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ABSTRACT

Three-dimensional travelling wave solutions are found for pressure-driven fluid flow
through a circular pipe. They consist of three well-defined flow features - streamwise
rolls and streaks which dominate and streamwise-dependent wavy structures. The trav-
elling waves can be classified by the m-fold rotational symmetry they possess about the
pipe axis with m = 1, 2, 3, 4, 5 and 6 solutions identified. All are born out of saddle node
bifurcations with the lowest corresponding to m = 3 and traceable down to a Reynolds
number (based on the mean velocity) of 1251. The new solutions are found using a con-
structive continuation procedure based upon key physical mechanisms thought generic to
wall-bounded shear flows. It is believed the appearance of these new alternative solutions
to the governing equations as the Reynolds number is increased is a necessary precursor
to the turbulent transition observed in experiments.

1. Introduction

The stability of pressure-driven flow through a long circular pipe is one of the most
classical and intriguing problems in fluid mechanics. Ever since the original experiments
of Reynolds (1883), it has been known that the steady, unidirectional Hagen-Poiseuille
flow, uniquely realised at low Reynolds numbers Re, can undergo transition to turbu-
lence when disturbed sufficiently strongly at high enough Reynolds numbers. Subsequent
experimental work has confirmed and extended Reynolds’s first observations to study
how transition occurs and the subsequent possibly intermittent turbulent state (Wyg-
nanski & Champagne 1973, Wygnanski et al. 1975, Darbyshire & Mullin 1995, Draad
et al. 1998, Eliahou et al. 1998, Han et al. 2000, Hof et al. 2003). What consistently
emerges is the sensitivity of the transition onset to the exact form of the perturbation
and how the size of the threshold amplitude required to trigger transition decreases with
increasing Reynolds number (Darbyshire & Mullin 1995, Hof et al. 2003). The fact that
this unidirectional flow is believed linearly stable (Lessen et al. 1968, Garg & Rouleau
1972, Salwen et al. 1980, Herron 1991, Meseguer & Trefethen 2003) has served only to
highlight the essentially nonlinear origin of the observed transition. Pipe flow is then just
one of a class of wall-bounded shear flows which suffer turbulent transition through a
process or processes unrelated to the local stability properties of the low-Reynolds basic
solution. Further examples include plane Couette flow where the basic solution has been
proved linearly stable (Romanov 1973) as well as plane Poiseuille flow where the base
flow loses stability at a far higher Reynolds number (Re = 5772) than that at which
transition is observed (Re ≈ 2100 Rozhdestvensky & Simakin 1984, Re ≈ 2300 Keefe et
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al. 1992 or using a Reynolds based on the centreline velocity ≈ 1000 Carlson et al. 1982).

Recent thinking now views transition in these systems as being an issue revolving
around the existence of other solutions that do not have any connection with the basic
flow, and their basins of attraction. Pipe flow can be considered as a nonlinear dy-
namical system du/dt = f (u; Re) defined by the governing Navier-Stokes equations
together with the appropriate pressure-gradient forcing and boundary conditions, and
Re parametrising the system. Within this framework, there is one linearly-stable fixed
point (Hagen-Poiseuille flow) for all Re which is a global attractor for Re < Reg (non-
linearly stable) but only a local attractor for Re > Reg (nonlinearly unstable but still
linearly stable). It is known that all disturbances to this basic state must decay ex-
ponentially if Re < Ree = 81.49 (Joseph & Carmi 1969), the energy stability limit,
whereas for Ree ≤ Re < Reg, some disturbances can transiently grow but then decay
(Boberg & Brosa 1988, Bergström 1993, Schmid & Henningson 1994, O’Sullivan & Breuer
1994, Zikanov 1996). At Re = Reg, new limit sets in phase space (typically steady or
periodic solutions to the Navier-Stokes equations) are now presumed born which sup-
port the complex dynamics observed at transition. These new solutions are imagined as
providing the skeleton about which complicated time-dependent orbits observed in tran-
sition may drape themselves so that they no longer evolve back to Hagen-Poiseuille flow
at long times (Schmiegel & Eckhardt 1997, Eckhardt et al. 2002). As a result, the emer-
gence of these alternative solutions is believed to bear a strong relation with the observed
lower limit where turbulence is sustainable of Ret ≈ 1800− 2000 and their existence to
structure the transition process itself. The fact that the basic steady solution remains a
local attractor in phase space is largely secondary to the fact that its basin of attraction
diminishes rapidly as Re increases. This, taken with the fact that the basin boundary is
undoubtedly complicated in such a high dimensional phase space, explains why the (lami-
nar) Hagen-Poiseuille solution is so sensitive to the size and form of an initial disturbance.

The existence of alternative solutions to the Navier-Stokes equations has now been
demonstrated in a number of different wall-bounded shear flows (and sometimes clearly
observed, e.g. Anson et al. 1989). Steady solutions have been found in plane Couette flow
down to Re = 125 (Nagata 1990, Clever & Busse 1997 or more accurately Re = 127.7,
Waleffe 2003) compared to a transitional value of Re ≈ 320 − 350 (Lundbladh & Jo-
hansson 1991, Tillmark & Alfredsson 1992, Daviaud et al. 1992, Dauchot & Daviaud
1995, Bottin et al. 1998), and travelling wave solutions in plane Poiseuille flow at Re = 977
(Waleffe 2003) compared to a transitional value of Re ≈ 2100 − 2300 (Rozhdestvensky
& Simakin 1984, Keefe et al. 1992). What is striking is how the key structural features
of these solutions - strong downstream vortices and streaks - coincide with what is ob-
served in experiments as transient coherent structures. The clear implication seems to
be that these solutions are saddles in phase space so that the flow dynamics can reside
temporarily in their vicinity (the flow approaches near to these solutions in phase space
via the stable manifold before being flung away in the direction of the unstable mani-
fold). Given this success, there has been a concerted effort to theoretically find solutions
other than the Hagen-Poiseuille state in pipe flow. Despite some suggestive asymptotic
analyses (Davey & Nguyen 1971, Smith & Bodonyi 1982, Walton 2002), no non-trivial
solutions have so far been reported (Patera & Orszag 1981, Landman 1990a,b).

The standard approach to finding such nonlinear solutions is homotopy which was
used by Nagata (1990) to find the first disconnected solutions in plane Couette flow.
This continuation approach relies on the presence of a neighbouring problem in which
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nonlinear solutions are known and being able to smoothly continue these solutions back
to the original system of interest. Since generally there is no way of knowing whether
such a connection exists a priori, the approach can be rather hit-and-miss depending
more on luck than physical insight. Nevertheless, considerable success has been achieved
in the past building solution ‘bridges’ between Benard convection, Taylor-Couette flow,
plane Couette flow and plane Poiseuille flow (Nagata 1990,1997,1998, Clever & Busse
1992,1997, Faisst & Eckhardt 2000, Waleffe 2001,2003). However, no continuation strat-
egy back to pipe flow from another physical system has yet succeeded. Efforts to repeat
Nagata’s success by trying to continue solutions known in rotating pipe flow (Toplosky
& Akylas 1988) back to non-rotating pipe flow have failed (Barnes & Kerswell 2000),
and an attempt to use a geometrical embedding of (circular) pipe flow in elliptical pipe
flow proved impractical (Kerswell & Davey 1996).

Recently, Waleffe (1998,2003) has developed a homotopy approach for finding nonlinear
solutions to wall-bounded shear flows with clear mechanistic underpinnings. By adding
a carefully chosen artificial body force to plane Couette and plane Poiseuille flow, he was
able to generate a nearby bifurcation point in the augmented system from which a new
solution branch could be smoothly traced back to the original zero-force flow situation.
The key steps are selecting the form of the body force and choosing the bifurcation point
from which to start the branch continuation. The ideas behind this design process (Wal-
effe 1995a,b,1997) were developed along with coworkers (Hamilton et al. 1995, Waleffe &
Kim 1997, Waleffe & Kim 1998) while trying to understand how turbulence is maintained

rather than initiated at low Reynolds numbers (Hamilton et al. 1995). The continuation
approach is based upon simple physical mechanisms which help remove much of the un-
certainty surrounding homotopy and can trace their origins to Benney’s mean-flow first
harmonic theory (Benney 1984). The central idea is that in wall-bounded shear flows
there is a generic mechanism - christened the ‘Self-Sustaining Process’ (SSP) by Wal-
effe - which can lead to solutions with three well-defined flow components - streamwise
rolls, streaks and wavelike disturbances - maintaining each other against viscous decay.
In isolation, streamwise rolls would secularly decay because of viscosity but, crucially,
the presence of other flow structures naturally generated by rolls near a wall can provide
just the required energy input to sustain them. The streamwise rolls advect the mean
shear alternately to and from the wall (in a spanwise sense) hence lifting slower moving
fluid into regions of faster flow and dragging faster flowing fluid into slower flow regions
nearer the wall. This produces streaks in the streamwise direction which at certain am-
plitude and wavelength are linearly unstable through spanwise-inflexional instabilities to
axially-dependent wave disturbances. Importantly, these wavelike disturbances can drive
new streamwise rolls through their nonlinear self-interaction. If the spatial structure of
the wavelike disturbances is such that these induced rolls match the initial driving rolls
then the initial rolls can be sustained against viscous decay. Waleffe initially explored this
idea by cutting open the Navier-Stokes equations and confirming each link of the rolls-
streaks-waves cycle piecemeal in the context of plane Couette flow (Waleffe 1997). He
then turned the process into a smooth continuation procedure so that the approximately
engineered solutions became exact to arbitrary accuracy (Waleffe 1998). Subsequently,
the general applicability and success of the approach has been demonstrated in plane
Couette and plane Poiseuille flows using either non-slip or stress-free boundary condi-
tions (Waleffe 2001,2003).

Pipe flow offers an obvious new context in which to test the universality of this approach
further which has obvious implications for establishing the generic nature of transition
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in wall-bounded shear flows. Also this approach offers a promising new technique to find
alternative nonlinear solutions which have proved so enigmatic in this particular prob-
lem. As a result the objectives of this paper are twofold: to establish the credentials of
this constructive approach and, perhaps only marginally more importantly, to find the
solutions themselves.

The plan of the paper is as follows. Section 2 introduces the pipe flow problem, states
the governing equations and makes some important definitions. Section 3 discusses the
Self-Sustaining Process (SSP) and illustrates how it may be used to find approximate
solutions to the governing equations. Although these ‘solutions’ are not exact since cer-
tain terms in the equations are ignored, it appears that all the important terms have
been retained by appealing to the correct physical mechanisms. As a result, each such
‘approximate’ solution has a high probability of leading to an exact counterpart via a
smooth continuation procedure. Section 4 shows how this can be done to arbitrary accu-
racy using the information gleaned from settling up a SSP ‘solution’. Section 5 collects
together all the results of the paper before a discussion follows in section 6.

While this work was being completed we became aware that Faisst & Eckhardt (2003)
had just isolated converged twofold and threefold rotationally symmetric solutions (RRR2

and RRR3 waves as defined in (2.12) below) in pipe flow using a similar continuation ap-
proach. Here we confirm these findings, discover new branches of the threefold rotationally
symmetric (RRR3) waves and present converged onefold, fourfold, fivefold and sixfold rota-
tionally symmetric (RRR1, RRR4, RRR5 and RRR6) waves solutions for the first time. This paper
then complements and extends their study as well as discussing why the continuation
approach works.

2. Governing Equations

We consider an incompressible fluid of constant density ρ and kinematic viscosity ν
flowing in a circular pipe of radius s0 under the action of a constant applied pressure
gradient

∇p∗ = −
4ρνW

s2
0

ẑ. (2.1)

At low enough values of the Reynolds number Re := s0W/ν, the realised flow is uniquely
Hagen-Poiseuille flow (HPF)

u∗ = W

(
1 −

s2

s2
0

)
ẑ, (2.2)

in the usual cylindrical polar coordinate system (s, φ, z). The governing equations (non-
dimensionalised using the Hagen-Poiseuille centreline speed W and pipe radius s0) for
pipe flow are

∂u

∂t
+ u.∇u + ∇p =

1

Re
∇2u +

4

Re
ẑ, (2.3)

∇.u = 0, (2.4)

with boundary condition

u(1, φ, z) = 0 (2.5)



5

where u = u∗/W and p represents the pressure deviation away from the imposed gradi-
ent. A mean Reynolds number can be defined in terms of the mean speed

W :=
1

π

∫ 2π

0

dφ

∫ 1

0

sds u∗.ẑ (2.6)

of the fluid down the pipe

Rem :=
2s0W

ν
(2.7)

and in contrast to the pressure-gradient Reynolds number Re, is not known a priori.
The extent to which Rem and Re differ is a useful measure of how far the realised flow
solution has deviated from HPF, u = (1 − s2)ẑ, where they are identical. The energy
dissipation rate per unit mass is

D :=
1

πRe
lim

L→∞

1

2L

∫ L

−L

dz

∫ 2π

0

dφ

∫ 1

0

sds|∇u|2 =
2Rem

Re2
(2.8)

in units of W 3/s0 and the friction coefficient (Schlichting 1968, eqn(5.10)) is defined as

Λ :=
1

ρ

dp

dz

/
1

4s0
W

2
=

64Re

Re2
m

. (2.9)

Computationally, it is preferable to work with the ‘perturbation’ velocity away from
Hagen-Poiseuille flow, that is, ũ := u −

(
1 − s2

)
ẑ which then satisfies homogeneous

boundary conditions at the pipe wall and is presumed periodic along the pipe. The
pressure p is already the ‘perturbation’ pressure and is strictly periodic to keep the
applied pressure gradient fixed. The governing equations, (2.3) and (2.4), rewritten for
these new variables and used henceforth are

∂ũ

∂t
+ (1 − s2)

∂ũ

∂z
− 2sũ ẑ + ũ.∇ũ + ∇p −

1

Re
∇2ũ = 0, (2.10)

∇.ũ = 0. (2.11)

The nonlinear solutions found in this paper take the form of travelling waves which
propagate at a constant speed and are therefore steady in an appropriate Galilean frame.
This speed is expected to be non-zero due to the lack of fore-aft symmetry in pipe
flow and represents an unknown emerging like an eigenvalue as part of the solution
procedure. The travelling waves also possess a number of symmetries, the most important
of which is a discrete m-fold rotational symmetry in the azimuthal direction φ so that
the transformation

RRRm : (u, v, w, p)(s, φ, z) → (u, v, w, p)(s, φ + 2π/m, z) (2.12)

(in the usual cylindrical coordinates) leaves them unchanged for some integer m. This
provides a natural partitioning and henceforth we shall refer to travelling waves with
RRRm symmetry as simply RRRm−waves. Properties of RRRm−waves with m = 1, 2, 3, 4, 5 & 6
will be described below but special attention will be devoted to illustrating how RRR2 &
RRR3−waves were found since these appear first as Re increases.

3. The Self-Sustaining Process (SSP)

There are three physical mechanisms and three distinct active velocity structures which
come together to produce a self-sustained cycle. We look for a travelling wave solution
or equivalently a steady solution in a frame moving at some constant speed c in the
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streamwise z direction. In this Galilean frame, a steady velocity field and pressure field
can be decomposed without loss of generality into three parts

[
ũ

p

]
=




U(s, φ)
V (s, φ)
0
P (s, φ)




rolls

+




0
0
W (s, φ)
0




streaks

+




û(s, φ, z)
v̂(s, φ, z)
ŵ(s, φ, z)
p̂(s, φ, z)




waves

(3.1)

where the various streamwise-independent and streamwise-dependent parts have been
labelled ‘rolls’, ‘streaks’ and ‘waves’ respectively. For uniqueness, the waves have no
mean under streamwise averaging, that is, ũ

z
= U where

( )
z

:= lim
L→∞

1

2L

∫ L

−L

( ) dz. (3.2)

Also formally, the term ‘streak’ usually refers to a fluctuation in the streamwise velocity
away from a mean, W (s, φ) − W (s) (where W (s) is the azimuthally-averaged velocity).
Here, as a convenient shorthand we refer to the whole spanwise modulated shear flow
W (s, φ) created by the rolls as the streak field.

In the absence of z-dependent waves, the streamwise rolls, [U(s, φ), V (s, φ), 0], have no
energy source and will secularly decay under viscosity. However before this can happen,
they redistribute the mean shear to produce streaks, W (s, φ). This involves a considerable
amplification in the overall disturbance to the flow, a general phenomenon in shear flows
which has become known as ‘transient growth’ (Boberg & Brosa 1988, Bergström 1993,
Schmid & Henningson 1994, O’Sullivan & Breuer 1994, Zikanov 1996). The process is
simple to understand and linear in nature depending only on the slow advection across a
large mean shear sustained for a long time. In particular, if the streamwise rolls initially
have amplitude ε � 1, their viscous decay rate is O(Re−1) and hence survive over an
O(Re) timescale. During this period they can advect fluid across the O(1) mean shear
a distance O(εRe) and thereby produce O(min(εRe, 1)) streaks or azimuthal (spanwise)
variations in the mean flow. In this way, an O(ε) disturbance can grow to an O(εRe)
level before ultimately decaying. This simple argument predicts O(Re2) growth in the
disturbance energy at times of O(Re) which is entirely consistent with detailed numerical
computations of the transient growth linear problem (Schmid & Henningson 1994). The
fact that the flow structure changes form - from rolls to streaks - during its evolution
means that this effect cannot be captured using a traditional normal mode analysis but
the flow still ultimately decays and does not contradict the fact that pipe flow is believed
asymptotically (long-time) stable to all vanishingly small (linear) initial disturbances.

To close the cycle, there must be a 3-dimensional wave field to feed energy back into
the otherwise secularly decaying streamwise rolls. This can be produced naturally as a
result of a linear instability of the streaks due to their spanwise inflexional structure.
This phenomenon is now well known in plane channel flows (Hamilton et al. 1995, Wal-
effe 1995a, Waleffe 1997, Reddy et al. 1998) and has been studied before in pipe flow
(O’Sullivan & Breuer 1994, Zikanov 1996). Generically, one can imagine that the streaks
need to be O(1) before they become linearly unstable (or the most unstable streaks will
be the strongest possible streaks which are O(1)) implying that the rolls are O(Re−1).
Then the nonlinear quadratic self-interaction of O(Re−1) waves is sufficient to offset the
viscous decay of these rolls. This simple picture suggests that the threshold amplitude
for disturbances to trigger transition (i.e. the flow state moves permanently away from
the laminar Hagen-Poiseuille solution) is bounded above by O(Re−1) (the correct scaling
being given by the closest boundary of the basin of attraction of the Hagen-Poiseuille
flow rather than the nearest alternative limit set). This precise scaling, however, seems
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m0 λm0 1 λm0 2

1 5.1356223018 8.4172441404
2 6.3801618959 9.7610231300
3 7.5883424345 11.0647094885
4 8.7714838160 12.3386041975
5 9.9361095242 13.5892901705
6 11.0863200192 14.8212687270

Table 1. This table lists the decay rate eigenvalues, Jm0+1(λm0 n) = 0, for the streamwise roll
structure in SSP.

confirmed by recent experimental work (Hof et al. 2003) and more careful asymptotic
analysis (Chapman 2004). The energetic feedback onto the rolls is the essential nonlinear
aspect of the cycle and since it is the most intricate and delicate to arrange must be
considered the crucial link in the SSP advocated by Waleffe.

We now consider the SSP in detail to motivate the search for new solutions which
follows in section 4.

3.1. Choosing Streamwise Rolls

The equations for the rolls are ŝ.(2.10)
z

and φ̂.(2.10)
z
,

∂tU + Ps −
1

Re
ŝ.∇2U = −ŝ.(U.∇U + û.∇û

z
), (3.3)

∂tV +
1

s
Pφ −

1

Re
φ̂.∇2U = −φ̂.(U.∇U + û.∇û

z
), (3.4)

together with the incompressibility condition ∂s(sU) + ∂V/∂φ = 0. These equations are
independent of the streamwise velocity perturbation W (s, φ)ẑ. Linearising completely
(i.e. ignoring the right hand sides of (3.3) and (3.4)), leads to the Stokesian problem
for decaying streamwise structures. In the absence of anything else, the least decaying
eigenfunction is a sensible choice as the initial streamwise structure. Hence setting λ2/Re
as the decay rate and without loss of generality choosing a single Fourier mode, [U, V ] =
[U

′

(s) cosm0φ, V
′

(s) sin m0φ], the problem reduces to

∇2(∇2 + λ2)

[
(U

′

± iV
′

)ei(m0±1)φ

]
= 0. (3.5)

At this point we are selecting a structure with RRRm0
symmetry. This can always lead

to travelling waves with the same symmetry (fundamental), a RRRm0
−wave, but other

possibilities such as a (subharmonic) RRRm0/2−wave if m0 is even can occur too. The full
solution is

U := [Jm0+1(λs) + Jm0−1(λs) − Jm0−1(λ)sm0−1] cosm0φ, (3.6)

V := [Jm0+1(λs) − Jm0−1(λs) + Jm0−1(λ)sm0−1] sinm0φ, (3.7)

with the eigenvalue condition that Jm0+1(λ) = 0 where J is the Bessel function of
the first kind. Table 1 displays λm0 n for m0 = 1, ..., 6 and n = 1, 2 where n − 1 is
the number of zeros of the radial flow field U

′

(s) in 0 < s ≤ 1. In this paper λm01

invariably proved successful to find fundamental modes whereas λ22 was used to find the
RRR1 subharmonic wave. The rolls are presumed to have some amplitude ε defined as the
maximum amplitude of the radial velocity U of the rolls.
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3.2. Formation of Streaks

The rolls advect the mean shear to produce high and low-speed streaks W (s, φ) via the

equation ẑ.(2.10)
z

U
∂W

∂s
+

V

s

∂W

∂φ
−

1

Re
∇2W − 2sU = −û.∇ŵ

z
. (3.8)

As the wave field û is currently unknown, the right hand side of this equation is ignored
before solving for W . The rolls as chosen enjoy two symmetries, one trivial and one
non-trivial. Let S1S1S1 represent the rotate-and-reflect transformation

S1S1S1 : (s, φ, z) → (−s, φ + π, z), S1S1S1 : (u, v, w, p) → (−u,−v, w, p) (3.9)

(since ŝ(−s, φ + π) = −ŝ(s, φ) for example) and ZZZ a reflection in the line φ = 0

ZZZ : (s, φ, z) → (s,−φ, z), ZZZ : (u, v, w, p) → (u,−v, w, p), (3.10)

then

(U(x), V (x), 0, P (x)) = S1S1S1(U(S1S1S1
−1

x), V (S1S1S1
−1

x), 0, P (S1S1S1
−1

x)),

(U(x), V (x), 0, P (x)) = ZZZ(U(ZZZ−1
x), V (ZZZ−1

x), 0, P (S1S1S1
−1

x)).

From the streak equation (3.8), these roll symmetries carry over to the streaks. The
former is a trivial symmetry of every flow field expressed in cylindrical polars because
the coordinates (s, φ, z) and (−s, φ+π, z) represent the same point in physical space (e.g.
see the Appendix of Kerswell & Davey 1996 for a discussion of this). The latter permits
the streaks W (s, φ) to be represented efficiently as

W (s, φ) =

M∑

m=0

Wm(s) cos mm0φ (3.11)

with the parity Wm(−s) = (−1)mm0Wm(s). Figure 1 shows the streamwise rolls and
associated streak structure at (m0 = 2, Re = 1700, α = 1.55, ε = 7.1 × 10−3) and (m0 =
3, Re = 1800, α = 2.44, ε = 7.8 × 10−3). Notice there are m0 fast streaks near the pipe
wall and m0 slow streaks near the pipe centre. The cause of the streaks is clear: roll
velocities towards (away from) the wall create fast (slow) streaks.

3.3. Instability of Streaks - Waves

At a certain amplitude ε of the rolls, the streaks become inflexionally unstable. Subtract-
ing the parts of (2.10) which have been satisfied by defining the rolls and streaks leads
to the wave equations

∂û

∂t
+ (1 − s2)

∂û

∂z
− 2sû ẑ + U.∇û + û.∇U + ∇p̂ −

1

Re
∇2û

= −û.∇û −




U.∇U − V 2/s
U.∇V + UV/s

0


 , (3.12)

∇.û = 0 (3.13)

(note this is not simply (2.10) − (2.10)
z

since the roll equations solved are linearised).
Dropping the right hand side recovers the linear stability problem for a disturbance û

superposed upon the rolls+streak flow U. In contrast to Waleffe (1997), we include the
rolls in the wave equations to keep as close as possible to the full Navier-Stokes situation.
However, this is not crucial since the mechanism for instability is the azimuthal (spanwise)
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Figure 1. The 2-dimensional streamwise rolls and streaks at m0 = 2, Re = 1700, α = 1.55,
ε = 7.1 × 10−3 (left) and at m0 = 3, Re = 1800, α = 2.44, ε = 7.8 × 10−3 (right). The roll
velocities are indicated by arrows and the coloured/shaded contours indicate the streak velocity
W (the total axial speed with the laminar component subtracted off). The colour(shading) scale
is red(dark) through yellow to white(light) representing negative through positive velocities (the
shade for zero is given by the pipe exterior). Notice that in the SSP solutions there are m0 fast
streaks near the wall and m0 slow streaks near the pipe centre (obscured slightly by the choice
of contour level for the m0 = 3).

inflexions of the streak field and is only weakly modified by the presence of the rolls. To
capture a steady solution in a travelling frame we are interested in finding waves which are
marginally stable or neutral. Given the invariance of the wave equations to a translation
in z, we can look for travelling Fourier modes in z, specifically û(x, t) = u(s, φ)eiα(z−ct)

where c is a complex eigenvalue (subsequently to be absorbed when purely real into a
frame speed) and α is a real wavenumber. Since the rolls and streaks are invariant under
the transformations ZZZ and S1S1S1, as are the equations (3.12) and (3.13), the wave instability
û can be partitioned into those which are either even or odd in the symmetry ZZZ , that is

(û(x, t), v̂(x, t), ŵ(x, t), p̂(x, t)) = ±ZZZ(û(ZZZ−1
x, t), v̂(ZZZ−1

x, t), ŵ(ZZZ−1
x, t), p̂(ZZZ−1

x, t))
(3.14)

(the disturbances must be symmetric or invariant under S1S1S1). We shall refer to these as
ZZZ-even or ZZZ-odd modes. Given the z-periodic ansatz for û, an alternative symmetry
called a ‘shift-and-reflect’ symmetry S2S2S2 defined as

S2S2S2 : (s, φ, z) → (s,−φ, z + π/α), S2S2S2 : (u, v, w, p) → (u,−v, w, p). (3.15)

leads to an identical partitioning. This symmetry is trivially satisfied by the underlying
flow U since S2S2S2 acts like ZZZ on z-independent velocity fields and is admitted by (3.12)
and (3.13). The disturbance û(x, t) can either be invariant or symmetric (S2S2S2-even) under
the transformation S2S2S2 or flipped in sign and antisymmetric (S2S2S2-odd). At this stage when
we are considering just the initial instability (i.e. just one mode in z), introducing the
transformation S2S2S2 seems redundant since a RRR-even mode is a S2S2S2-odd mode and a RRR-odd
mode is a S2S2S2-even mode. However when we need to consider all the higher harmonics
generated by the initial instability then possessing both symmetries is crucial for efficient
representation of the solution. This is because the base state (rolls+streaks) is both
RRR-even and S2S2S2-even. Consequently, a RRR-even instability will generate RRR-even higher
harmonics only and a S2S2S2-even instability will generate S2S2S2-even higher harmonics only.
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This means that we can capture the full nonlinear solution emerging from a RRR-even
bifurcation within the space of RRR-even flows and the full nonlinear solution emerging
from a RRR-odd bifurcation (i.e. a S2S2S2-even bifurcation) within the space of S2S2S2-even flows.
This realisation is crucial for achieving the required levels of truncation within given
computational constraints.

One final remark is due regarding the m0-fold periodicity in φ of the rolls+streaks.
There will be fundamental disturbances possessing the same periodicity and non funda-

mental disturbances which take the form û(s, φ, z) = v(s, φ, z)eimφ where 0 < m < m0 is
an integer and v is m0-fold periodic. In this work, the only non-fundamental disturbances
considered will be the simplest subharmonic disturbances where m = m0/2 which only
exist if m0 is even. These will be RRRm0/2−waves. In summary, we can use the following
representations of û to capture the main forms of instability. Fundamental modes are




û
v̂
ŵ
p̂


 =

N−1∑

n=0

M∑

m=0




unmΘn(s; mm0) cosmm0φ
vnmΘn(s; mm0) sin mm0φ
wnmΦn(s; mm0) cosmm0φ
pnmΨn(s; mm0) cosmm0φ


 eiα(z−ct) ZZZ − even (3.16)




û
v̂
ŵ
p̂


 =

N−1∑

n=0

M∑

m=0




unmΘn(s; mm0) sin mm0φ
vnmΘn(s; mm0) cosmm0φ
wnmΦn(s; mm0) sinmm0φ
pnmΨn(s; mm0) sin mm0φ


 eiα(z−ct) S2S2S2 − even (3.17)

and, if m0 is even, the subharmonic modes are



û
v̂
ŵ
p̂


 =

N−1∑

n=0

M−1∑

m=0




unmΘn(s; (m + 1
2 )m0) cos[(m + 1

2 )m0φ]
vnmΘn(s; (m + 1

2 )m0) sin[(m + 1
2 )m0φ]

wnmΦn(s; (m + 1
2 )m0) cos[(m + 1

2 )m0φ]
pnmΨn(s; (m + 1

2 )m0) cos[(m + 1
2 )m0φ]


 eiα(z−ct) ZZZ − even

(3.18)


û
v̂
ŵ
p̂


 =

N−1∑

n=0

M−1∑

m=0




unmΘn(s; (m + 1
2 )m0) sin[(m + 1

2 )m0φ]
vnmΘn(s; (m + 1

2 )m0) cos[(m + 1
2 )m0φ]

wnmΦn(s; (m + 1
2 )m0) sin[(m + 1

2 )m0φ]
pnmΨn(s; (m + 1

2 )m0) sin[(m + 1
2 )m0φ]


 eiα(z−ct) S2S2S2 − even

(3.19)

Here

Ψn(s; i) :=

{
T2n+1(s) i odd,
T2n(s) i even,

Θn(s; i) :=

{
T2n+2(s) − T2n(s) i odd,
T2n+3(s) − T2n+1(s) i even,

(3.20)

Φn(s; i) :=

{
T2n+3(s) − T2n+1(s) i odd,
T2n+2(s) − T2n(s) i even

(3.21)

where Tn(s) := cos(n cos−1 s) is the nth Chebyshev polynomial so that the boundary
conditions are built into the spectral functions. In this paper, we confine our attention
solely to fundamental and subharmonic S2S2S2-even solutions (waves derived from wave in-
stabilities of form (3.17) and (3.19)). Preliminary calculations indicated that these were
the first to appear for the chosen rolls. Future work will explore the ZZZ−even solutions.

Figure 2 shows typical streak instability profiles over wavenumber α for m0 = 2 and
3. If the rolls are weaker than a threshold there is no streak instability. Beyond this,
there are two neutral waves with the one at higher wavenumber giving by far the better
feedback.
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Figure 2. Streak instability growth rates αci (where ci is the imaginary part of c) as a function
of α and the roll amplitude ε. Left plot is for m0 = 2, Re = 1700 and roll amplitude ε = 0.009188
(upper blue dashed), ε = 0.00711 (middle black solid) and ε = 0.005011 (lower red dash-dot).
The vertical dotted line indicates the neutral wave mode at α = 1.55. The right plot is for
m0 = 3, Re = 1800 and roll amplitude ε = 0.00938 (upper blue dashed), ε = 0.0078 (middle
black solid) and ε = 0.00625 (lower red dash-dot). The vertical dotted line indicates the neutral
wave mode at α = 2.44.

3.4. Nonlinear Feedback on the Rolls

As already mentioned, the crucial link in the SSP cycle is the nonlinear feedback of
the waves onto the rolls. To assess this, the roll component of the form (U

′

(s) cos m0φ,
V

′

(s) sin m0φ, 0) which would be induced by the waves û (through the right hand sides
of (3.3) and (3.4)) is calculated. The key issue is to establish whether the shape of these
induced rolls matches that of the imposed rolls already in place (as given by (3.6)). If
there is significant overlap of structure then finite amplitude versions of these waves
can be expected to sustain the rolls against secular viscous decay. The amplitude of the
waves, which formally completes the ‘SSP’ approximate solution, is presumed set by this
precise balancing and as is result is typically O(

√
ε/Re).

To examine the feedback of a wave instability, we compare the radial velocity U
′

(s)
of the induced rolls with that of the imposed rolls. Applying ŝ.∇×∇× to the equation
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Figure 3. Plots showing good feedback. The radial velocity component of the imposed rolls is

plotted with the induced radial velocity component U
′

(s) as calculated from (3.22) and nor-

malised appropriately. The top plot shows U
′

(s) at Re = 1700 (red dash) and Re = 2100 (black
dot-dash) corresponding to the first S2S2S2-symmetric wave instability compared with the radial
component of the original rolls (blue solid) for m0 = 2 (α = 1.55). The bottom plot shows

U
′

(s) at Re = 1800 (red dash) and Re = 2200 (black dot-dash) corresponding to the first
S2S2S2-symmetric wave instability compared with the radial component of the original rolls (blue
solid) for m0 = 3 (α = 2.44).

pair (3.3)-(3.4) leads to a single equation for the radial roll velocity

1

Re

(
∇2 +

2

s

∂

∂s
+

1

s2

)2

U = ŝ.∇×∇×(û.∇û
z
) (3.22)

where the nonlinear roll terms are ignored due to their small amplitude. Only the pro-
jection of the right hand side onto cosm0φ is used when inverting the linear operator to
calculate U

′

(s). A successful match (to be interpreted as significant overlap of profiles as
for example displayed in figure 3) indicates that the imposed streamwise rolls of ampli-
tude ε, the associated streaks and the wave disturbance of some small amplitude set by
roll energetic considerations constitutes a ‘SSP’ solution. The importance of such a ‘so-
lution’ is that it gives an approximate location in parameter space in which to search for
an exact travelling wave solution using the smooth continuation approach described in
the following section. In particular, information carried over to that analysis is the form
of the initial rolls, their amplitude ε, the Reynolds number and the axial wavenumber
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α for the wave instability. In practice, a subcritical bifurcation is always found close to
that predicted by the SSP analysis. However, there is no guarantee that this new solu-
tion branch can be continued back to the zero-forcing situation. Typically, this can be
engineered by increasing Re as will be discussed below. Figure 3 shows typical feedbacks
which were considered good enough to launch a more in depth search for a travelling
wave solution via techniques described below.

4. Exact Solutions via Smooth Continuation

The key idea to convert the approximate analysis of the SSP to a more formal continu-
ation setting is to add a body forcing to the Navier-Stokes equations (Waleffe 1998). This
body force is designed to initially maintain the streamwise rolls considered in the SSP
analysis against viscous decay in the absence of any other flow structures. Since these
rolls were simply the least decaying eigenmodes of the linearised Stokesian operator (as
given in (3.3) and (3.4)), the forcing function mirrors their structure. Specifically, the
new roll equations are

∂tU + Ps −
1

Re
ŝ.∇2U + ŝ.(U.∇U) = fs(s, φ) − ŝ.(û.∇û

z
), (4.1)

∂tV +
1

s
Pφ −

1

Re
φ̂.∇2U + φ̂.(U.∇U) = fφ(s, φ) − φ̂.(û.∇û

z
) (4.2)

where

fs(s, φ) := 2A[Jm0+1(λs) + Jm0−1(λs) − Jm0−1(λ)sm0−1] cosm0φ,

fφ(s, φ) := 2A[Jm0+1(λs) − Jm0−1(λs) + Jm0−1(λ)sm0−1] sinm0φ (4.3)

and A measures the forcing amplitude. Since the streamwise roll amplitude ε has been de-
fined as the maximum value of the radial velocity component, then ignoring the nonlinear
roll term (that is assuming ε � 1), the forced rolls have amplitude

ε =
2ARe

λ2
× max

s∈[0,1]
[Jm0+1(λs) + Jm0−1(λs) − Jm0−1(λ)sm0−1] (4.4)

If the forcing A goes beyond a threshold amplitude, a symmetry-breaking, 3-dimensional
streak instability will occur as predicted by the SSP analysis near the appropriate stream-
wise wavenumber α. The fact that this instability is known to have positive feedback on
the rolls makes it very likely (but not certain) that this bifurcation will be subcritical.
(Considering the feedback onto the rolls only captures one half of the weakly nonlin-
ear processes near the bifurcation since the excitation of the second harmonic is ignored.
However, in our experience in this problem the former physics always dominates the latter
and so finding positive feedback invariably implies subcriticality of the wave bifurcation.)
Given this subcriticality, following the new solution branch corresponds to decreasing the
forcing amplitude as the wave increasingly takes over the role of maintaining the rolls.
In other words, as the wave amplitude grows along the solution branch, the two compo-
nents of û.∇û

z
take over the role of (fs, fφ) in (4.1) and (4.2) of sustaining the rolls.

Ideally, the forcing amplitude can be reduced to zero at which point a fully nonlinear
travelling solution to the physical pipe flow problem has been achieved. The SSP analysis
merely isolates excellent candidates for continuation: it can say nothing about whether
the continuation will ultimately cross the A = 0 axis. As way of illustration, it is possi-
ble to construct SSP solutions down to Re ≈ 500 whereas the travelling waves are only
found to exist for Re ≥ 1600. What happens if the Re is too low is the solution branch
reaches a minimum positive A before bending back to move towards increasing values of
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A. However, continuing the branch to higher Re invariably moves this minimum through
the A = 0 axis with the one notable exception of the fundamental S2S2S2−even m0 = 1 case.
No travelling solution of this type was found to cross the A = 0 axis below Re = 6000
despite starting with an SSP solution exhibiting excellent feedback (Faisst & Eckhardt
(2003) also report a similar failure to find this mode).

4.1. Numerical Formulation

The problem, (2.10) (with body force f = fs(s, φ)ŝ + fφ(s, φ)φ̂ added) & (2.11), was
solved as stated - 3 momentum + 1 continuity equations - in terms of the primitive
variables (ũ, ṽ, w̃, p̃) rather than any reduced representation of the velocity field such as
a poloidal-toroidal decomposition. Experience indicates that this provides the best nu-
merically conditioned formulation since spatial derivatives are kept at their lowest order.
The governing equations were imposed by collocation over s and Galerkin projection
over φ and z. The axis of the pipe can cause numerical problems unless specific efforts
are made to desensitize the code to this artificial singularity. This was achieved here
by exploiting the representation degeneracy of cylindrical polar coordinates in which
the points (−s, φ ± π, z) and (s, φ, z) are exactly equivalent. This means that each ve-
locity component and scalar pressure function has a definite parity in s determined by
whether its corresponding azimuthal wavenumber m is even or odd (see the appendix
of Kerswell & Davey 1996). Building the appropriate radial parity into the spectral
representation of each field variable not only saves on storage but automatically instils
the correct limiting behaviour near the axis. Computationally, we consider the domain
{−1 ≤ s ≤ 1, 0 ≤ φ < π } rather than viewing the interior of the pipe as the region
{ 0 ≤ s ≤ 1, −π ≤ φ < π }. The solution in −1 ≤ s < 0 can be constructed from that
in 0 < s ≤ 1 through the known symmetries and so we need only collocate the equa-
tions over the positive zeros of T2N (s) and impose boundary conditions at s = 1. Most
importantly, this means that the collocation points are at their sparsest near the axis -
O(1/2N) spacing - and at their densest - O(1/4N 2) spacing - near the sidewall where
boundary layers typically need to be resolved.

Two types of travelling wave solutions were sought: fundamental S2S2S2-even solutions of
the form




ũ
ṽ
w̃
p̃


 =

N−1∑

n=0

M∑

m=0

{ L∑

l=1, l odd




unmlΘn(s; mm0) sinmm0φ
vnmlΘn(s; mm0) cosmm0φ
wnmlΦn(s; mm0) sin mm0φ
pnmlΨn(s; mm0) sin mm0φ


 eiαl(z−ct)

+

L∑

l=0, l even




unmlΘn(s; mm0) cosmm0φ
vnmlΘn(s; mm0) sin mm0φ
wnmlΦn(s; mm0) cosmm0φ
pnmlΨn(s; mm0) cosmm0φ


 eiαl(z−ct)

}
+ c.c.

and, if m0 is even, subharmonic S2S2S2-even solutions of the form



ũ
ṽ
w̃
p̃


 =

N−1∑

n=0

{ 2M∑

m=0, m even

L∑

l=0, l even




unmlΘn(s; 1
2mm0) cos 1

2mm0φ
vnmlΘn(s; 1

2mm0) sin 1
2mm0φ

wnmlΦn(s; 1
2mm0) cos 1

2mm0φ
pnmlΨn(s; 1

2mm0) cos 1
2mm0φ


 eiαl(z−ct)

+

2M−1∑

m=1, m odd

L∑

l=1, l odd




unmlΘn(s; 1
2mm0) sin 1

2mm0φ
vnmlΘn(s; 1

2mm0) cos 1
2mm0φ

wnmlΦn(s; 1
2mm0) sin 1

2mm0φ
pnmlΨn(s; 1

2mm0) sin 1
2mm0φ


 eiαl(z−ct)

}
+ c.c.
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where α is the primary axial wavenumber. As before, the appropriate boundary conditions
are built directly into the spectral expansion functions (see (3.20) and (3.21)). For a
given truncation (M, N, L), there were 2N(4ML + 4M + 4L + 1) real coefficients to be
determined for the fundamental solution and 2N(4ML+4M +2L±1) in the subharmonic
case (+/− corresponding to L even/odd). One further equation,

=m

{N−1∑

n=0

un−11Θn(0.1;−m0)

}
= 0, (4.5)

was imposed to eliminate the phase degeneracy of the travelling wave and served to
determine the wave speed c. The resultant nonlinear algebraic system,

FFF(ulmn, vlmn, wlmn, plmn, c ; Re, A, α) = 0, (4.6)

was solved given a nearby starting solution using the PITCON package developed by
Rheinboldt and Burkardt (1983a,b) which is a robust branch-following program based
upon Newton-Raphson iteration. Typically up to 16, 000 degrees of freedom were used
(requiring sub-2GB storage) but occasionally up to 20, 000 degrees of freedom (3GB
storage) were used to confirm convergence.

5. Results

5.1. Searching for Travelling Waves

The search for SSP solutions proceeded by first choosing m0, selecting the least decaying
streamwise rolls and then adjusting their amplitude ε until the streak field became un-
stable at a given Reynolds number Re and axial wavelength α. The feedback associated
with this wave instability was then checked for compatibility with the initial rolls. If the
match was very good (i.e. there was a strong positive correlation between the structure
of the induced and imposed rolls), this set of parameters (m0, λm0 1, ε, Re, α) was used
as a starting point in parameter space to initiate the smooth continuation procedure of
§4. If instead the match was poor, indicated by a negative correlation between the radial
velocity components of induced and imposed rolls, a number of corrective strategies could
be employed: vary Re, increase ε further and select a new instability or adjust α. By far
the most effective of these was to vary α to which the feedback seemed very sensitive.

Figures 4 and 5 show the result of carrying out this procedure for the SSP solutions
at (m0, α, Re) = (2, 1.55, 2100) and (m0, α, Re) = (3, 2.44, 1800) discussed above. The
measure

3D amp :=

√√√√
N−1∑

n=0

|un11|2 + |vn11|2 + |wn11|2 (5.1)

plotted on the (left) y-axis is used to indicate the degree of 3-dimensionality of the solu-
tion. In each figure, the two curves shown represent the data from one run of the branch
tracing process at a representative truncation level. All the individual convergences of
the root-finding algorithm are displayed (joined by straight lines to guide the eye) to
indicate the relative ease (measured in terms of number of steps taken) at which the
solution branch can be continued back the A = 0 axis. The jaggedness seen in the plots
arises through any of three different effects. Firstly, and dominantly, there is the strobing
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Figure 4. The continuation curve for m0 = 2, α = 1.55 at Re = 2100 (truncation (8,25,5)). The
solid (blue) line shows how the forcing amplitude A can be decreased from Acrit = 7.44 × 10−5

as a 3D amplitude measure increases (note the parabolic head indicative of a subcritical bi-
furcation). There are two crossings of the pipe flow limit (A = 0) representing an upper and
lower branch of travelling wave solutions. The dashed (green) line shows that the lower branch
has faster travelling waves than the upper branch. The dots show specific convergences of the
path-finding procedure indicating how easy or difficult the solution is to follow.

of the true smooth curve since only a finite number of solutions are shown joined by
straight lines. Secondly, the projection of a smooth curve in higher dimensions onto the
A−3D amp plane can cause apparent jerkiness and thirdly, the use of an insufficient
truncation level can lead to sharp changes in the solution curve (the last effect is consid-
ered in more detail later). For the truncation level chosen, the path back to the unforced
pipe flow situation (A = 0) in figure 4 (m0 = 2) is direct and there are the expected
2 crossings corresponding to an upper and lower branch. Figure 5 (m0 = 3), however,
shows an indirect connection back to the A = 0 axis, hinting at the possibility of more
convoluted behaviour. This is confirmed in figure 6 by considering the same SSP solution
(m0, α) = (3, 2.44) but further away from the saddle node bifurcation at Re = 2200.
After the initial smooth path back, the solution curve knits itself around the A = 0 axis
crossing 6 times implying 3 separate upper and lower branch pairings. If these 6 solutions
(along with the 2 for m0 = 2) are used as starting points for branch continuation, the
curves traced out are as in figure 7. This confirms that there is one solution branch for
m0 = 2 at truncation (M, N, L) = (8, 25, 5) and α = 1.55 (corroborated by higher trun-
cations) and three separate branches for m0 = 3 at (M, N, L) = (8, 24, 5) and α = 2.44
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Figure 5. The continuation curve for m0 = 3, α = 2.44 at Re = 1800 (Acrit = 1.7962 × 10−4

as opposed to Acrit = 1.75 × 10−4 predicted from the SSP analysis: truncation (8,24,5)). Again
there are two crossings of the pipe flow limit (A = 0) representing an upper and lower branch
of travelling wave solutions.

(partially confirmed by higher truncations; see below). The m0 = 3 branch which reaches
the lowest Re value of 1617 is the only branch existing at Re = 1800 (see figure 5) and
achieves the smallest Rem = 1251 (at Re = 1631).

The most notable difference in the structure of the multiple m0 = 3 solutions is the
number of fast streaks near the wall. Figure 8 shows streamwise-averaged plots of the total
cross-stream velocity, v⊥ := ũŝ+ ṽφ̂, and the surplus streamwise speed w̃ for solutions a-
f as marked on figures 6 and 7. Streamwise-averaging the velocity field brings into sharp
focus the direct link between the streaks and the cross-stream flow which is arranged
into a series of coherent rolls. Plotting contours of w̃ emphasizes the differences in the
axial velocity of the travelling wave from that of the laminar solution which corresponds
to the same applied pressure gradient or equivalently the same Re. From figure 6 (and
the dashed A − c curve), the first crossing of A = 0 corresponds to solution a which has
m0 = 3 fast streaks near the wall. Not unexpectedly, this is very similar to the starting
SSP roll+streak ansatz at the initial bifurcation point (A, 3D amp) = (Acrit, 0) displayed
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Figure 6. The continuation curve for m0 = 3, α = 2.44 at Re = 2200 (Acrit = 1.182 × 10−4,
truncation (8,24,5)). Now we are sufficiently back from the saddle node bifurcation point to
find more complicated behaviour. There are 6 crossings of A = 0 indicating 6 travelling wave
solutions at this α and Re value! The various crossings have been labelled a through f for
referencing in figures 7 and 8.

in figure 1. The next crossing at solution b also has m0 fast streaks while at the third
crossing, solution c seems in transition between m0 and 2m0 fast streaks. Subsequent
crossings at d, e and f all yield solutions with 2m0 fast streaks.

Fast streaks occur where there is a cross-stream velocity directed to the wall and slow
streaks occur when there is a cross-stream velocity away from the pipe wall. The transition
from m0 to 2m0 fast streaks seems to coincide with the spatial broadening of the m0

cross-stream outflows. In contrast, the cross-stream inflows always stay focussed but can
have significant axial variation. This appears to make the slow streaks more variable
in structure and positioning than the outer fast streaks which are very 2-dimensional.
Figure 9 illustrates this by contrasting solutions a and f . Here, instead of using w̃,

wm := w̃ + (1 − Rem/Re)(1 − s2) (5.2)

is contoured which corresponds to the difference of the travelling wave axial velocity from
a laminar state with the same mass flux or Rem and particularly highlights the slow streak
structure in the interior. Comparing the velocity field at an arbitrary axial cross-section
with a streamwise-averaged version shows little variation for solution a where there are
m0 fairly 2-dimensional slow streaks. In contrast, solution f has 2m0 interior slow streaks
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Figure 7. The travelling wave solution curves traced out by taking the solutions found from the
continuations reported in figures 4 (truncation (8, 25, 5)), 5 and 6 (both at truncation (8, 24, 5)).
The m0 = 2 (blue) dash-dot curve (α = 1.55)is one pair of upper and lower branches corre-
sponding to a saddle node bifurcation at lower Re. In contrast there are multiple m0 = 3 (red)
curves (solid and dashed) at α = 2.44. The labelling (a to f) used in figure 6 is reproduced here
to indicate the correspondence between the crossings and the various branches. Note that the
apparent crossings of the m0 = 3 curves are due to projection onto a plane and not bifurcations.

with significant 3-dimensional variation so that their streamwise average becomes almost
featureless in the interior.

All these solutions except for the ‘transitional’ solution c can be confirmed using in-
creased truncation levels. Figure 10 shows the results of following the branches using a
variety of larger truncations. (A branch section is inferred to exist and drawn with a
solid or dashed line if a variety of truncations traced it out successfully.) The presence
of multiple branches on this slice (α = 2.44) of the m0 = 3 solution surface is confirmed
although there appear two branches (see the (9, 26, 6) results in figure 10) rather than the
three suggested in figure 7 by the lower truncation of (8, 24, 5) (which still represents over
10,000 degrees of freedom). The structure of the flow solutions on the branches which
extend to higher Rem (> 2600) closely resembles the corresponding solution structure
illustrated in figure 8. For example, on the lowest branch which passes through solution
f , the travelling wave at Rem = 2600 has 2m0 fast streaks equispaced around the pipe
perimeter just like f . The one notable exception to this observation is provided by the
branch corresponding to solution e. Here there are 2m0 fast streaks as for solution e but
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Figure 8. Streamwise-averaged plots of the various solutions labelled in figure 6 to show their
different streak structure. The arrows indicate the streamwise-averaged cross-stream velocities
v⊥

z (larger arrows corresponding to larger speeds) and the coloring (shading) represents the

streamwise-averaged axial velocity differential, w̃
z

(red,dark = most negative and white(light)
most positive; the colour/shading of the area exterior to the pipe represents zero). Solutions
are arranged in branch pairings - a and b, c and f , and d and e - and so that the respective
upper (lower) branch solution (referring to figure 7) is on the left (right). Since all solutions
correspond to Re = 2200 the contour levels are kept constant across the figures (from -0.5
to 0.5 in steps of 0.031) to highlight their relative magnitude of w̃

z

. Quantitatively, (min(w̃
z

),

max(w̃
z

),max(|v⊥|
z

)) =(-0.31,0.057,0.011) for a, (-0.33,0.047,0.018) for b, (-0.25,0.037,0.015) for
c, (-0.28,0.065,0.013) for d, (-0.39.0.068.0.017) for e and (-0.40,0.059,0.020) for f (a speed of 1
corresponds to the centreline speed of the laminar solution at a Reynolds number of Re).

they not equally spaced around the pipe perimeter, appearing ready to merge in pairs.
Figure 11 shows both w̃ and w̃ + (1 − Rem/Re)(1 − s2) contoured for this solution at
one cross-section of the pipe. The constant mass plot on the right shows the presence of
m0 = 3 dominant slow streaks in the interior indicating that there is no simple connec-
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Figure 9. Velocity fields for the RRR3 solutions a (upper) and f (lower) of figure 7. The left plots
are show contour plots of wm = w̃ + (1 − Rem/Re)(1 − s2) and arrow plots of the cross-stream
velocity at a given z-station along the pipe (arbitrarily chosen as z = 0). The right plots are the
z-average of wm and the cross-stream velocity along the pipe. There are 10 contour levels in the
upper plots ranging from -0.18 to 0.14 and 10 contour levels in the lower plots ranging from -0.14
to 0.16. These plots illustrate how the fast streaks near the wall are effectively 2-dimensional
whereas the slow interior streaks can have an appreciable 3-dimensional element. The slow
streaks only oscillate slightly around in space in the upper solution a as evidenced in the fairly
close match with the streamwise averaged field. In contrast, there is much more variation in
the interior of solution f where the streamwise-average looks featureless but a typical slice has
6 well defined slow streaks. Subtracting off the equivalent laminar flow of the same mass flux
leads to clearer visualisation of the slower fluid velocities near the centre of the pipe: compare
these averaged plots with those of figure 8.

tion between the number of fast streaks and slow streaks (see also the RRR2 wave in figure
12 below).

5.2. Travelling Wave Solutions

The objective once a travelling wave solution had been found was to map out the solution
surface as much as was practical until

min
Re,α

Rem(m0)
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Figure 10. An exploration of numerical convergence for the multiple solution branches for RRR3

revealed in figure 7. The solutions a-f at Re = 2200 are marked as in figure 7 but now over
Rem. A solid or dashed line indicates where a solution branch has been confirmed by different
truncation levels (the dashed line corresponds to the dashed curve in figure 7). This shows
that the (8, 24, 5) solutions a, b, d, e and f are real (although e is poorly resolved) and that c
is a numerical artefact. Notice that (9, 26, 6) indicates that there are 2 separate branches. The
truncation levels (M, N, L) used are • (8, 24, 5), ∗ (8, 24, 6), � (8, 24, 7), � (8, 26, 5), × (9, 26, 6),
4 (8, 28, 6), ◦ (9, 28, 5).

was found. Given the multiple solution branches already found for m0 = 3, this is a
daunting numerical undertaking. As a result, we have contented ourselves here with get-
ting onto a solution surface for each m0 value up to 6 using the SSP analysis to guide
our starting point and then searching smoothly around on this for minRe,α Rem(m0). So,
given this uncertainty of the solution surface topology, we can say only that RRRm0

−waves
certainly exist down to some value of Rem rather than the stronger (and preferable)
statement that RRRm0

−waves only appear for Rem above some threshold value. To em-
phasize this, figures 12 and 13 indicate that we have found 2m0-streak solutions for
m0 = 2, 3, 4 at the respective saddle node bifurcation but only m0-streak solutions for
m = 5, 6. Whether corresponding solutions of the other type exist at lower Rem remains
uncertain. Faisst & Eckhardt (2003) do report finding a 2m0-streak solution for m0 = 5
but admit that it is not properly resolved.
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Figure 11. The structure of a RRR3 travelling wave on the solution branch corresponding to e at
α = 2.44, c = 0.456 and Rem = 3378 (see figure 10) at a given pipe cross section (truncation
(9,26,6)). On the left, w̃ is contoured (constant Re) whereas on the right, contours are drawn
for wm (constant Rem). In both plots, 12 contours are drawn between the maximum and min-
imum values of w̃ (-0.47,0.089) and wm (-0.17,0.19). The right hand plot shows the three slow
streaks near the pipe axis particularly well. As elsewhere, the shading(colour) outside the pipe
corresponds to the 0 level.
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Figure 12. RRR1 and RRR2 travelling waves at their saddle node bifurcation points and
optimal wavenumber. The arrows indicate the streamwise-averaged cross-stream velocities

v⊥
z = ũ

zbs + ṽ
z bφ (larger arrows corresponding to larger speeds) and the coloring (shading)

represents the streamwise-averaged axial velocity differential wm
z (red/dark = most negative

and white/light most positive; the colour/shading of the area exterior to the pipe represents
zero). Ten contours are drawn between the maximum and minimum values of wm

z as listed in
Table 2. Streamwise-averaging highlights the structure of the waves most clearly.

Figure 14 hints at the complexity of the situation. Here two known RRR3 and RRR4 solutions
at Rem = 2000 were used as starting points to trace out their respective solution surface
cross-sections defined by Rem = 2000. The initial motivation for this was to assess the
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Figure 13. RRRm0
travelling waves for m0 = 3, 4, 5, 6 at their saddle node bifurcation points

and optimal wavenumber. The arrows indicate the streamwise-averaged cross-stream velocities

v⊥
z = ũ

zbs + ṽ
z bφ (larger arrows corresponding to larger speeds) and the coloring (shading)

represents the streamwise-averaged axial velocity differential wm
z (red/dark = most negative

and white/light most positive; the colour/shading of the area exterior to the pipe represents
zero). Ten contours are drawn between the maximum and minimum values of wm

z as listed in
Table 2. Streamwise-averaging highlights the structure of the waves most clearly.

range of α and C = cW/W (the phase speed normalised by the average streamwise speed)
over which the travelling waves exist at this experimentally relevant Rem. While this data
certainly emerges − 1.0 < α < 3.1 & 1.09 < C < 1.45 for RRR3 and 2.38 < α < 3.6 &
1.06 < C < 1.26 for RRR4 − the more striking information revealed is how the two RRR3

solutions branches already found are smoothly connected and the discovery of two RRR4

solution branches at α = α∗
4 = 3.23. The four crossings of the optimal wavenumber

α = 2.44 line by the RRR3 curve coincide with the branches shown in figure 10: starting
from the highest C value and in descending order, the intersections are by the branches
corresponding to solutions d, a, e and f . Both loops of the RRR4 wave solutions have 2m0

streaks with the upper (in C) larger (and better converged) loop leading to a lowest Rem

value of 1647 (see Table 2 below).
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Figure 14. The phase speed normalised by the average streamwise speed C = c × W/W as
a function of the axial wavenumber α for RRR3 (red line) and RRR4 (black line) waves keeping
Rem = 2000. The truncations used to generate the two closed curves were (8, 28, 6) for RRR3 and
(7, 35, 5) for RRR4. The curves were regularly checked for numerical convergence by, in the case
of RRR3, using a (8,28,6) solution on the curve as a starting guess for the branch tracing code
with (9,24,6) truncation. The resulting (9,24,6) solution was then plotted alongside the (8,28,6)
curve using an open circle. The solid diamonds indicate the result of doing this for RRR4 using
the truncation (6, 32, 6). Further checks were done for the lower RRR4 loop (blue dots are (7,38,5)
and magenta squares (7,32,6)). The vertical dotted lines are drawn at the optimal α∗ values;
α∗

3 = 2.44, α∗
4 = 3.23. Starting from the uppermost and in descending order, the crossings of

α = 2.44 by the RRR3 curve coincide with the solution branches in figure 10 corresponding to
solutions d, a, e and f (the cusp near (2.45, 1.18) fails to cross the line α = 2.44). This plot
shows that the two branches confirmed in figure 10 are part of one convoluted RRR3 solution
surface. It also shows that there are two solution branches for RRR4 at the optimal α (the lower
loop is clearly more difficult to resolve numerically than the upper loop).

The structural difference in the streamwise-averaged velocity fields shown in figures 12
and 13 between the 2m0 fast streak RRR2,RRR3 and RRR4 solutions and the m0 fast streak RRR5

and RRR6 solutions also reveals itself in the 3-dimensionality of the slow interior streaks.
The slow streaks move around and modulate in amplitude along the pipe in the RRR2

(see figure 15), RRR3 (see figure 16) and RRR4 waves whereas the slow streaks are fairly
stationary and hence 2-dimensional for the RRR5 and RRR6 solutions. In contrast, for all waves
found the fast outer streaks are essentially 2-dimensional. A 3-dimensional visualisation
shown in figure 17 of the axial variation of the travelling RRR2 and RRR3 waves reiterates
this showing how the inner slow streaks meander around whereas the outer fast streaks
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Figure 15. The RRR2 travelling wave solution at the saddle node bifurcation α∗ = 1.55 and
Re = 1358.5. The plots are cross-sections of the pipe with α∗z = 0, π/4, π/2, 3π/4 (i.e. separated
by π/(4α∗) along the axis). The cross-sections at α∗z = π, 5π/4, 3π/2, 7π/4 are obtainable via
the shift-and-reflect symmetry S2S2S2. The arrows indicate the cross-stream velocities v⊥ (larger
arrows corresponding to larger speeds) and the coloring (shading) represents the axial velocity
wm (red/dark = most negative and white/light most positive, 12 contour levels used ranging
from -0.2 and 0.2). Notice that the slow interior streaks move around whereas the fast outer
streaks are effetively stationary.

are surprisingly stationary and hence 2-dimensional. Figure 18 shows 3 isosurfaces of
axial velocity differential w̃ for the RRR1-wave (at its saddle node bifurcation and optimal
wavenumber) which capture the fast and slow streak structure. This illustrates that the
fast outer streaks have dominantly RRR2 symmetry and are fairly 2-dimensional whereas
the slow inner streaks clearly only have RRR1 symmetry and vary in the axial direction.

The pressure distribution on the pipe wall appears to be a robust indicator of the
rotational symmetry of the RRRm0

wave. Figures 19 and 20 show contour plots of the pres-
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Figure 16. The RRR3 travelling wave solution at the saddle node bifurcation α∗ = 2.44 and
Re = 1250.9. The plots are cross-sections of the pipe with α∗z = 0, π/4, π/2, 3π/4 (i.e. separated
by π/(4α∗) along the axis). The cross-sections at α∗z = π, 5π/4, 3π/2, 7π/4 are obtainable via
the shift-and-reflect symmetry S2S2S2. The arrows indicate the cross-stream velocities (larger arrows
corresponding to larger speeds) and the coloring (shading) represents the axial velocity (red,dark
= most negative and white(light) most positive, 12 contour levels using ranging from -0.15 to
0.15). Notice that the slow interior streaks move around whereas the fast outer streaks are fairly
stationary.

sure distribution on the pipe wall for the RRRm0
solutions at their respective saddle node

bifurcations. The number of pressure peaks around a pipe circumference is exactly m0

regardless of whether there are m0 or 2m0 fast streaks. This is because the pressure field
is decoupled from the streamwise-independent axial flow structures. As way of confir-
mation, the pressure fields associated with the various m0 = 3 solutions a, b, d, e and f
produce exactly similar plots to that shown in figure 19 albeit the individual cells vary
in exact shape somewhat. Furthermore, the RRR1 wave has two fast streaks but only one
pressure maximum around the boundary at a given station z along the pipe. The range
of the pressure values at the wall (in non-dimensional units of ρW 2) is largest for RRR3

at (pmin, pmax) = (−7.9, 7.8) × 10−4 corresponding to the lowest Rem value of 1251,
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Figure 17. Isosurfaces of the axial velocity differential w̃ for RRR2 (left) and RRR3 (right) travelling
waves at their saddle node bifurcations and optimal wavenumbers. The pipe axis is directed
bottom to top and runs from z = 0 to z = 2π/α∗; x and y are cartesian coordinates across the
pipe section of radius 1 centred on (x, y) = (0, 0). The outer green (light) contours indicate fast
streaks and the inner red (dark) slow streaks. (Four contours are drawn at -0.028,-0.015,0.01
and 0.05 in each plot.) Again notice that the outer fast streaks are almost 2-dimensional.

and smallest for RRR6 where (pmin, pmax) = (−2.7, 2.8)× 10−4 and Rem is largest at 2869
(excepting the RRR1 wave which has a different structure).

The mean (azimuthally and streamwise) axial velocities for the travelling waves at their
saddle node bifurcation points are shown compared to the equivalent laminar flow at the
same pressure gradient (i.e. Re) in figure 21 and at the same mass flux (i.e. Rem) in figure
22. Figure 21 shows that all the profiles possess a change in the shear or a ‘shoulder’ at a
radius of between 0.6 and 0.8 which is approximately where the fast streaks reach from
the pipe wall (except RRR1 which has a different structure). At this radius the profiles are
arranged in strict order (m0 = 2 through 6), however, at the pipe axis this ordering is
destroyed with RRR4 having a smaller centreline speed compared to RRR2 and RRR3 whereas
RRR5 and RRR6 have larger centreline speeds. This could be another signature of the change
in structure which occurs between the RRR4 and RRR5 waves although since these profiles are
being compared at different Re this is a little unclear. Figure 22 shows the same ordering
in the shoulder feature and precisely the reversed ordering at the pipe axis with the RRR6

wave actually having a larger speed than the laminar flow there. This perfect reordering
is essentially forced as all the waves have nearly the same gradient at the pipe wall and
the profiles must carry the same mass flux down the pipe (the volume of revolution of
the curves around s = 0 must all be equal).

Table 2 brings together information about the travelling waves at the lowest Rem

where they were detected, that is, at the saddle node bifurcation point for the optimal
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Figure 18. Isosurfaces of axial velocity differential w̃ for the RRR1-wave at its saddle node bifur-
cation and optimal wavenumber. The pipe axis is directed bottom to top and runs from z = 0
to z = 2π/α∗

1; x and y are cartesian coordinates across the pipe section of radius 1 centred on
(x, y) = (0, 0). The outer green (light) contours at 0 and 0.1 indicate the 2 fast streaks which
are very close to the wall at (x, y) = (0,±1) and the inner red (darker) contour at -0.255 shows
up the slow streaks. Only three contour levels have been chosen to illustrate that the fast outer
streaks have dominantly RRR2 symmetry but the slow inner streaks clearly only have RRR1.

wavenumber α∗. There appear a number of systematic trends as m0 increases. Firstly,
the critical Rem value grows presumably because the fast streaks are pushed towards the
pipe wall and hence suffer enhanced dissipation. The optimal wavenumber α∗ increases in
sympathy with the smaller streak scales generated near the wall. The waves also become
slower and the mean velocity decreases. The structural differences in the waves are also
apparent from the simple velocity measures shown too. RRR1-waves stand out by having
fast streak w̃ velocities comparable to its slow streak w̃ velocities whereas in all the
other waves, the latter dominate the former. If, instead, wm is considered, the fast and
slow streaks are essentially of equal magnitude for the modes except RRR1. The peak slow



30

0 2 4 6
0

1

2

3

4

φ

z

m
0
=1

0 2 4 6
0

1

2

3

4

φ

z

m
0
=2

0 2 4 6
0

1

2

3

4

φ

z

m
0
=3

0 2 4 6
0

1

2

3

4

φ

z

m
0
=4

Figure 19. The pressure field at the pipe wall s = 1 associated with the RRRm0
travelling waves

at their minimum Rem values (and hence optimal α = α∗). For ease of comparison, the pressure
fields are contoured over 0 ≤ φ ≤ 2π and 0 ≤ z ≤ 2π/α∗

2 where α∗
2 = 1.55 is the smallest optimal

wavenumber over m0 = 1 to 6 and so corresponds to the longest wavelength. Equally-spaced
contours are drawn ranging from the pressure minimum pmin to the pressure maximum pmax (12
drawn for m0 = 1, 2, 3 and 10 for m0 = 4) and dark(red) corresponds to negative values whereas
light(white) to positive values. (pmin, pmax) = (−3.0, 3.8) × 10−4 for RRR1, (−5.0, 4.6) × 10−4 for
RRR2, (−7.9, 7.8) × 10−4 for RRR3 and (−6.2, 7.6) × 10−4 for RRR4.

streak w̃ velocity is fairly uniform across all the fundamental waves but the 2m0-fast
streak solutions (RRRm0

m0=2,3,4) have stronger cross-stream velocities than the m0 fast
streak solutions (RRRm0

m0=5,6). In all cases, the streak velocities are typically an order of
magnitude larger than the cross-stream velocities. The entries for RRR2 and RRR3 confirm and
improve the results quoted by Faisst & Eckhardt (2003) since much higher truncation
levels are used here.

Figure 23 shows the various travelling solution branches traced as far as they could
be assured resolved by overlaying curves from different truncation runs. The systematic
trend in the phase speed (decreasing as m0 increases) is particularly apparent as are
the respective positions of the critical Rem(m0). The fact that the subharmonic RRR1-
wave curve flanks the fundamental RRR2 curve suggests that pursuing subharmonic and
other forms of RRRm streak-instability based on a RRR2m roll + streak structure may always
produce solutions with similar neighbouring curves to the fundamental RRR2m curve. The
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Figure 20. The pressure field at the pipe wall s = 1 associated with the RRRm0
(m0 = 4, 5, 6)

travelling waves at their minimum Rem values (and hence optimal α = α∗). As in figure 19,
contours are drawn over 0 ≤ z ≤ 2π/α∗

2 but for clarity, φ is now restricted to [0, 2π/m0]. The
RRR4 pressure field is reproduced here for comparison purposes. As in figure 19, 12 contours are
drawn at equal intervals ranging from the minimum pressure pmin to the maximum pressure
pmax: (pmin, pmax)= (−6.2, 7.6)× 10−4 for RRR4, (−3.2, 3.3)× 10−4 for RRR5 and (−2.7, 2.8)× 10−4

for RRR6.

dissipation rate associated with these RRRm0
-waves is compared in figure 24 to the Hagen-

Poiseuille value and the experimental log-law parametrisation of post-transition flows.
Interestingly, the dissipation rates associated with RRR2, RRR3 and RRR4 waves can exceed the
log-law value, although only the RRR3 and RRR4 branches manage this at post-transitional
Rem. It is tempting to speculate that there may well be other RRR5 and RRR6 waves which
also have such high friction factors yet to be found. An obvious strategy to explore this
is to repeat the solution tracing exercise reported in figure 14 since this was how the
dissipative RRR4-wave branch was discovered. Unfortunately, however, it is no coincidence
that the travelling wave solutions with the largest friction factors are also the hardest to
resolve numerically. The solution branches which have been numerically resolved through
to Rem = 3500 all have the same (weak) asymptotic friction behaviour as the laminar
Hagen-Poiseuille flow albeit with a larger numerical coefficient.
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Figure 21. The mean axial velocity profile for the RRRm0
(m0 = 1, ..., 6) travelling waves at

their saddle node points and (hence optimal wavenumbers). The profiles are compared to the
equivalent laminar profile (dotted line) at the same applied pressure gradient (i.e. same Re).
The axial velocity corresponding to RRR1 is the thick, cyan, dashed line, RRR2 is the thick, blue,
dash-dot line, RRR3 is the thick, red, solid line, RRR4 is the thin, black, dashed line, RRR5 is the thick,
magenta, dash-dot line and RRR6 is the thin, blue, solid line. Going from right to left along the
radius s = 0.6, the curves correspond to the laminar state 1 − s2, RRR2, RRR1, RRR3, RRR4, RRR5 and
finally RRR6.

Figures 25, 26 and 27 indicate how the numerical values for Rem quoted in Table 2 are
decided upon. Identifying minα,ReRem(m0) is a painstaking task since the search is over
a 2-d parameter space and the appropriate truncation level required for a given accuracy
is unknown a priori. The strategy adopted was to use a moderately high truncation
level to isolate the neighbourhood of the minimum before employing a suite of higher
truncations to assess the likely accuracy given the inevitable hardware restrictions. For
example, in the case of RRR3, the truncation (M, N, L) = (8, 24, 5) proves adequate to
locate α∗

3 (checked by truncations (9,25,6) and (10,24,5)). Then higher resolutions such
as (9,25,7), (9,30,6) and (9,35,6) were employed to refine the estimate of min Rem. Figures
28 and 29 illustrate the spectral makeup of the RRR3 travelling wave at its saddle node
bifurcation point Re = 1251, which is the lowest of all waves found.
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Figure 22. As in the previous figure 21 but now comparing the mean axial velocity profile for
the travelling waves with a laminar profile (dotted line) corresponding to the same mass flux
(i.e. same Rem). The axial velocity corresponding to RRR1 is the thick, cyan, dashed line, RRR2 is
the thick, blue, dash-dot line, RRR3 is the thick, red, solid line, RRR4 is the thin, black, dashed line,
RRR5 is the thick, magenta, dash-dot line and RRR6 is the thin, blue, solid line. Going from right to
left along the axis s = 0, the curves correspond to RRR6, the laminar state 1 − s2, RRR5, RRR1, RRR4,
RRR3 and RRR2.

6. Discussion

In this paper we have found 3-dimensional travelling wave solutions for pressure-driven
fluid flow through a circular pipe. These possess certain pre-selected symmetries (the
shift-and-reflect symmetry S2S2S2and a rotational symmetry RRRm0

for some integer m0) and
have been constructed by mixing three key flow structures - 2-dimensional streamwise
rolls, streaks and 3-dimensional streamwise-dependent waves - in the right way. Funda-

mental travelling waves (the solution shares the same rotational symmetry RRRm0
as the

component rolls and streaks) have been found for m0 = 2, 3, 4, 5, 6. Subharmonic trav-
elling waves (the component rolls and streaks are RRR2m0

rotationally symmetric whereas
the solution is only RRRm0

) have been found for m0 = 1. All are born out of saddle node
bifurcations and presumably are unstable immediately - Faisst & Eckhardt (2003) find
that the m0 = 2 and the lowest branch of m0 = 3 waves are unstable from the onset.
The travelling waves which survive to the lowest value of the Reynolds number (m0 = 3)
appear to represent the best compromise between the confining cylindrical geometry of-
fered by the pipe and the damping effects of the wall region. At small values of m0, the
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RRR1 RRR2 RRR3 RRR4 RRR5 RRR6

minα Rem 3046 1358.5 1250.9 1647 2485.5 2869
α∗ 2.17 1.55 2.44 3.23 4.11 4.73

C(= cW/W ) 1.56 1.44 1.28 1.16 1.08 1.00

corresponding Re 3800 1663 1631 2280 3427 4069
estimated error in Rem ±10 ±0.5 ±0.5 ±3 ±0.5 ±2

truncation (9,36,5) (8,30,8) (9,35,6) (7,35,6) (7,35,7) (7,40,5)
degrees of freedom 16200 19260 19390 15470 17710 15120

W/W 0.401 0.408 0.384 0.362 0.363 0.353
max w̃

z

0.21 0.076 0.057 0.048 0.064 0.060
min w̃

z

-0.25 -0.32 -0.31 -0.33 -0.33 -0.32
max wm

z 0.28 0.15 0.14 0.13 0.15 0.14
min wm

z -0.09 -0.16 -0.11 -0.09 -0.14 -0.13
max|v⊥

z| 0.0091 0.014 0.018 0.020 0.0092 0.0087

Table 2. Optimal properties of the travelling wave solutions at their saddle node bifurcation
points. The value of Re corresponding to min Rem is given although this is not the mini-
mum value of this parameter only close to it. The velocity measures quoted at the bottom

(v⊥ = ũbs + ṽbφ is the cross-stream velocity) of the table are measured on the z−averaged veloc-
ity field so as to illustrate the difference in scale between the streamwise rolls and the streaks
(in units of the laminar centreline speed W ).

rolls are large and centred away from the walls but it seems interact negatively inhibiting
the establishment of a travelling wave. (The absence of an m0 = 1 fundamental wave for
Re < 6000 is an extreme example of this.) Whereas for increasing m0, the rolls inter-
act less but get closer to the wall and become more damped. As a result, the threshold
Reynolds number increases with m0.

The new solutions have been found using a constructive and mechanistically-motivated
continuation procedure developed by Waleffe in the context of plane Couette and Poiseuille
flow. This is based upon manufacturing a flow in which streamwise rolls, streaks and 3-
dimensional waves symbiotically sustain themselves against viscosity by drawing energy
out of the mean flow. The fact that this technique has worked in pipe flow, the third
and perhaps most famous canonical example of wall-bounded shear flow, vindicates the
approach and confirms that the same generic physical mechanisms are at play.

In a sense the travelling wave solutions exhibited here merely scratch the surface of the
set of all possible travelling wave solutions. Even within the specific symmetry groups
considered here, there are potentially numerous other possibilities which could arise by
allowing greater flexibility in the radial structure of the streamwise rolls and/or by select-
ing wavelike instabilities with different symmetries. Certainly in terms of the fundamental
waves, we have opted for the simplest structure under the plausible assumption that these
will be appear first as the Reynolds number increases. Beyond the symmetries imposed
here, more families of travelling waves exist which are symmetric with respect to ZZZ rather
than S2S2S2 (these are left for future work).

Given that pipe flow can undergo transition at Rem ≈ 1800-2000, it is perhaps sur-
prising that not more travelling waves have been found to exist below this value. This
may motivate a greater search for other travelling waves or imply that even a small num-
ber of travelling waves are sufficient, through subsequent local and global bifurcations, to
breed a phase space sufficiently complicated to rationalise the transitional dynamics seen.
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Figure 23. The phase speed normalised by the average streamwise speed, C = c × W/W as a
function of Rem for the different m0 solution branches at their optimal wavenumber α∗. Each
branch is shown only as far as it is assured to be resolved i.e. different truncations produce
overlapping curves. Truncations used to check this were: (9,35,5) & (9,36,5) for m0 = 1, (8,25,5)
& (9,27,6) for m0 = 2, (8,24,5), (8,24,7), (9,28,5), (8,28,6) & (9,26,6) for the multiple branches
of m0 = 3, (6,32,6) & (7,35,5) for the two branches of m0 = 4, (7,32,4) & (7,35,5) for m0 = 5,
(7,32,4) & (7,40,5) for m0 = 6. The branches are as follows in descending order from top of
the graph: the RRR1 subharmonic (Rem > 3000, cyan), RRR2 (blue), RRR3 (red), RRR4 (black), RRR5

(magenta) and RRR6 (blue) respectively. The red dashed RRR3 solution branch corresponds to the
dashed solution branches in figures 7 and 10 and the thick black line represents the lower loop
of RRR4 solutions in figure 14. The phase speed systematically decreases with increasing m0.

Certainly an immediate challenge is to try to identify the signatures of these travelling
waves in both observational and numerical data with a view to understanding how their
presence may contribute to the mean properties of transitional flows.
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Figure 24. The friction factor Λ := 64Re/Re2
m for the travelling waves branches (labelled

by m0, m0 = 1 cyan, m0 = 2, 6 blue, m0 = 3 red, m0 = 4 black, m0 = 5 magenta) at
their optimal wavenumber α∗. The blue dashed curve represents the lower bound given by the
Hagen-Poiseuille solution (Λ = 64/Re) and the upper blue dash-dot curve corresponds to the

log-law parametrisation of experimental data 1√
Λ

= 2.0 log(Rem

√
Λ)− 0.8 (see Schlichting 1968

equation (20.30)). The thick red dashed line corresponds to the m0 = 3 dashed line in figures
7, 10 and 23. The solid thick black line represents the lower loop of m0 = 4 solutions shown in
figure 14.
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