2γ + 2ϑτ ′ = 0, (13)

∇2W − Ωx = 0, (14)

where γ(x, z) is the Lagrange-multiplier field enforcing the local constraint (i.e. Eq. (10)). To obtain the optimal
upper bounds, we need to minimize nu subject to the spectral constraint λ0 ≥ 0.
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B. Euler–Lagrange Equations

The optimal bounds are achieved when inf(λ0) = 0. To solve the background variational problem efficiently, we
work directly with the corresponding Euler–Lagrange equations derived by identifying a Lagrange functional for this
optimization problem:

L =
1

1− b

(∫ 1

0

(τ ′)2dz − b
)
−
〈
|∇ϑ|2 +

a

Ra3/2
|∇Ω|2 +

b

Ra
Ω2 + 2τ ′Wϑ− a

Ra1/2
Ωϑx

〉
−
〈
γ(∇2W − Ωx)

〉
. (15)

The first term in L is the objective functional to be extremized, and the second and third terms correspond to
the spectral constraint and the local constraint Eq. (10), respectively. Note that in the second term, the scalar
Lagrange multiplier has been absorbed into the spectral constraint by rescaling ϑ, Ω, W and γ, and in the third
term the Lagrange-multiplier field γ(x, z), like the direct field ϑ(x, z), satisfies periodic boundary conditions in x and
homogenous Dirichlet conditions in z. The first variations (Frechet derivatives) of this functional with respect to τ ,
ϑ, Ω, W , γ, b, and a (i.e. δL/δτ = 0, δL/δϑ = 0, etc.), respectively, yield the Euler–Lagrange equations

−τ ′′ + (1− b)(Wϑ)z = 0, (16)

−2∇2ϑ+ 2Wτ ′ +
a

Ra1/2
Ωx = 0, (17)

− 2a

Ra3/2
∇2Ω +

2b

Ra
Ω− a

Ra1/2
ϑx + γx = 0, (18)

∇2γ + 2ϑτ ′ = 0, (19)

∇2W − Ωx = 0, (20)

b− 1 +

Ra
(∫ 1

0
(τ ′)2dz − 1

)
〈Ω2〉


1/2

= 0, (21)

〈
1

Ra3/2
|∇Ω|2 − 1

Ra1/2
Ωϑx

〉
= 0, (22)

where (·) = 1
L

∫ L
0
dx(·). After taking an x-derivative and rescaling, we can rewrite Eq. (18) as

−2∇2Ωx +
2b

a
Ra1/2Ωx − Raϑxx +

Ra3/2

a
γxx = 0. (23)

Since 〈Ω · δL/δΩ〉 = 0, namely 〈
− 2a

Ra3/2
|∇Ω|2 − 2b

Ra
Ω2 +

a

Ra1/2
Ωϑx − Ωγx

〉
= 0, (24)

hence from Eq. (22), Eq. (24) becomes

a =
Ra3/2〈γΩx〉 − 2bRa1/2〈Ω2〉

〈|∇Ω|2〉 . (25)

Solving the Euler–Lagrange equations (16), (17), (23), (19)–(21), and (25) subject to the spectral constraint λ0 ≥ 0
yields the optimal background profile and upper bound.

Before solving these equations, it is instructive to analyze their structure. First, we observe that a subset of the
Euler–Lagrange equations (17), (23), (19), and (20), is identical to the marginally stable eigenvalue system (i.e.,
Eqs. (11)–(14) for λ0 = 0). Moreover, the Euler–Lagrange equations derived here have a similar mean-field (or
quasi-linear) structure to those in Plasting & Kerswell [17] and Wen et al. [18]. In particular, using a Fourier series
representation, the solution can be expressed as ϑΩxγ

W

 =

N∑
n=1

 ϑ
∗
n(z)

Ω∗xn(z)
γ∗n(z)
W ∗n(z)

 cos (nkx), (26)

where n and k = 2π/L are the (integer) horizontal mode number and fundamental wavenumber, respectively, and N
is the (generally) finite truncation mode number, i.e., the series in Eq. (26) generally terminates. The true solution,
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FIG. 2. Ground state eigenvalue distribution for the true (solid) and spurious (dashed) solutions of the Euler–Lagrange equations
at Ra = 562341, L = 2

√
2. Both solutions satisfy the Euler–Lagrange equations. However, the true solution, which includes all

three critical modes (nc1, nc2, nc3) for this case, also satisfies the spectral constraint λ0 ≥ 0; in contrast, the spurious solution,
which captures only two of the critical modes (nc1, nc2), does not satisfy the spectral constraint, i.e., λ0 < 0 at horizontal
wavenumber nc3k.

which not only satisfies the Euler–Lagrange equations but also the spectral constraint, is unique and determined solely
by the critical modes nck, i.e. ϑ∗n = Ω∗xn = γ∗n = W ∗n ≡ 0 for n 6= nc. In contrast, the solution of the Euler–Lagrange
equations is generally not unique: the true solution, or global optimal, includes all the critical modes and yields an
admissible τ(z) satisfying the spectral constraint, while the spurious solutions, saddles which we refer to as local
optimals, omit certain critical modes and/or include incorrect modes and yield an inadmissible τ(z) for which the
ground state eigenvalue becomes negative at some horizontal wavenumber, as shown in Fig. 2. In the context of
Rayleigh–Bénard convection, this sort of eigenstructure was first computed in early numerical work by Doering &
Hyman [12], who used a finite-difference relaxation method to solve the single-critical-mode Euler–Lagrange equations;
see in particular their Figure 2.

Thus, one of the central challenges in the numerical solution of the Euler–Lagrange equations is the determination
of the a priori unknown critical modes, which usually requires the use of Newton iteration plus continuation [17]. Here
we overcome this difficulty by utilizing a two-step algorithm we recently proposed in our previous computations of
upper bounds on the heat transport in porous medium convection [18]. Crucially, the sole balance parameter arising
in the porous medium problem can be scaled out of the Euler–Lagrange equations, and the two-step algorithm has
been shown to be efficient and accurate in that case [18]. In the current problem, the balance parameters b and a
cannot be scaled out of the Euler–Lagrange equations (21) and (25), introducing new sources of uncertainty regarding
the efficacy of our algorithm. Nevertheless, in the following sections, we demonstrate that the two-step algorithm
can indeed be successfully applied to background optimization problems even with balance parameters. Moreover, we
prove that the only steady state to which this numerical approach can converge is the global optimal.

C. Two-Step Algorithm

The key idea of the first step is to convert the time-invariant Euler–Lagrange system into a time-dependent dynamical
system by incorporating certain specific time derivatives into Eqs. (16)–(25). Then the solutions of the original Euler–
Lagrange equations, which correspond exactly to the steady states of the “time-dependent” Euler–Lagrange equations,
can be easily obtained by solving the extended equations numerically using a time-marching method with non-zero
initial data for all horizontal modes 1 ≤ n ≤ N . In this section, the behavior of two different types of time-dependent
Euler–Lagrange systems, hereafter referred to as system A and system B, is investigated.

In system A, the terms ∂tϑ and ∂tΩx are added, respectively, to Eqs. (17) and (23), as follows

∂tϑ−
δL
δϑ

= 0 ⇒ ∂tϑ− 2∇2ϑ+ 2Wτ ′ +
a

Ra1/2
Ωx = 0, (27)

∂tΩx −
δL
δΩx

= 0 ⇒ ∂tΩx − 2∇2Ωx +
2b

a
Ra1/2Ωx − Raϑxx +

Ra3/2

a
γxx = 0, (28)
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where τ , γ, W , b and a are determined from Eqs. (16), (19)–(21), and (25).
In system B, in addition to including the time-derivative terms in Eqs. (27) and (28), ∂tτ is also added to Eq. (16)

as follows

∂tτ +
δL
δτ

= 0 ⇒ ∂tτ − τzz + (1− b)(Wϑ)z = 0. (29)

Moreover, the balance parameters can also be “freed up” by adding ∂ta and ∂tb to ∂L/∂a = 0 and ∂L/∂b = 0,
respectively, that is

∂ta+
∂L
∂a

= 0 ⇒ ∂ta−
〈 |∇Ω|2

Ra3/2
− Ωϑx

Ra1/2

〉
= 0, (30)

∂tb+
∂L
∂b

= 0 ⇒ ∂tb+

∫ 1

0
(τ ′)2dz − 1

(1− b)2
− 〈Ω

2〉
Ra

= 0. (31)

Then γ and W can be determined from Eqs. (19) and (20), respectively. The motivation for these choices is the
observation that

dL(τ, ϑ,Ω; a, b,Ra)

dt
=

〈
τt
δL
δτ

+ ϑt
δL
δϑ

+ Ωt
δL
δΩ

〉
+ at

∂L
∂a

+ bt
∂L
∂b
. (32)

The signs of the diffusive terms in the Frechet derivatives for τ, ϑ and Ω dictate how the respective time derivatives
are added but the situation is unclear for the balance parameters. A little experimentation, however, clearly indicates
the “correct” sign to take so that Eq. (32) becomes

dL(τ, ϑ,Ω; a, b,Ra)

dt
= 〈−τ2

t + ϑ2
t + Ω2

t 〉 − a2
t − b2t . (33)

By not adding τt, system A is an attempt to find an algorithm in which Nu increases monotonically with time to the
global bound (for fixed balance parameters). System B includes τt to discern whether this makes the time-dependent
system better behaved under temporal integration albeit at the expense of non-monotonic behavior in Nu. In the
next section, we prove that if either of systems A or B (for fixed balance parameters) converges to a steady state then
this state is the true solution, i.e., the global optimal.

In our computations, temporal discretization is achieved using the Crank–Nicolson method for the linear terms
(i.e., terms linear in the variable being advanced) and a two-step Adams–Bashforth method for the nonlinear (i.e.,
remaining) terms, while a Chebyshev spectral collocation method is used for spatial discretization. As both systems
were time-advanced, the balance parameters converged to specific values (see Fig. 3); Nu converged to the bound;
and the ground state spectrum became marginally stable (see Fig. 4) with noncritical ϑ∗n and Ω∗xn converging to zero.
It was found that although system A does generate a monotonically-increasing estimate for the global bound (even
sometimes for free balance parameters), it required a good initial condition – which could be obtained by employing
the time-marching solver for a short integration period with fixed a and b. In contrast, system B was more robust: it
worked even for initial conditions distant from the global optimal and allowed larger time steps to be taken, although
the inclusion of τt, at and bt in Eqs. (29), (30) and (31), respectively, destroyed the monotonic-increasing property of
Nu (see the left-hand plot of Fig. 4). Therefore, in the follow sections, system B is utilized for all the computations.

Generally, this first step of the two-step algorithm works efficiently and accurately for small and moderate Ra.
However, for large Ra, e.g., Ra > 108, the time-marching algorithm converges slowly owing to stringent restrictions
on the allowable size of the numerical time step. Thus, for this range of Ra, we employ a second step: a Newton–
Kantorovich iterative method [32]. As discussed previously, Newton iteration generally will converge to a spurious
solution unless a very good initial condition that includes the correct critical modes is used. However, from the first

step, both the critical modes for which λ0 ≈ 0 and the noncritical modes with ϑ̂n and Ω̂xn converging to zero can be
accurately identified. Thus, the output from the first step can be used as the required (very) good initial condition for
the second step. Moreover, during the first step we observe that the non-critical components of ϑ∗n and Ω∗xn require
a comparably long time to converge to extremely small values even as the balance parameters have converged or
oscillate in a very small range. Therefore, to improve the efficiency of the second step, we utilize the constant values
of a and b as obtained from the first step. More details about the Newton–Kantorovich algorithm for this problem
can be found in Appendix A.

Strictly speaking, after completing this two-step computation, the resulting background profile τ(z) should be
substituted into the eigensystem, Eqs. (11)–(14), to verify that the spectral constraint is satisfied. Here we only
verify the spectral constraint for Ra ≤ 107 owing to the numerical challenges associated with accurately solving the
extremely ill-conditioned eigenvalue problem itself at large Ra. Nevertheless, for the cases with Ra > 107, the critical
modes can still be accurately predicted by identifying the noncritical modes for which ϑ∗n and Ω∗xn are damped as
time evolves.
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FIG. 3. Time-evolution, for Ra = 562341 and L = 2
√

2, of the balance parameters. As t increases, the balance parameters
(Left: a; Right: b) converge to constant values (indicated by the black horizontal dashed lines). The same initial conditions
and time steps are utilized for systems A and B. Note that the balance parameters in B exhibit far less variability than do
those in A.
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FIG. 4. Time-evolution, for Ra = 562341 and L = 2
√

2, of Nu (Left) and the ground state eigenvalue λ0 (Right). As t increases,
Nu converges to the bound (Left) and the ground state spectrum becomes marginally stable (λ0 ≥ 0), with the critical modes
occurring at those wavenumbers for which λ0 = 0 (Right). The same initial conditions and time steps are utilized for systems
A and B, and the ground state eigenvalue in the right-hand plot is from B. Note that in the left-hand plot, Nu increases up to
the bound monotonically for A.

D. The Global Optimal as the only Possible Steady Attractor

We next analyze the fixed-balance-parameter optimization problem to demonstrate that the global attractor is the
only steady attractor of the time-augmented variational problem. Allowing the balance parameters to also vary can
only further (temporally) destabilize states – so the global optimal is no longer guaranteed to be an attractor, but
our numerical results suggest that it still is.

Let (τ, ϑ,Ω, γ,W ) satisfy the Euler–Lagrange equations (16), (17), (19)–(20), and (23) and be made up of J x-
wavenumbers ncjk so that

τ = τ(z),

 ϑΩxγ
W

 =

J∑
j=1


ϑ∗ncj

(z)
Ω∗xncj

(z)
γ∗ncj

(z)
W ∗ncj

(z)

 cos (ncjkx). (34)

As discussed previously, there are many such solutions but only one, the true solution or global optimal, satisfies the
spectral constraint (λ0 ≥ 0 from the spectral problem, Eqs. (11)–(14)). These solutions – the global, true solution
and the local, spurious optimals – are steady-state solutions of the time-derivative-enhanced equations: (19)–(20) and
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(27)–(29). We now establish that all of the spurious (locally optimal) solutions are linearly unstable in the time-
dependent system and so can never be attracting endstates of the time-dependent system. We further show that the
globally optimal solution is linearly stable and therefore an attractor. The method of proof is relatively straightforward
and, since it exploits the spectral constraint, generalizes easily to other canonical upper bound problems including
plane Couette flow (e.g., [17]) and porous medium convection (e.g., [18]): see Appendix B. Extending the result that
the global solution is an attractor when the balance parameters also vary does not, however, seem possible generally.
Instead, this has to be verified on a case-by-case basis (via direct stability analysis) since the balance parameters
enter into the optimization problems in rather arbitrary ways. Nevertheless, what can be proved is almost as strong
as could be desired: if the time-dependent system converges to a steady state, then this steady state is the global
optimal.

To establish this result, let (τ̂ , ϑ̂, Ω̂, γ̂, Ŵ ) be a possibly large perturbation of the steady state solution (τ, ϑ,Ω, γ,W )
and consider the temporal evolution equations for this perturbation for fixed balance parameters

∂tτ̂ = τ̂zz − (1− b)(Ŵϑ+Wϑ̂+ Ŵ ϑ̂)z, (35)

∂tϑ̂ = 2∇2ϑ̂− 2(Ŵ τz +Wτ̂z + Ŵ τ̂z)− a

Ra1/2
Ω̂x, (36)

∂tΩ̂x = 2∇2Ω̂x −
2b

a
Ra1/2Ω̂x + Raϑ̂xx −

Ra3/2

a
γ̂xx, (37)

0 = ∇2γ̂ + 2(ϑ̂τz + ϑτ̂z + ϑ̂τ̂z), (38)

0 = ∇2Ŵ − Ω̂x, (39)

where the perturbation fields satisfy periodic boundary conditions in x and homogeneous boundary conditions in z

(in particular, τ̂(0) = τ̂(1) = 0). Then, the volume integrals 〈τ̂ × Eq.(35)〉, 〈ϑ̂× Eq.(36)〉, 〈−
∫ x

Ω̂(x′)dx′ × Eq.(37)〉,
〈Ŵ × Eq.(38)〉, and 〈γ̂ × Eq.(39)〉 yield

〈 1
2 τ̂

2 〉t = −〈 τ̂2
z 〉+ (1− b)〈 (Ŵϑ+Wϑ̂+ Ŵ ϑ̂)τ̂z 〉, (40)

〈 1
2 ϑ̂

2 〉t = −2〈 |∇ϑ̂|2 〉 − 2〈 ϑ̂Ŵ τz + ϑ̂W τ̂z + ϑ̂Ŵ τ̂z 〉 −
a

Ra1/2
〈 ϑ̂Ω̂x 〉, (41)

〈 1
2 Ω̂2 〉t = −2〈 |∇Ω̂|2 〉 − 2b

a
Ra1/2〈 Ω̂2 〉 − Ra〈 ϑ̂Ω̂x 〉+

Ra3/2

a
〈 γ̂Ω̂x 〉, (42)

0 = 〈 Ŵ∇2γ̂ 〉+ 2〈 Ŵ ϑ̂τz + Ŵϑτ̂z + Ŵ ϑ̂τ̂z 〉, (43)

0 = 〈 γ̂∇2Ŵ 〉 − 〈 γ̂Ω̂x 〉. (44)

Adding 2×Eq. (40), (1 − b)×Eq. (41), a(1 − b)/Ra3/2×Eq. (42), (1 − b)×Eq. (44) and subtracting (1 − b)×Eq. (43)
gives 〈

τ̂2 +
1− b

2
ϑ̂2 +

a(1− b)
2Ra3/2

Ω̂2

〉
t

= −2〈 τ̂2
z 〉−2(1− b)

〈
|∇ϑ̂|2 +

a

Ra3/2
|∇Ω̂|2

+
b

Ra
Ω̂2 + Ŵ ϑ̂(2τz + τ̂z)−

a

Ra1/2
Ω̂ϑ̂x

〉
(45)

Interestingly, the second term on the right-hand side is the spectral constraint based upon a linear combination of

the base and perturbation background fields with only one higher-than-quadratic term, 〈Ŵ ϑ̂τ̂z〉, reflecting the fully
nonlinear nature of the relation. Despite this relative simplicity, no global convergence result seems forthcoming so
we instead linearize to consider local stability properties of the steady solutions. Now the second term is the spectral
constraint on the steady background field τ , which is negative semidefinite if and only if τ satisfies the spectral
constraint Q ≥ 0 in Eq. (9). At this point it is worth noting that eigenfunctions of the linearized evolution operator
(Eqs. (35)–(39) with the nonlinear, bold terms dropped) take one of two distinct forms: either

Type I : τ̂ = 0,


ϑ̂

Ω̂x
γ̂

Ŵ

 =


ϑ̃(z)

Ω̃(z)
γ̃(z)

W̃ (z)

 cos (nkx), (46)

where n /∈ {nc1, nc2, . . . , ncJ}, i.e., the perturbation shares no common wavenumber with the underlying steady state
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(see Eq. (34) ), or

Type II : τ̂ = τ̂(z) 6= 0,


ϑ̂

Ω̂x
γ̂

Ŵ

 =

J∑
j=1


ϑ̃ncj (z)

Ω̃xncj
(z)

γ̃ncj
(z)

W̃ncj
(z)

 cos (ncjkx). (47)

The crucial observation is that Type I eigenfunctions are also eigenfunctions of the spectral constraint operator defined
by Eqs. (11)–(14). Hence if the spectral constraint is not satisfied as is the case for all spurious (local optimal) solutions,
there is a temporally unstable Type I eigenfunction: hence the spurious solutions are not attracting states. Moreover,
this linear instability persists when the balance parameters are also allowed to vary because Type I eigenfunctions
cannot contain balance parameter perturbations (perturbations in the balance parameters are solely carried by Type
II eigenfunctions).

In the case of the global optimal, the spectral constraint is satisfied and all Type I eigenfunctions are temporally
damped (stable) since they have a spectral constraint eigenvalue λ0 that is strictly positive. For perturbations spanned
by Type II eigenfunctions, it is formally possible for the spectral constraint to be marginally satisfied and for 〈 τ̂2

z 〉 to
vanish at some instant: i.e., strict monotonic decay of the functional on the left-hand side of Eq. (45) is not assured.
However, if this happens (requiring

ϑ̃ncj
(z)

Ω̃xncj (z)
γ̃ncj (z)

W̃ncj
(z)

 = αj


ϑ∗ncj

(z)
Ω∗xncj

(z)
γ∗ncj

(z)
W ∗ncj

(z)

 ∀j ∈ {1, . . . , J} (48)

where αj are some real scalars), Eq. (35) indicates that 〈 τ̂2
z 〉tt > 0 so this situation cannot persist, i.e., there is no

neutral Type II eigenfunction. Thus, all Type II eigenfunctions are also temporally damped and the global optimal
is an attractor of the time-dependent problem with fixed balance parameters.

The overall conclusion is that the spurious (local optimal) solutions can never be attractors of the time-dependent
system whereas the global optimal is for fixed balance parameters and may be for the full problem (with varying
balance parameters), too. Put another way, if a steady solution is reached as the endstate of the time-dependent
system it will be the global optimal, but a steady endstate is not guaranteed.

III. RESULTS AND DISCUSSION

A series of computations was performed for a discrete set of Ra = 100× 10(i−1)/4 (for integer i) from Ra = 100 to

Ra = 1010; for Ra ≥ 107, computations were also performed for a range of L values from L = 0.01 to L = 2
√

2 to
study the aspect-ratio dependence of the upper bounds. As Ra was increased the number of Chebyshev modes used
in the vertical discretization was increased from 65 to 401. Unlike for DNS, computational memory requirements are
modest for upper bound computations; indeed, all the computations reported here were performed using laptop and
desktop computers. The largest Rayleigh number for which we compute a bound, Ra = 1010, was selected based
on the evident convergence of the large-Ra scaling of Nu (i.e., the exponent of Ra converges to 5/12), as shown
below. Linear stability analysis of the conduction solution [4] indicates that stress-free Rayleigh–Bénard convection
undergoes a stationary bifurcation at a critical Rayleigh number Rac = 27/4π4, above which the layer becomes

convectively unstable, and that at Rac the wavelength of the corresponding marginal mode Lc = 2
√

2. Furthermore,
as Ra increases, the wavelength of the shortest marginally stable mode decreases; specifically, for this mode, (abusing

notation) Lc ∼ 2πRa−1/4 in the limit Ra→∞.
Figure 5 compares our optimal upper bound, obtained by numerically solving the full background field variational

problem, with previously obtained numerical and analytical upper bounds by Otero [23] and Whitehead & Doering
[29], who employed a piecewise linear function as the background profile, and with the heat transport achieved by
steady convection solutions obtained asymptotically by Chini & Cox [33] and numerically by Souza [34]. The new

result indicates Nu ≤ 0.106Ra5/12 in the asymptotic high-Ra regime at fixed L = 2
√

2 uniformly in Pr. Clearly,
the new bound constitutes a quantitative improvement over the previous bounds, although in pre-factor only. For
reference, we note that for stress-free Rayleigh–Bénard convection at infinite Pr, Plasting & Ierley [35] estimate

Nu . 0.126Ra5/12. Moreover, all of these upper bounds lie above the predicted and computed steady heat transport,
which indicate an approximate 1/3 scaling at large Ra, and the primary bifurcation at Ra = 27/4π4 is also clearly
evident. Figure 6 shows the distribution of the critical modes predicted from the first step of our computations. At

large Ra, the wavenumber of the critical mode with maximum wavenumber scales as Ra1/4, which agrees very well
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best fit curve Nu ∼ 0.106Ra5/12. For reference, also included here are: the previous numerical bound from Otero [28] (dashed-

dot line, Nu ∼ 0.142Ra5/12) and analytical bound from Whitehead & Doering [29] (solid line, Nu ∼ 0.289Ra5/12), and the
Nu–Ra data from Chini & Cox [33] (dashed-diamond line) and Souza [34] (dashed-square line) corresponding, respectively, to
the asymptotically-predicted and numerically-computed heat transport realized by steady cellular solutions of the Boussinesq
equations (with Pr = 1) maximized over the cell aspect ratio at each Ra. The inset shows the variation of the power-law scaling
exponent β (recall Nu ∼ Raβ) of the new bound as a function of Ra, where β is computed using a central-differencing method.
The scaling exponent of the optimal upper bound converges to 5/12 in the asymptotic high-Ra regime, consistent with the
previous results from Otero [28] and Whitehead & Doering [29]. In contrast, for the steady solutions, β ∼ 1/3 at large Ra in
the analysis of Chini & Cox [33] and β ≈ 0.32 at Ra = O(108) in the computations of Souza [34].
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FIG. 6. Bifurcation diagram showing the number and values of the critical modes as a function of Ra for L = 2
√

2. The largest
critical mode number nc ∼ Ra1/4 at large Ra, consistent with the analytical result from Whitehead & Doering [29].

with the analytical prediction by Whitehead & Doering [29]. Interestingly, this scaling is the same as that of the
high-wavenumber marginal linear stability mode in the large-Ra limit.

The background profiles for different Ra and L are shown in Fig. 7. The optimal background profile shares many
features exhibited by the horizontal and long-time mean temperature profile from DNS [36]: as Ra is increased, the
boundary layers in τ(z) become thinner and the interior part of the profile becomes nearly z-independent. Moreover,
for fixed Ra, the background profile becomes approximately invariant when L is large enough. After computing the
optimal τ(z), a set of orthogonal eigenfunctions (see Fig. 8) can be obtained by solving the self-adjoint eigenvalue
problem given by Eqs. (11)–(14). Since these eigenfunctions are extracted directly from the governing equations, they
capture many features of the real flow (e.g., boundary layer structure) and should comprise a physically-preferred
a priori basis for building reduced-order models via Galerkin projection [37]. The aspect-ratio dependence of the heat
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(λ0 and λ1) at n = nc1, nc2, and nc3. The ground state eigenfunctions (λ0, solid curves) are even symmetric about z = 1/2,
while the eigenfunctions corresponding to the first excited state (λ1, dashed curves) are odd symmetric.

transport can also be explored through upper bound analysis, which has been shown for porous medium convection to
accurately predict the L(Ra) scaling relationship at large Ra corresponding to a given (re-normalized) Nusselt value
computed using DNS [18]. Figure 9 shows the aspect-ratio dependence of the upper bounds for the Rayleigh–Bénard
problem studied here for 107 ≤ Ra ≤ 1010. Clearly, the upper bounds (again) capture the bifurcation occurring at
the marginal stability boundary of the conduction state, corresponding to the dashed line in Fig. 9. To the left of
this line, i.e. for L < Lc, there is no convection so that Nu ≡ 1 and the the re-normalized Nu is constant. The
re-normalized Nu quickly asymptotes to 1 as L increases, showing that for large Ra, the aspect ratio has little impact
on the bounds until the domain becomes sufficiently small. This evidence suggests the existence of a “minimal flow
unit” – the smallest domain for which the heat transport effectively remains constant with any further increase in L
– although the precise size of this unit remains unclear.

IV. CONCLUSIONS

One possible explanation for the discrepancies among previously reported heat-transport scaling exponents in
Rayleigh–Bénard convection is that many of these investigations did not reach the asymptotic high-Ra regime. Other
explanations include uncertainties associated with non-Boussinesq effects and Pr-variations in experiments and the lack
of sufficient spatiotemporal resolution in numerical simulations. Mathematical analysis of the governing Boussinesq
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equations both complements and informs experiments and DNS by providing provably true bounds on the achievable
heat transport. Indeed, Whitehead & Doering [29, 31] used rigorous upper bound analysis to analytically prove that

Nu ≤ cRa5/12 as Ra → ∞ for both 2D Rayleigh–Bénard convection at arbitrary Pr and 3D infinite-Pr Rayleigh–
Bénard convection, both with stress-free isothermal boundary conditions (albeit with slightly different pre-factors c).
In this investigation, we have obtained the optimal upper bound – within the CDH framework – on the heat transport
in 2D Rayleigh–Bénard convection with stress-free isothermal boundaries by solving the full background variational
problem numerically. Moreover, we have proved that if the two-step numerical algorithm utilized here converges to
a steady state then this state is the global optimal not only for stress-free Rayleigh–Bénard convection but also for
other systems including, e.g., porous medium convection and plane Couette flow (see Appendix B). Since numerical
continuation is not required using this approach, and because our algorithm can be readily programmed, thereby
obviating the overhead associated with learning sophisticated commercial software, we hope that it should enable a
broader community of researchers to employ computational upper bound theory.

For 2D stress-free Rayleigh–Bénard convection at large Ra and fixed L = 2
√

2, our results show that the optimal

bound Nu ≤ 0.106Ra5/12 and the largest critical mode number nc ∼ 0.13Ra1/4, in close agreement with the analytical
(sub-optimal) bounds obtained by Whitehead & Doering [29]. Crucially, the 5/12 exponent rules out general arguments
(i.e., those not making specific reference to spatial dimension or boundary conditions) for the existence of an ultimate

scaling regime with Nu ∼ Pr1/2Ra1/2 wherein the heat transport is independent of the molecular transport coefficients

[20, 21]. The Nu . Ra5/12 bound reveals that molecular transport processes are not generally negligible as Ra→∞,
and certainly not for the 2D stress-free problem. Furthermore, as a by-product, the upper bound analysis furnishes
many useful features of the dynamical system including an approximation to the mean temperature profile, bifurcations
of Nu with Ra and L, and an a priori orthogonal eigenbasis that should be well-suited for reduced-order modeling,
without directly solving the governing equations. Our investigation constitutes the first systematic study of the
influence of the domain aspect-ratio on the upper bounds on the heat transport in turbulent stress-free Rayleigh–
Bénard convection. As for porous medium convection, our results imply that at large Ra there exists a minimal flow
unit above which size the heat transport is effectively independent of L. The specific aspect ratio of this unit L(Ra)
remains an open question.

Finally, it is worthwhile to mention the remarkable quantitative correspondence between the best background

asymptotic high Rayleigh number upper bound computed here, Nu ≤ 0.106Ra5/12, and the optimal (steady) high-
Ra transport limit computed by explicitly constructing steady incompressible flows satisfying the same boundary
conditions and intensity constraints – namely 〈|∇u|2〉 = Ra(Nu − 1) – that passively advect the maximal heat flux

between parallel isothermal boundaries, i.e., Nu . 0.115Ra5/12 [38]. It is natural to wonder if the prefactors might
actually be identical; the coincidence of their magnitudes is certainly notable and the 8.6% discrepancy might be the
result of the numerical estimation of the relation over only a limited Rayleigh number range in Hassanzadeh et al. [38].
In any case the flows constructed there indicate that the background bounds computed here are essentially sharp in the
sense that there exist “admissible” flows that transport heat very close to the estimated rate. This is in accord with
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recent observations that the background method produces bounds that correspond precisely to optimally transporting
flows in truncated versions of Rayleigh’s model, specifically the Lorenz equations [39] and some distinguished higher
order truncations that respect energy and enstrophy conservation in the inviscid limit [40]. We would emphasize
that this correspondence seems to be special to Rayleigh’s model with stress-free boundaries and, for the background
method, in 2D explicitly exploiting the enstrophy balance. Indeed; we do not necessarily anticipate the same scaling
for no-slip boundaries or for optimal transport in 3D.
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Appendix A: Newton–Kantorovich Algorithm for Solving the Euler–Lagrange Equations

For fixed a and b, we rewrite the Euler–Lagrange equations as

τzz = F τ (ϑ,W, ϑz,Wz), (A1)

2∇2ϑ = Fϑ(Ωx,W, τz), (A2)

2∇2Ωx + Raϑxx −
Ra3/2

a
γxx = FΩx(Ωx), (A3)

∇2γ = F γ(ϑ, τz), (A4)

∇2W = FW (Ωx). (A5)

Suppose the iterates τ i(z), ϑi(x, z), Ωix(x, z), γi(x, z), and W i(x, z) are good approximations to the true solution
τ(z), ϑ(x, z), Ωx(x, z), γ(x, z), and W (x, z). Taylor expansion of the functionals F τ , Fϑ, FΩx , F γ and FW in
Eqs. (A1)–(A5) about the ith iterate yields

τzz = (F τ )i + (F τϑ )i[ϑ− ϑi] + (F τW )i[W −W i] + (F τϑz
)i[ϑz − ϑiz] + (A6)

(F τWz
)i[Wz −W i

z ] +O([ϑ− ϑi]2, [W −W i]2, [ϑz − ϑiz]2, [Wz −W i
z ]

2),

2∇2ϑ = (Fϑ)i + (FϑΩx
)i[Ωx − Ωix] + (FϑW )i[W −W i] + (Fϑτz )i[τz − τ iz] (A7)

+O([Ωx − Ωix]2, [W −W i]2, [τz − τ iz]2),

2∇2Ωx + Raϑxx −
Ra3/2

a
γxx = (FΩx)i + (FΩx

Ωx
)i[Ωx − Ωix] +O([Ωx − Ωix]2), (A8)

∇2γ = (F γ)i + (F γϑ )i[ϑ− ϑi] + (F γτz )i[τz − τ iz] +O([ϑ− ϑi]2, [τz − τ iz]2), (A9)

∇2W = (FW )i + (FWΩx
)i[Ωx − Ωix] +O([Ωx − Ωix]2), (A10)

where, for example, F τϑ denotes the Frechet derivative of the function F τ (ϑ,W, ϑz,Wz) with respect to ϑ. By defining
correction terms

4τ = τ i+1 − τ i,4ϑ = ϑi+1 − ϑi,4Ωx = Ωi+1
x − Ωix,4γ = γi+1 − γi,4W = W i+1 −W i (A11)

and computing the Frechet derivatives, the linear differential equations for the corrections can be expressed as

4τzz − (F τϑ )i4ϑ − (F τϑz
)i4ϑz − (F τW )i4W − (F τWz

)i4Wz = (1− b)(Wϑ)iz − τ izz, (A12)

−(Fϑτz )i4τz + 2∇24ϑ − (FϑΩx
)i4Ωx − (FϑW )i4W = 2W iτ iz +

a

Ra1/2
Ωix − 2∇2ϑi, (A13)

Ra4ϑxx + [2∇2 − (FΩx

Ωx
)i]4Ωx − Ra3/2

a
4γxx =

2b

a
Ra1/2Ωix − Raϑixx (A14)

−2∇2Ωix +
Ra3/2

a
γixx,

−(F γτz )i4τz − (F γϑ )i4ϑ +∇24γ = −∇2γi − 2ϑiτ iz, (A15)

−(FWΩx
)i4Ωx +∇24W = −∇2W i + Ωix. (A16)
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Let

4ϑ∗
= (ϑ∗)i+1 − (ϑ∗)i, 4Ω∗

x = (Ω∗x)i+1 − (Ω∗x)i, 4γ∗
= (γ∗)i+1 − (γ∗)i, 4W∗

= (W ∗)i+1 − (W ∗)i (A17)

and D ≡ d/dz; then Eq. (A12) becomes

D24τ − 1

2
(1− b)

N∑
n=1

[(DW ∗in +W ∗in D)4ϑ∗

n ]− 1

2
(1− b)

N∑
n=1

[(Dϑ∗in + ϑ∗inD)4W∗

n ]

= −D2τ i +
1

2
(1− b)D

N∑
n=1

(W ∗in ϑ
∗i
n ). (A18)

For a given wavenumber nk, Eqs. (A13)–(A16) become, respectively,

−2W ∗in D4τ + 2[D2 − (nk)2]4ϑ∗

n −
a

Ra1/2
4Ω∗

x
n − 2Dτ i4W∗

n = −2[D2 − (nk)2]ϑ∗in (A19)

+2W ∗in Dτ
i +

a

Ra1/2
Ω∗ixn,

−Ra(nk)24ϑ∗

n + [2(D2 − (nk)2)− 2b

a
Ra1/2]4Ω∗

x
n +

Ra3/2

a
(nk)24γ∗

n = [−2(D2 − (nk)2) +
2b

a
Ra1/2]Ω∗ixn (A20)

+Ra(nk)2ϑ∗in −
Ra3/2

a
(nk)2γ∗in ,

2ϑ∗inD4τ + 2Dτ i4ϑ∗

n + [D2 − (nk)2]4γ∗

n = −2ϑ∗inDτ
i − [D2 − (nk)2]γ∗in , (A21)

−4Ω∗
x

n + [D2 − (nk)2]4W∗

n = Ω∗ixn − [D2 − (nk)2]W ∗in . (A22)

Although the Newton-Kantorovich method is only locally convergent, we can expand the basin of attraction (in the
space of initial iterates) by updating the variables for each iterate using


τ
ϑ∗n
Ω∗xn
γ∗n
W ∗n


i+1

=


τ
ϑ∗n
Ω∗xn
γ∗n
W ∗n


i

+ d


4τ
4ϑ∗

n

4Ω∗
x

n

4γ∗

n

4W∗

n

 , (A23)

where 0 ≤ d ≤ 1. The step length is reduced whenever F i+1
res > hF ires, where F ires is the norm of the residual of the

Euler–Lagrange equations at the ith iterate, and h ≈ 1 is an adjustable parameter.

Appendix B: Temporal Convergence in other Upper Bound Problems

Here we show that the analysis presented in section II D carries over to the porous medium convection problem
where the time-stepping approach was first used [18] and to the plane Couette flow problem [17].

1. 2D Porous Medium Convection

Our starting point is equations (10)–(13) from Wen et al. [18],

∂tτ = τzz − 1
2 (Wϑ)z, (B1)

∂tϑ = 2∇2ϑ−Wτz + γxx, (B2)

0 = ∇2W − raϑxx, (B3)

0 = ∇2γ + ra τzϑ, (B4)

where the one balance parameter a has been absorbed into a rescaled Rayleigh number ra ≡ Ra/a. Let (τ, ϑ,W, γ)

be a steady solution and consider a small disturbance (τ̂ , ϑ̂, Ŵ , γ̂) away from this solution. The (linearized) temporal
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evolution equations for this disturbance are

∂tτ̂ = τ̂zz − 1
2 (Ŵϑ+Wϑ̂)z, (B5)

∂tϑ̂ = 2∇2ϑ̂− Ŵ τz −Wτ̂z + γ̂xx, (B6)

0 = ∇2Ŵ − ra ϑ̂xx, (B7)

0 = ∇2γ̂ + ra (τ̂zϑ+ τzϑ̂). (B8)

Adding 〈τ̂ × Eq.(B5) 〉 to 1
2 〈 ϑ̂× Eq.(B6) 〉 produces〈

1
2 τ̂

2 + 1
4 ϑ̂

2

〉
t

= −〈 τ̂2
z 〉 − 〈 |∇ϑ̂|2 〉+ 1

2 〈 Ŵϑτ̂z − Ŵ ϑ̂τz + ϑ̂γ̂xx 〉, (B9)

which can be simplified by noticing that 〈 Ŵ × Eq.(B8) − γ̂ × Eq.(B7) 〉 together with integration by parts and the
homogeneous boundary conditions in z gives

〈 ϑ̂γ̂xx 〉 = −〈 Ŵ ϑ̂τz + ϑŴ τ̂z 〉. (B10)

Hence 〈
1
2 τ̂

2 + 1
4 ϑ̂

2

〉
t

= −〈 τ̂2
z 〉 −

〈
|∇ϑ̂|2 + Ŵ ϑ̂τz

〉
, (B11)

where Ŵ is related to ϑ̂ via Eq. (B3). Mirroring the analysis of section II D, the second term on the right hand side is
just the spectral constraint functional and hence all the same arguments carry over to establish that the global optimal
is the only steady attractor for the time-stepping problem. This, of course, does not prove that the time-stepping
approach will always converge to the global optimal as there may be other attractors (e.g., periodic orbits) but it does
retrospectively prove that the steady state reached by the numerical computations reported in Wen et al. [18] must
be the desired global optimal.

2. Plane Couette Flow

For plane Couette flow, we work with the Lagrangian defined in equation (2.8) of Plasting & Kerswell [17] or rather,
as the optimal fields are steady, just

L := 〈φ2
z 〉 − 〈aφzν1ν2 + (a− 1)|∇ν|2 − (a− 2)ν1φzz 〉. (B12)

Let (φ,ν) be a solution of the Euler–Lagrange equations (fixing the balance parameter a), so

δL
δφ

:= −2φzz + a(ν1ν3)z + (a− 2)(ν1)zz = 0, (B13)

δL
δν

:= 2(a− 1)∇2ν − aφz

 ν3

0
ν1

+∇p+ (a− 2)φzzx̂ = 0, (B14)

( equations (2.9b) and (2.9c) of [17] ) and let (φ̂, ν̂) be a small perturbation superimposed on this steady solution.
Adding time derivatives to the Euler–Lagrange equations such that

∂tφ = −δL
δφ

& 2(a− 1)∂tν =
δL
δν
, (B15)

(so

dL
dt

=

〈
2(a− 1)νt.

δL
δν

+ φt
δL
δφ

〉
=

〈
4(a− 1)2ν2

t − φ2
t

〉
(B16)
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reflecting the fact that L is a saddle point functional), the (linearized) temporal evolution of the perturbations is then
determined by

∂tφ̂ := 2φ̂zz − a(ν̂1ν3 + ν1ν̂3)z − (a− 2)(ν̂1)zz, (B17)

2(a− 1)∂tν̂ := 2(a− 1)∇2ν̂ − aφ̂z

 ν3

0
ν1

− aφz
 ν̂3

0
ν̂1

+∇p̂+ (a− 2)φ̂zzx̂. (B18)

Adding the volume integrals 〈 φ̂× Eq. (B17) 〉 and 〈 ν̂ · Eq. (B18) 〉 gives〈
1
2 φ̂

2 + (a− 1)ν̂2

〉
t

= −2〈 φ̂2
z 〉 − 2

〈
(a− 1)|∇ν̂|2 + aφz ν̂1ν̂3

〉
, (B19)

where the last term on the right hand side is again the appropriate spectral constraint integral (see the part quadratic
in ν in Eq. (B12) or (2.14) in [17]). The same conclusion then follows as for porous medium convection (section B 1)
and Rayleigh–Bénard convection (section II D): the global optimal can be the only steady attractor for the full (free
balance parameter) time-dependent problem.
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