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1 Transition scenarios

Transition to turbulence in fluid systems can be broadly divided into two different classes:
the ‘supercritical’ or the ‘subcritical’ scenario.

1.1 Supercritical scenario

In the supercritical scenario, there is a well-defined sequence of supercritical bifurcations
in which the flow gradually becomes more complicated in space and time. For these flows,
nothing happens (that is, all disturbances decay) below a well-defined value of a control
parameter, e.g. the Reynolds number Re. The following commonly-referred-to values of
the control parameter R (e.g. [19]) then effectively characterise the situation:

• RE , the threshold below which any disturbances, both finite and infinitesimal, mono-
tonically decay. This is known as the Energy stability threshold.

• RL, the threshold for linear stability.

• RG, the least R below which the basin of attraction of the laminar solution includes all
states with the exception of a set of states of measure zero. RG signals the emergence
of another attractor beyond the laminar solution.

In the supercritical scenario where the first bifurcation from the base state is supercritical,
RE ≤ RL = RG. The only interesting issue is then whether RE = RL or RE < RL so there
is a gap.

Rayleigh-Bénard convection (RB) is an example of a flow in the supercritical scenario
class (e.g. see [6], chapter 6). The motionless conductive state is provably absolutely
stable (i.e. to all disturbances) until a certain value (RaL = 1708 for rigid-rigid boundary
conditions, where Ra is the Rayleigh number) so RE = RL = RG = 1708. Above this value,
the flow undergoes a sequence of supercritical bifurcations.

Another member of the supercritical scenario class is Taylor-Couette flow (TC) with
co-rotating cylinders. TC flow shows a succession of bifurcations and increasing complexity
for R := Ri > RL > 0 (increasing rotation rate of the inner cylinder and fixed outer cylinder
rotation rate Ro > 0): see figure 1. Contrary to RB flow, RE < RL = RG which means that
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Figure 1: Phase diagram of patterns observed in Taylor-Couette flow as a function of the
inner Reynolds number Ri and the outer Reynolds number Ro. The heavy line denotes
the boundary between featureless flow below the line and patterned states above the line.
(Redrawn from [1], see also [6], figure 7.8).

transient growth - an initial disturbance can initially grow in amplitude before eventually
decaying away - is possible for RE < R < RL with TC flow (see figure 2). The supercritical
scenario is well-studied and understood.

1.2 Subcritical scenarios

In the subcritical scenario, as typified by wall-bounded shear flows, transition is sudden,
noise-dependent and dramatic, i.e. the flow immediately becomes complicated. There is
usually a region of bistability so that the laminar and turbulent states can coexist (in plane
Couette and Hagen-Poiseuille flow, this region extends to infinite Re!). As a result this
is the more interesting scenario where there has been considerable recent research activity
and so will be the focus of my lectures. Flows in the subcritical scenario class cannot
be sufficiently described by the three (established) parameters defined above. Therefore,
as a first attempt in building up a more sophisticated picture, we introduce the following
additional parameter values:

• RS , the threshold above which there exists initial conditions with measure zero which
do not convergence to the basic state. Or equivalently, there exists ‘other’ unstable
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Figure 2: Sketch of different solution characteristics under different values of R for the
supercritical scenario.
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Figure 3: Sketch of different solution characteristics under different values of R for the
subcritical scenario.

exact solutions of the governing equations beyond the basic state.

• RT , the threshold above which long-lived non-trivial flows exist. These flows look tur-
bulent (characterised by positive Lyapunov exponents so nearby trajectories diverge)
but may not be sustained if RT < R < RG.

For subcritical scenarios we have that RE < RS , RT ≤ RG, where RS < RT seems likely
but is unproven and typically RG < RL for wall-bounded shear flows like plane Poiseuille
flow, plane Couette flow and Hagen-Poiseuille flow. The qualitative behaviour of a typical
subcritical scenario is sketched in figure 3. For R < RE all solutions decay monotonically
to the base state. For RE < R < RS transient growth is possible of some disturbances. For
RS < R < RT at least one disturbance does not decay to the base state. For RT < R < RG

at least one solution experiences a ‘long-lived’ transient before eventually decaying. For
RG < R < RL the flow need not relaminarise when disturbed and finally, for R > RL the
flow always evolves away from the base state. Table 1 emphasizes how the Rayleigh-Bénard
problem differs from plane Poiseuille, plane Couette and Hagen-Poiseuille flows which are
all in the subcritical scenario class.
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RE RS RT RL

RB 1708[8] 1708 1708 1708

PPF 49.6[4] ≤ 977+[20] 2100[18] 5772[13]

PCF 20.7[8] ≤ 127[12, 20] ∼ 325[5] ∞[17]

HPF 81.5[9] ≤ 773∗[15] ∼ 1800[11] ∞†

Table 1: The various thresholds for different flow types: Rayleigh-Bénard (RB), plane
Poiseuille flow (PPF), plane Couette flow (PCF), and Hagen-Poiseuille flow (HPF). Source
references are shown as superscripts and † indicates still unproven. + means RS is based
upon fixed pressure gradient whereas ∗ means RS based upon fixed mass flux. RS for PPF
based upon fixed mass flux is close to but strictly below 860 whereas HPF based upon
pressure gradient is close to, but strictly below, 990.

1.3 Normality vs Non-normality

We now discuss the reasons for this very different behaviour which, because of the special
form of the nonlinearity in the Navier-Stokes equation, can be largely traced back to the
properties of the linear operator produced by linearising the Navier-Stokes equation around
the basic state.

If utot = ulam + û so û satisfies homogeneous boundary conditions (is real, at least C2

and has finite kinetic energy), then the Navier-Stokes equation for the perturbation û can
be written as

∂û

∂t
= Lû + N(û, û), (1)

∇ · û = 0, (2)

where L and N are linear and nonlinear operators, respectively. If 〈u,v〉 :=
∫

u
∗.v dV where

∗ indicates complex conjugation (redundant here for real û but important when discussing
the eigenfunctions and adjoint of L), then

〈

(L+
u),v

〉

:= 〈u, (Lv)〉 (3)

defines L+, the adjoint of L and L is normal if and only if L+ commutes with L i.e.
LL+ = L+L. The eigenvalue spectrum of the linear operator L determines the linear
stability of the base state ulam with RL defined by when max[ℜe(eig(L))] = 0. Energy
stability is derived by examining the instantaneous rate of change of the perturbation kinetic
energy,

∂

∂t
〈
1

2
û

2〉 =

〈

û,
∂û

∂t

〉

= 〈û, (Lû)〉 = 1
2

〈

û, (L + L+)û
〉

(4)
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since 〈û, N(û, û)〉 = 0 (this is the special property of the Navier-Stokes equations referred to
immediately above) and L can always be decomposed into ‘symmetric’ and ‘antisymmetric’
parts, L = 1

2(L+L+)+ 1
2 (L−L+). Clearly there can only be energy growth if the right hand

side of (4) is positive for at least one allowable û (where ‘allowable’ is taken to mean a real
incompressible velocity field which is twice-differentiable, satisfies the boundary conditions
and has finite kinetic energy). Since L + L+ is a self-adjoint (symmetric) operator, this
can only happen if one of its eigenvalues is positive (recall all eigenvalues of a self-adjoint
operator are real). If L is self-adjoint, then this is one and the same condition that the flow
is linearly unstable so RE = RL. However, the weaker condition that L is normal is also
sufficient. This is because if L has the (possibly complex) eigenvalue and eigenfunction pair
(µi,vi) then L+ has the equivalent pair (µ∗

i ,vi) when L commutes with L+. Then

eig( 1
2(L + L+) ) = ℜe( eig(L) ) (5)

and so energy growth starts to occur precisely when an eigenvalue of L crosses into the right
hand side of the complex plane. Hence

Normality of L ⇒ RE = RL ⇒ supercriticality. (6)

The bifurcation at RL has to be supercritical as the laminar state is the global attractor for
R < RE . The reverse direction is not valid, i.e. supercritically does not imply RE = RL as
we will see in the example of rotating plane Couette flow below.

A subcritical bifurcation at RL implies RE < RL and therefore the possibility of transient
growth: for some (but not all) û, the perturbation energy will initially grow but ultimately
decay for RE < R < RL. This means that an eigenvalue of L + L+ must reach into
the right hand side of the complex plane while no eigenvalue of L does so L has to be
non-normal. In other words

Non-Normality of L ⇐ RE < RL ⇐ subcriticality. (7)

The arrows cannot be reversed as non-normality does not imply RE < RL. It is theoret-
ically possible (but presumably unusual) to have a non-normal operator where the largest
eigenvalue of (L + L+) becomes positive precisely when the eigenvalue of largest real part
for L crosses onto the right hand side of the complex plane. From a different perspective,
non-normality of L implies that the eigenfunctions of L are non-orthogonal but this in it-
self is not sufficient to produce transient growth as the following example illustrates. Let
u = veλ1t + weλ2t where λ1 and λ2 are negative and v.w 6= 0. If v

2 = c2
1, w

2 = c2
2,

v.w = αc1c2 where 0 < α2 < 1 and c = (c1 c2)
T , then

du2

dt
|t=0 = c

T
Bc where B :=

[

2λ1 α(λ1 + λ2)
α(λ1 + λ2) 2λ2

]

. (8)

For no transient growth, B must be negative definite. Since B is symmetric this requires
both of its eigenvalues to be negative which is the condition that 4λ1λ2 > α2(λ1 + λ2)

2.
This can always be achieved by choosing α small enough (thanks to Divakar Viswanath for
this nice example).

So, in summary, if the linear operator is normal then RE = RL, otherwise the operator
is non-normal which is a necessary but not sufficient condition for a subcritical bifurcation.
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1.4 Transient growth

To illustrate the phenomenon of transient growth we consider a simple system of 2 ODEs
given by

d

dt





x(t)

y(t)



 = Ax(t) =







−
1

Re
0

1 −
2

Re











x(t)

y(t)



 (9)

where x represents rolls and y streaks (say). The operator A is non-normal since AAT 6=
AT A (transpose being the matrix equivalent of adjoint) and has eigenvalues −1/Re and
−2/Re. The initial rate of change of the ‘energy’ is

d

dt
x

2 = x
T (A + AT )x (10)

Since A+AT is symmetric, all that is needed to find initial growth is a positive eigenvalue and
initial conditions with sufficient overlap with the corresponding eigendirection. The simple
initial conditions x(0) = y(0) = 1 are adequate (providing Re > 3) since the solution,





x(t)

y(t)



 =





1

Re



 e−t/Re +





0

1 − Re



 e−2t/Re ∼





1 − t
Re + O

(

t2

Re2

)

1 + Re−2
Re t + O

(

t2

Re2

)



 , (11)

has the initial energy behaviour

E(t) :=
1

2
(x2(t) + y2(t)) = 1 +

(Re − 3)

Re
t + O

(

t2

Re2

)

(12)

Although the rolls decay, there is enough initial growth in the streaks to give overall energy
growth even though both eigenvalues of the system are negative.

2 Bifurcation Analysis

In wall-bounded shear flows, the linear operator is generically non-normal and therefore to
understand the situation we need to find other nonlinear solutions which exist. There are a
variety of methods that can be used, but the first (default) way is to use bifurcation analysis
and nonlinear branch continuation techniques. Rotating plane Couette flow presents a
beautifully accessible arena in which to illustrate this while also indicating how the first
nonlinear solutions in plane Couette flow were found by Nagata [12]. The governing Navier-
Stokes equations for an incompressible flow are

∂utot

∂t
+ 2Ωẑ × utot + utot · ∇utot + ∇p =

1

Re
∇2

utot, (13)

∇ · utot = 0, (14)

where utot(x,±1, z, t) = ±x̂ and Ω = Ωẑ is the spanwise rotation rate. As in §1.3, we define
utot = ulam + û, where û := (û, v̂, ŵ) is a (possibly large) perturbation to the laminar base
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state ulam := yx̂ so that the full perturbation equations are

∂û

∂t
+ 2Ωẑ × û + ulam · ∇û + û · ∇ulam + û · ∇û + ∇p̂ =

1

Re
∇2

û, (15)

∇ · û = 0, (16)

where now û(x,±1, z, t) = 0. Firstly, we compare the energy and linear stability thresholds
for this problem.

1

z

Ω

x

y

1

y = −1

y = 1

Figure 4: (Spanwise) Rotating Plane Couette flow

2.1 Energy stability

The energy equation is derived by taking the scalar product of û with (15),

〈û · (15)〉 =
∂

∂t
〈
1

2
û

2〉 = − 〈2Ωẑ × û · û〉 − 〈ulam · ∇
1

2
û

2〉 − 〈û · û · ∇û〉

− 〈û · ∇ulam · û〉 − 〈û · ∇p̂〉 −
1

Re
〈|∇û|2〉, (17)

( where

〈(. . .)〉 :=

∫ ∫ ∫

(. . .)dV = lim
Lx→∞

lim
Lz→∞

1

4LxLz

∫ Lx

−Lx

∫ Lz

−Lz

∫ 1

−1
(. . .)dydzdx ) (18)

which simplifies to

∂E

∂t
= −〈û · ∇ulam · û〉 −

1

Re
〈|∇û|2〉

= 〈|∇û|2〉

[

−
〈û · ∇ulam · û〉

〈|∇û|2〉
−

1

Re

]

. (19)

Hence, energy growth is possible only if −〈û · ∇ulam · û〉 > 1
Re〈|∇û|2〉 or, turning this

around, there is a threshold ReE defined as

1

ReE
≡ max

∇.û=0,û(x,±1,z,t)=0

−〈û · ∇ulam · û〉

〈|∇û|2〉
(20)
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below which no energy growth is possible. After some manipulation, the eigenvalue problem
for ReE can be written as

1

2

[

∇ulam + (∇ulam)T
]

· û + ∇p̂ =
1

ReE
∇2

û, (21)

which, since ulam = yx̂, simplifies to

1

2





v̂
û
0



 + ∇p̂ =
1

ReE
∇2

û (22)

together with ∇.û = 0 and û(x,±1, z) = 0.

2.2 Linear stability

Linearising equation (15) gives

∂û

∂t
+ 2Ωẑ × û + ulam · ∇û + û · ∇ulam + ∇p̂ =

1

Re
∇2

û. (23)

Assuming streamwise Taylor (2D) roll solutions of the form

û(x, t) = ũ(y)eikz+σt (24)

(known to be critical for the energy stability problem), (23) becomes

σũ +





(1 − 2Ω)ṽ
2Ωũ
0



 + ∇p̃ =
1

Re
∇2

ũ. (25)

Comparing equation (25) to the energy stability equation (22) we see that when Ω = 1/4,
the operators from the energy and linear stability are identical providing σ = 0 also. This is
a special case of a more general relationship between ReE and ReL which can be extracted
by reducing (25) down to a problem in just ṽ. Eliminating ŵ using the incompressibility
condition, p̂ from ẑ.(25) and û from x̂.(25) leaves

2Re2Ω(1 − 2Ω)k2ṽ = −(D2 − k2 − σRe)2(D2 − k2)ṽ, (26)

to be solved subject to boundary conditions

ṽ = Dṽ = (D2 − k2 − σRe)(D2 − k2)ṽ = 0 at y = ±1, (27)

where D := d/dy. This system must be solved to find ReL = mink Re such that ℜe(σ) = 0.
Conveniently, this can be done by comparing it to the Rayleigh-Bénard convection problem
given by

k2Ra w̃ = −(D2 − k2 − σ)2(D2 − k2)w̃ (28)

with boundary conditions

w̃ = Dw̃ = (D2 − k2 − σ)(D2 − k2)w̃ = 0 at y = ±
1

2
, (29)
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where Ra is the Rayleigh number. This system has a well-known solution, with mink Ra =
1708 for σ = 0 and k = 3.117 (Drazin 2002, section 6.3 and the rigid-rigid case). Since
the layer depth for Rayleigh-Bénard convection is standardly non-dimensionalised to be 1
whereas it is 2 here (e.g. compare positions of boundaries), the lengths in equations (26)
and (27) need to be rescaled to make the connection exact. Letting D2 → 1

4D2, k2 → 1
4k2

and setting σ = 0 means the association

Re2
L =

1708

24[2Ω(1 − 2Ω)]
(30)

can be made. The minimum of ReL occurs when Ω = 1/4 (as noticed above) where the
linear operator is normal and so

min
k,Ω

ReL = 20.67 = ReE. (31)

More generally (Ω 6= 1/4)

ReL =
ReE

√

8Ω(1 − 2Ω)
(32)

exceeds ReE and the linear operator is non-normal. Notice also that ReL → ∞ for Ω → 0
and 1/2. Beyond these values, there is no linear instability: the Rayleigh number in the
analogous Rayleigh-Benard problem is then negative indicating that the stationary fluid is
now hotter on its top surface than the bottom which is a very stable situation.

Figure 5 shows the bifurcation diagram for rotating plane Couette flow. The 2-dimensional
steady solution surface emanating out of the bifurcation given by (32) is shown in blue. This
is traced out by considering the velocity expansion

[

u(y, z)
p(y, z)

]

=

+∞
∑

l=−∞

[

ũl(y)
p̃l(y)

]

eilkz (33)

truncated to some finite positive upper and negative lower values in l where k is the critical
wavenumber (a weakly nonlinear solution would just have l = 0,±1,±2 only). The expan-
sion functions ũl(y) and p̃l are typically themselves expanded in terms of basis functions in y
so that the solution is represented by a doubly-indexed set of complex coefficients. Solutions
are then found using root-finding algorithms invariably based upon the Newton-Raphson
method. These 2D solutions become unstable to 3D steady disturbances (shown as a green
curve). By tracing these solutions around in (Re,Ω) parameter space, Nagata [12] found
that they pierced the Ω = 0 plane for Re ≥ 125 (later more accurately computed to be
127.7 [20]). These non-rotating steady 3D solutions (shown in red) were the first discovery
of exact solutions to plane Couette flow beyond the simple constant shear state.

The rotating plane Couette system is also of interest in astrophysics for studying the
fluid dynamics of accretion disks (e.g. [16]). A disk with an angular velocity profile of
Ω∗ ∼ R−q and a thin distant radial strip R ∈ [R − 1, R + 1] (with 1 ≪ R) looks locally like
rotating PCF with

Ω =
1

q
(34)
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Figure 5: Bifurcation diagram for rotating plane Couette flow.

(relative to a non-dimensionalised shear of 1 across the domain as above). The astrophysical
interest is in understanding what hydrodynamic processes can operate in a Keplerian disc
which has Ω∗ ∼ R−3/2 or Ω = 2/3 so as to enhance dissipative processes (see [2] for an intro-
duction to the issues). However, the Rayleigh [10] (axisymmetric) stability criterion predicts
that profiles with angular momentum increasing radially outwards i.e. d(R2Ω∗)/dR > 0
or Ω > 1/2 are stable. This does not preclude non-axisymmetric (streamwise-dependent)
instabilities or the existence of disconnected nonlinear solutions as in the plane Couette
problem but these have yet to be found (e.g. [7, 16, 14] and [3] for a recent commentary).
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