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1 Introduction

In the previous lecture we discussed the edge and tracking it forward in time to a relative
attractor - the edge state. This always seems to be on an energy plateau compared with
other points and it is natural to ask what is the lowest energy attained by the edge. The
initial condition corresponding to this point - the minimal seed - infinitesimally disturbed
represents the easiest way (energetically) to trigger turbulence. In this lecture, we discuss a
method of finding the minimal seed which, in some sense, manages to integrate backwards

in time along the edge.
Some evidence that there is a disparity in energies on the edge was supplied recently by

Viswanath and Cvitanović [13] who looked at shooting for the edge state in a short pipe
of length πD (D is the pipe diameter). They took a combination of only three flow fields
as an initial condition and searched for the lowest initial energy for which the ensuing flow
would approach a particular travelling wave solution some time later. This travelling wave
was chosen as the target since it is known to be embedded in the chaotic edge state in a
5D pipe [7]. They chose one of the initial flow fields as the travelling wave solution itself
and the other two to be its two unstable eigenmodes, and found that the maximum growth
ratio of the energy was O(104) (see also [4]). Thus some regions of the edge have a much
smaller energy level than the attracting plateau where the edge state resides. This suggests
a strategy to identify the minimal seed which involves looking for the initial condition
which experiences the largest energy growth. A brute force search over all possible initial
conditions is not feasible but a variational approach is.

We define the growth of the energy at time T by the gain

G(T ) := max
u0(x), ∇·u0=0

〈

1

2
|u(x, T )|2

〉

〈

1

2
|u0(x)|2

〉 , (1)

where u0(x) = u(x, t = 0) and 〈·〉 means the volume integration

∫

· dV . It is this function

G(T ) that we want to maximise to find the minimal seed. We briefly discuss the matrix-
based and a matrix-free variational methods to find the minimal seed of the linearised
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Navier-Stokes equations. Then we extend the matrix-free approach to investigate the fully
nonlinear transient energy growth problem [8],[9].

2 Linear transient energy growth (non-modal analysis)

The non-dimensionalized linearized Navier-Stokes equation around the laminar flow ulam is

∂u

∂t
+ (ulam · ∇)u + (u · ∇)ulam + ∇p =

1

Re
∇2u, (2)

where u is the perturbation of the laminar flow ulam and Re is the Reynolds number. As
normal we assume that the fluid is incompressible, ∇ · u = 0.

2.1 Matrix-based method

We can rewrite the linearized Navier-Stokes equation (2) in the form

∂u

∂t
= Lu, (3)

where L is a linear operator, which has eigenvalues λj and eigenfunctions qj. Assuming
that the set qj is complete (but not necessarily orthogonal unless L is normal), then

u0(x) =
∞
∑

j=1

aj(0)qj(x) ⇒ u(x, t) =
∞

∑

j=1

aj(t)qj(x) (4)

where aj(t) := aj(0) exp(λjt). Then

G(T ;Re) = max
a(0)

〈u∗ .u 〉

〈u∗
0 .u0 〉

= max
a(0)

∑

i

∑

j a∗i (T )aj(T )〈q∗
i .qj 〉

∑

i

∑

j a∗i (0)aj(0)〈q∗
i .qj 〉

. (5)

Truncating at some large but finite N (so things become finite-dimensional yet insensitive
to the exact value of N) then Mij := 〈q∗

i .qj 〉 is a Hermitian n × n matrix which can be
reduced to another matrix F such that F ∗F = M , then

G(T ;Re) = max
a(0)

[Fa(T )]∗.Fa(T )

[Fa(0)]∗.Fa(0)
= max

a(0)

[FeΛT a(0)]∗.FeΛTa(0)

[Fa(0)]∗.Fa(0)
= ||FeΛT F−1||22 (6)

where eΛT = diag(eλ1T , eλ2T , . . . , eλN T ) [11]. This can handled by standard Singular Value
Decomposition (SVD) software to give the largest singular value. If L is normal, M and F

are diagonal and

G(T ;Re) = ||eΛT ||22 = max
j

∣

∣

∣
eλjT

∣

∣

∣

2
= max

j
e2ℜe(λj)T (7)

so there can be no transient growth when L is linearly stable i.e. ℜe(λj) ≤ 0 for all j.
This method is straightforward but only really computationally feasible for one-dimensional,

or possibly two-dimensional problems because the size of the matrices becomes unwieldy
and then unmanageable for three-dimensional problems. A better approach is the matrix-
free method which, although incurring more start-up costs (e.g. building a time stepping
algorithm), is extendable to include nonlinearity.
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2.2 Matrix-free method – Variational method

In this section, we consider the use of a matrix-free variational method for finding the
energy growth which involves time-stepping the linearised Navier-Stokes equations. Since
the problem is linear, the initial energy can be rescaled to 1 and we consider the Lagrangian

G = G(u, p, λ,ν , π;T ) =

〈

1

2
|u(x, T )|2

〉

+ λ

{〈

1

2
|u(x, 0)|2

〉

− 1

}

+

∫ T

0

〈

ν(x, t) ·

{

∂u

∂t
+ (ulam · ∇)u + (u · ∇)ulam + ∇p −

1

Re
∇2u

}〉

dt

+

∫ T

0
〈π(x, t)∇ · u〉 dt (8)

where λ, ν and π are Lagrangian multipliers imposing the constraints that the initial energy
is fixed, that the linearized Navier-Stokes equation (2) holds over t ∈ [0, T ] and the flow is
incompressible (their corresponding Euler-Lagrange equations are respectively:

〈

1

2
|u(x, 0)|2

〉

= 1, (9)

∂u

∂t
+ (ulam · ∇)u + (u · ∇)ulam + ∇p −

1

Re
∇2u = 0, (10)

∇ · u = 0.) (11)

The Euler-Lagrange equation for the pressure p is

0 =

∫ T

0

〈

δG

δp
δp

〉

dt =

∫ T

0
〈(ν · ∇)δp〉 dt

=

∫ T

0
〈∇ · (νδp)〉 dt −

∫ T

0
〈δp(∇ · ν)〉 dt. (12)

which to vanish means

ν = 0 at boundary, (13)

∇ · ν = 0. (14)

Finally, considering variations in u (with the condition that δu = 0 on the boundary):
∫ T

0

〈

δG

δu
· δu

〉

= 〈u(x, T ) · δu(x, T )〉 + λ 〈u(x, 0) · δu(x, 0)〉

+

∫ T

0

〈

ν ·

{

∂δu

∂t
+ (ulam · ∇)δu + (δu · ∇)ulam −

1

Re
∇2δu

}〉

dt

+

∫ T

0
〈π∇ · δu〉 dt. (15)

The first term in the second line of the above equation can be reexpressed as
∫ T

0

〈

ν ·
∂δu

∂t

〉

dt =

∫ T

0

〈

∂

∂t
(δu · ν)

〉

dt −

∫ T

0

〈

δu ·
∂ν

∂t

〉

dt

= 〈δu(x, T ) · ν(x, T ) − δu(x, 0) · ν(x, 0)〉 −

∫ T

0

〈

δu ·
∂ν

∂t

〉

dt, (16)
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the second term as

〈ν · {(ulam · ∇)δu}〉 = 〈∇ · ((ν · δu)ulam) − δu · {(ulam · ∇)ν}〉

= −〈δu · {(ulam · ∇)ν}〉 , (17)

the third term as

〈ν · {(δu · ∇)ulam}〉 =
〈

δu ·
{

ν · (∇ulam)T
}〉

(= 〈δui νj ∂iulam,j〉). (18)

and the fourth term as
〈

ν ·

(

−
1

Re
∇2δu

)〉

= −

〈

1

Re
δu · ∇2

ν

〉

, (19)

and finally the last term as

〈π∇ · δu〉 = 〈∇ · πδu〉 − 〈δu · ∇π〉

= −〈δu · ∇π〉 . (20)

Combining all these gives

∫ T

0

〈

δG

δu
· δu

〉

= 〈δu(x, T ) · {u(x, T ) + ν(x, T )}〉

+ 〈δu(x, 0) · {λu(x, 0) − ν(x, 0)}〉

+

∫ T

0

〈

δu ·

{

−
∂ν

∂t
− (ulam · ∇)ν + ν · (∇ulam)T −∇π −

1

Re
∇2

ν

}〉

dt.

(21)

For this to vanish for all allowed δu(x, T ), δu(x, 0) and δu means

δG

δu(x, T )
= 0 ⇒ u(x, T ) + ν(x, T ) = 0 (22)

δG

δu(x, 0)
= 0 ⇒ λu(x, 0) − ν(x, 0) = 0 (23)

δG

δu
= 0 ⇒

∂ν

∂t
+ (ulam · ∇)ν − ν · (∇ulam)T + ∇π +

1

Re
∇2

ν = 0. (24)

The last equation is the ‘dual (or adjoint) linearized Navier-Stokes equation’. This equation
can only be integrated backwards in time because of the negative diffusion term. Figure 1
shows a diagram of a numerical method for iteratively solving these variational equations
in order to construct the initial condition with maximum growth (e.g. [5]). The algorithm
has the following steps.

Step.0 Choose an initial condition of the iterative method u(0)(x, 0) such that

〈

1

2

{

u(0)(x, 0)
}2

〉

= 1. (25)
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Step.1

Linearized Navier-Stokes equation

Incompressibility

Boundary condition

Step.3

Dual linearized Navier-Stokes equation

Incompressibility

Boundary condition

Step.2Step.4

Figure 1: Diagram of iterative method.

Then we construct u(n+1)(x, 0) from u(n)(x, 0) as follows:

Step.1 Time integrate the linearized Navier-Stokes equation (2) forward with incompress-
ibility ∇ · u = 0 and boundary condition u = 0 from t = 0 to t = T with the initial
condition u(n)(x, 0) to find u(n)(x, T ).

Step.2 Calculate ν
(n)(x, T ) using (22) which is then used as the initial condition for the

dual linearized Navier-Stokes equation (24).

Step.3 Backwards time integrate the dual linearized Navier-Stokes equation (24) with in-
compressibility (14) and boundary condition (13) from t = T to t = 0 with the ‘initial’
condition ν

(n)(x, T ) to find ν
(n)(x, 0).

Step.4 Using equation (23), a simple approach to calculating the correction of u(n) is as
follows:

u(n+1) = u(n) + ǫ

[

δG

δu(x, 0)

](n)

(26)

= u(n) + ǫ
(

λu(n)(x, 0) − ν
(n)(x, 0)

)

, (27)

with λ chosen such that

1 =

〈

1

2

{

u(n+1)(x, 0)
}2

〉

(28)

=

〈

1

2

[

(1 + ǫλ)u(n)(x, 0) − ǫν(n)(x, 0)
]2

〉

. (29)

Here ǫ is a parameter of this iterative method and must be sufficiently small.
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1 2

decay

Figure 2: Initial noise is magnified as it passes through the pipe expansion before eventually
decaying.

Figure 3: Comparison between noise-driven flows (bottom halves) and the linear optimal
growth (top halves) for Re = 900 (upper) and Re = 1200 (lower) [1].

This last step moves u(n)(x, 0) in the direction of maximum ascent in order to increase
G(T ). Iterating the last four steps typically converges to a local maximum of G(T ) [3], [5].

An example of the application of this method for finding linear optimum initial condi-
tions is the case of expansion flow in a pipe [1], see Figure 2. Flow through an expansion in
a pipe is a classical engineering problem which is not spatially homogeneous. The resulting
linear-growth optimal can be compared with the numerical result of perturbing the flow
with random noise, see Figure 3. The dominant spatial structure which grows out of the
noise appears to agree well with the linear optimal.

3 Non-linear optimization

The matrix-free approach is, in principle, ‘easily’ extended to the non-linear problem. There
are only two changes that need to be made to the Lagrangian G: the nonlinearity is added
back to the linearised Navier-Stokes equation and the initial energy is explicitly set at E0

which joins T as a free parameter of the problem. So

G(T,E0;Re) = ... +

∫ T

0
〈ν · (u · ∇)u〉 dt + λ

{〈

1

2
u2(x, 0)

〉

− E0

}

(30)
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t=0 t=T

u(x,t)

ν(x,t)

Figure 4: Checkpointing: during the calculation of ν(x, t) the velocity u(x, t) is recalculated
in short sections from each checkpoint.

The change to a the non-linear term means that the part of the functional derivative of G

with respect to u must be recalculated to get

∫ T

0

〈

δG

δu
·δu

〉

dt = ... +

∫ T

0
〈ν·[δu · ∇u + u · ∇δu]〉 dt

= ... +

∫ T

0

〈

δu·[(∇u)T·ν − u · ∇ν]
〉

dt. (31)

Thus the dual Navier-Stokes equation becomes

−
∂ν

∂t
+ (∇[u + ulam])T·ν − (u + ulam)·∇ν −∇π −

1

Re
∇2

ν = 0. (32)

The consequences of adding the non-linear term can be summarised as follows:

1. The full Navier-Stokes equations now need to be integrated forward in time.

2. The dual Navier-Stokes equation remains linear in ν but now depends on u(x, t).

3. The result now depends on both E0 and T .

The added dependence of the dual equations on u(x, t) creates some problems numerically
as this suggests that u(x, t) must be stored at every step of the forwards integration. For
large systems the memory requirements associated with this are unfeasible so a method
called ‘checkpointing’ is used instead. This involves storing u(x, t) at a reduced set of
times or ‘checkpoints’ and then integrating forward in time again from each checkpoint as
required when calculating ν, see Figure 4. This method results in much reduced storage
requirements but at the added cost of having to perform the forward integration twice per
iteration.

4 Results

Before looking at some actual numerical results, we briefly consider what might happen.
For a fixed value of T we could expect the algorithm to converge for energy values E0 where
it is not possible to trigger turbulence. However, once E0 exceeds a threshold Ethresh where
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(a) Expected variation of G with E0. (b) Possible variations of E with t: turbulent (top),
non-linear optimal (middle), linear optimal (bottom).

Figure 5: Expected results; the red curves correspond to the results of linear transient-
growth analysis [12].

turbulence can be reached by some initial conditions, the algorithm should find these since
they experience the larger energy growth. Then the algorithm should fail to converge due to
the extreme sensitivity of the turbulence-triggering initial conditions to the exact turbulent
energy level reached a fixed time later: see Figure 5.

4.1 Pipe flow

Pringle & Kerswell [8] numerically solved the nonlinear optimisation problem in the case
of pipe flow using a short pipe with L = πR (see also [2] for a boundary layer calculation).
Figure 6 shows the growth G against E0 at Re = 1750 which indicates how a new 3-
dimensional optimal emerges at E0 ≈ 10−5 to replace the 2-dimensional linear optimal. The
optimisation time T was taken to be the time taken for the linear calculation to reach its
maximum value of G to emphasize the effect of nonlinearity in the optimisation calculation.
This, however, was too short a time for initial conditions to reach the turbulent state and
convergence problems were encountered at E0 = 2× 10−5 < Ethres (similar issues were also
found at Re = 2250).

The linear optimal is a well-known 2D structure as shown in Figure 7 (e.g. [12]). The
optimum initial disturbance consists of a roll structure which then generates large velocity
streaks before eventually decaying back to laminar flow. The structure of the new 3D
optimal is much more complicated: see Figure 8. It initially consists of a radially-localised
helical mode which unwinds to create rolls which then form streamwise streaks; the presence
of these two distinct stages can be clearly seen from the two stages of growth in Figure 6b
(see [9] for more details). When similar calculations are performed for longer pipes a
localisation of the initial condition in the axial direction is also observed. This localised
initial perturbation now also unrolls and expands in the streamwise direction to produce
long streamwise rolls and ultimately streaks.
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(a) Variation of G with E0. (b) Evolution of G(t) with time for linear optimal
(lower/red) and non-linear optimal (upper/blue).

Figure 6: Results of numerical calculation for short pipe [8].

Figure 7: Linear optimal at three successive times. Colours represent streamwise velocity
and the arrows represent velocity in the cross-section.
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Figure 8: Non-linear optimal at five successive times. Colours represent streamwise velocity
and the arrows represent velocity in the cross-section [8].

Two questions emerge from these preliminary results:

1. Can this approach be used to estimate Ethresh?

2. Does the non-linear optimal found correspond to the minimal seed for turbulence?

It is clearly possible that the extremum to which the numerical code converges may be
a local maximum rather than the global maximum. This would result in too high a value
of Ethresh. Even if the numerical code finds the correct value of Ethresh, it is possible that
the non-linear optimum found does not become turbulent but rather the minimal seed is
a different point on the same surface of E0, see Figure 9. Further numerical results [9],
however, suggest that the answer to the first question is ‘yes’ and the answer may also be
‘yes’ to the second as well.

4.2 PCF

Numerical optimisation calculations have also been performed for PCF [6]. However this
work used a different choice of G choosing instead to look at the total dissipation

G′ =
1

T

∫ T

0

〈

1

Re
|∇u|2

〉

dt. (33)

This functional was chosen based on the idea that turbulent flow is much more dissipative
than laminar flow. The results of these calculations are shown in Figures 10 & 11. The

10



Ec

turbulence

NLOP?

Figure 9: Does the non-linear optimal found numerical necessarily correspond to the mini-
mal seed?

increase in dissipation as the initial condition switches from remaining laminar to transi-
tioning to turbulence is very clear. We also see a localisation of the initial perturbation as
was previously observed for a long pipe. Optimising the energy growth for exactly the same
flow configuration (geometry and Re) seems to produce the same estimate of Ethres [10].
This is consistent with the thinking developed in [9] where the exact functional used is not
important but merely that the functional takes on enhanced values for turbulent flow states
compared to their laminar counterparts. It should be clear that there is much to explore
and understand in this promising new variational approach.
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