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1 Finite Amplitude Solutions

In the previous lecture by Marc Avila, we heard about linear instabilities. Each of
these leads to a new type of exact solution to the governing equations. To demonstrate
this, we now study what happens to this linear instability as it grows in amplitude.
To underpin our understanding we first consider a weakly nonlinear analysis of the
bifurcation which assumes small amplitudes before discussing branch continuation to
larger amplitudes. To give the discussion some context we consider rotating plane
Couette flow (a straightened out version of Taylor-Couette flow): see figure 1. The
governing Navier-Stokes equations for an incompressible flow are

∂utot

∂t
+ 2Ωẑ× utot + utot · ∇utot +∇p =

1

Re
∇2utot, (1)

∇ · utot = 0, (2)

and the boundary conditions for rotating plane Coeutte flow are utot(x,±1, z, t) = ±x̂
where Ω = Ωẑ is the spanwise rotation rate. We define utot = ulam + û, where
û := (û, v̂, ŵ) is a (possibly large) perturbation to the laminar base state ulam := yx̂
so that the full perturbation equations are

∂û

∂t
+ 2Ωẑ× û + ulam · ∇û + û · ∇ulam + û · ∇û +∇p̂ =

1

Re
∇2û, (3)

∇ · û = 0, (4)

where now û(x,±1, z, t) = 0.

1.1 Linear stability

Linearising equation (3) gives

∂û

∂t
+ 2Ωẑ× û + ulam · ∇û + û · ∇ulam +∇p̂ =

1

Re
∇2û. (5)
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Figure 1: (Spanwise) Rotating Plane Couette flow

Assuming streamwise Taylor (2D) roll solutions of the form

û(x, t) = ũ(y)eikz+σt (6)

(5) becomes

σũ +

(1− 2Ω)ṽ
2Ωũ

0

+∇p̃ =
1

Re
∇2ũ. (7)

Eliminating ŵ using the incompressibility condition, p̂ from ẑ.(7) and û from x̂.(7)
leaves

2Re2Ω(1− 2Ω)k2ṽ = −(D2 − k2 − σRe)2(D2 − k2)ṽ, (8)

to be solved subject to boundary conditions

ṽ = Dṽ = (D2 − k2 − σRe)(D2 − k2)ṽ = 0 at y = ±1, (9)

where D := d/dy. The objective is to find ReL = mink Re such that <e(σ) = 0.
Conveniently, this can be done by comparing it to the (famous and classical) Rayleigh-
Bénard convection problem given by

k2Ra w̃ = −(D2 − k2 − σ)2(D2 − k2)w̃ (10)

with boundary conditions

w̃ = Dw̃ = (D2 − k2 − σ)(D2 − k2)w̃ = 0 at y = ±1

2
, (11)

where Ra is the Rayleigh number. This system has a well-known solution,

min
k
Ra = 1708 for σ = 0 & k = 3.117 (12)

(Drazin 2002, §6.3 and the rigid-rigid case). Since the layer depth for Rayleigh-
Bénard convection is standardly non-dimensionalised to be 1 whereas it is 2 here (e.g.
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compare positions of boundaries), the lengths in equations (8) and (9) need to be
rescaled to make the connection exact. Letting D2 → 1

4
D2, k2 → 1

4
k2 and setting

σ = 0 in (10) means the association

Re2
L =

1708

24[2Ω(1− 2Ω)]
(13)

can be made. The minimum of ReL occurs when Ω = 1/4 and is

min
k,Ω

ReL = 20.67. (14)

Notice that ReL → ∞ for Ω → 0 and 1/2. Beyond these values, there is no linear
instability: the Rayleigh number in the analogous Rayleigh-Benard problem is then
negative indicating that the stationary fluid is hotter on its top surface than the
bottom which is a very stable situation.

1.2 Weakly Nonlinear Analysis

Now we consider what happens to this linear instability for Re slightly away from the
bifurcation point. For convenience we rewrite (3) as

L(Ω, Re)û = −û · ∇û (15)

and consider an expansion around the critical point (Ω∗, ReL(Ω∗)) as defined in (13).
For simplicity, we take Ω∗ = 1/4 (so ReL = 20.67) and only consider a small change in
Re. Specifically let Re = ReL + ε2Re1 so that ε is defined as

√
(Re−ReL)/Re1 � 1

where Re1 is unknown and may be positive (negative) indicating the branch bends
towards increasing (decreasing) Re. and let

û(x) := ε[u1(y)eikz + u−1e
−ikz] + ε2[u0(y) + (u2(y)e2ikz + u−2(y)e−2ikz)]

+ε3[v1(y)eikz + v−1e
−ikz) + (v3(y)e3ikz + v−3(y)e−3ikz)] +O(ε4)

(16)

where since û is real, u−m(y) = u∗m(y) and there is an accompanying expansion for
p. Since the bifurcation is steady (a pitchfork), no time dependence is included and
ε measures the amplitude of the solution branch as ε→ 0. Let also

L(ReL + ε2Re1) = L0(ReL) + ε2Re1L1 + . . . . (17)

Then there is a hierarchy of problems as follows

O(ε) : L0u1(y)eikz = 0 (the linear problem) (18a)

O(ε2) : L0u0(y) = −u1e
ikz · ∇u−1e

−ikz − u−1e
−ikz · ∇u1e

ikz (18b)

L0u2(y)e2ikz = −u1e
ikz · ∇u1e

ikz (18c)

O(ε3) : L0v1(y)eikz = −u1e
ikz · ∇u0 − u0 · ∇u1e

ikz − u−1e
−ikz · ∇u2e

2ikz

− u2e
2ikz · ∇u−1e

−ikz −Re1L1u1e
ikz. (18d)

L0v3(y)e3ikz = . . . .
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on substituting into the Navier-Stokes equations. The key point here is that L0 has a
non-trivial kernel - see (18a) - so (18d) only has a solution if the following solvability
condition is satisfied

〈u+
0 e

ikz,L0v1e
ikz〉 = −

〈
u1e

ikz · ∇u0 + u0 · ∇u1e
ikz + u−1e

−ikz · ∇u2e
2ikz

+u2e
2ikz · ∇u−1e

−ikz
〉
−Re1〈u+

0 ,L1u1e
ikz〉

(19)

where L+
0 [u+

0 (y)eikz] = 0 ( u+
0 (y)eikx spans the kernel of L+

0 , the adjoint of L0 under
the inner product 〈A,B〉 :=

∫
A∗BdV ). Since the lhs vanishes,

〈u+
0 e

ikz,L0v1e
ikz〉 = 〈L+

0 u+
0 e

ikz,v1〉 = 0, (20)

the vanishing of the rhs is a real condition which defines Re1 (as opposed to a generally
complex condition which would also specify the frequency change if there was one)
and there is then a precise relationship between the change in Re from the bifurcation
point and the amplitude of the bifurcated solution. This analysis shows nicely how:
1) the marginal eigenfunction is the foundation of the expansion and that 2) higher
and higher harmonics of the maginal eigenfunction are systematically generated by
the advective nonlinearity as the amplitude grows. If we are a finite distance away
from the bifurcation point, we need a fully numerical approach.

1.3 Branch Continuation

A solution branch can be traced out by considering the complete 2D velocity expan-
sion [

u(y, z)
p(y, z)

]
=

+∞∑
`=−∞

[
ũ`(y)
p̃`(y)

]
ei`kz (21)

truncated to some finite positive upper and negative lower values (say, ±L) in `
where k is the critical wavenumber (the weakly nonlinear expansion of (1.2) would
just have ` = 0,±1,±2 only). The expansion functions ũ`(y) and p̃` are typically
themselves expanded in terms of global basis functions in y so that the solution is
represented by a doubly-indexed set of complex coefficients (finite differencing in y is
also an alternative). For example, Chebyshev polynomials Tn(y) are a popular choice
because they are easily defined,

Tn(y) := cos(n cos−1 y) (so T0 = 1; T1 = y; T2 = 2y2−1; T3 = 4y3−3y etc), (22)

(see figure 2) and are very efficient at representing functions which are specified
at boundaries (e.g. [9]). If N is the largest order Chebyshev polynomial retained,
there are N + 1 coefficients for every velocity component and the pressure for each
Fourier wavenumber, or, in other words NT := 4(N + 1)(L + 1) complex degrees

4



−0.5 0.0 0.5 1.0

T
0.0

−0.5

−1.0

−1.0

0.5

1.0

x

n=1
n=4

n=0

n=3
(x
)

n

n=2

n=5

Figure 2: Chebyshev polynomials

of freedom (the fact that the physical fields are real means we don’t need to store
negative wavenumbers giving the factor (L + 1) rather than (2L + 1)). We need the
same number of independent equations to compute a solution. These are obtained by
substituting (21) into the Navier-Stokes equations and then splitting the results (most
simply rearranged into the three components of the Navier-Stokes equations and the
incompressibility condition) into components corresponding to a specific wavenumber.
The result can be further split to reflect the Chebyshev expansion. There are two
main methods: Galerkin projection using the fact that∫ 1

−1

Tn(y)Tm(y)√
1− y2

dy =


0 n 6= m
π n = m = 0
π/2 n = m 6= 0

(23)

to decompose the equations into their respective Chebyshev expansion or collocation
where the equations are evaluated at (N+1) sample points yj across the domain (the
N+1 zeros of TN+1(y) is a convenient choice which ensures exponential convergence).
Boundary conditions are imposed by replacing some of the equations typically near
to the appropriate boundary or corresponding to the highest order Chebyshev com-
ponents.

The above procedure gives 4(N+1)(L+1) quadratically-nonlinear algebraic equa-
tions for all coefficients of the double expansions. Solutions are then found using
root-finding algorithms invariably based upon the Newton-Raphson method. To find
a solution of F(u;Re) = 0 where F and u ∈ CNT , Newton Raphson proceeds by
taking a guess un and generating another un+1 via

un+1 = un − J−1F(un, Re) (24)

where Jij := ∂Fi/∂uj is the Jacobian and is an NT ×NT sized complex matrix. How
large can NT be before things become impractical using direct matrix solvers? Just
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20 years ago, NT would be limited to O(5,000) (or O(10,000) for a real matrix) on a
32-bit machine with a maximum memory of 2GB. Now O(100,000) is possible on a
512GB machine and runtimes are made acceptable by multithreaded linear algebra
routines (e.g. BLAS libraries). Bigger jobs need a different approach - see Marc
Avila’s lecture on iterative Krylov methods and [10] for a brief history. This has lead
in the past to calculations being focussed on more symmetric solutions - its worth
appreciating why.

1.4 Symmetries

Consider the Navier-Stokes equations for pipe flow written for the disturbance away
from the base state, u := utot − (1− s2)ẑ,

∂u

∂t
= f(u) := −(1− s2)

∂u

∂z
+ 2suẑ− u · ∇u−∇p+

1

Re
∇2u (25)

with ∇ · u = 0 and boundary conditions u(1, φ, z) = 0 and (u, p)(s, φ, z + 2π/α) =
(u, p)(s, φ, z) i.e. the flow is periodic in z with a wavenumber α. We now show that:

(a) these equations and boundary conditions have the Shift-&-Reflect symmetry,

S : (u, v, w, p)(s, φ, z) → (u,−v, w, p)(s,−φ, z + π/α); (26)

(b) that since ulam is symmetric under S - i.e. Su(x) = u(Sx) - the linear sta-
bility problem can be partitioned into considering only S-symmetric and S-
antisymmetric disturbances separately; and

(c) branch continuing a S-symmetric instability will lead to a nonlinear solution in a
S-symmetric subspace whereas branch continuing a S-antisymmetric instability
will not be contained within a S-antisymmetric subspace.

Firstly, we need to show that

S ∂u

∂t
= Sf(u) = f(Su). (27)

Just consider 3rd component (for brevity), inserting Su into ẑ.f gives

ẑ · f(Su) = −(1− s2)
∂w

∂z
+ 2su− u∂w

∂s
− (−v)

s

(
−∂w
∂φ

)
− w∂w

∂z
− ∂p

∂z

− 1

Re

[
1

s

∂

∂s

(
s
∂w

∂s

)
+

1

s2

(
− ∂

∂φ

)(
−∂w
∂φ

)
+
∂2w

∂z2

]
= −(1− s2)

∂w

∂z
+ 2su− u∂w

∂s
− v

s

∂w

∂φ
− w∂w

∂z
− ∂p

∂z

− 1

Re

[
1

s

∂

∂s

(
s
∂w

∂s

)
+

1

s2

∂2w

∂φ2
+
∂2w

∂z2

]
= ẑ · Sf(u) (28)
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as required. The other components (including incompressibility) and the b.c.s behave
similarly so the system is S-equivariant. This doesn’t mean the solutions have to be
S-symmetric but it does mean that if there is a solution u, then Su is also a solution.
Hence uniqueness implies the solution is S-symmetric.

Moving on to (b) linearizing the system ( i.e make the small amplitude assumption
of u around ulam) and assuming u(x, t) = u(x)eσt is an eigenfunction, then

σu = Lu where Lu := −(1− s2)
∂u

∂z
+ 2suẑ−∇p+

1

Re
∇2u. (29)

Since f and u · ∇u are S-equivariant, so is L = f + u · ∇u and since it is linear in u

σ(Su) = L(Su) ⇒ σ(u± Su) = L(u± Su) (30)

where, for any initial eigenfunction u, uS := u + Su is a S-symmetric version (i.e.
SuS = uS) and uA := u − Su is the anti-symmetric version (i.e. SuA = −uA)
because S2 = I the identity. Hence, it is enough to search over purely S-symmetric
and S-antisymmetric disturbances when examining the linear stability of ulam.

The last point (c) revolves around the nonlinear term. Defining

N (u1,u2) := u1 · ∇u2 + u2 · ∇u1, (31)

then the nonlinear branch originating from the bifurcating eigenfunction u will only
stay in the same subspace of S as u if

N (ulam,u) & N (u,u)

possess the same symmetry under S. Since ulam is S-symmetric, this means that u
needs to be S-symmetric for the nonlinear solution branch to stay in the S-symmetric
subspace. This is the reason why there is a strong (practical) preference to track these
types of bifurcation as opposed to the S-antisymmetric bifurcations which immedi-
ately break out of the S-antisymmetric subspace (i.e. this subspace is not invariant
under the dynamics). The more symmetries that are preserved in the bifurcation the
better the efficiency in representing the solution (in terms of number of degrees of
freedom to achieve a given spatial resolution) - see figure 3.

1.5 Initializing the Continuation

A good guess is needed to find a solution when using Newton-Raphson especially for
a highly nonlinear PDE like the Navier-Stokes equations (see figure 4 for a cautionary
tale). This can be produced at the bifurcation point by taking

û = εu1e
ikz + c.c. & Re = ReL + δ (32)

where both ε and δ are small. Weakly nonlinear analysis predicts how they are related
as both go to zero but this information is not always available (weakly nonlinear anal-
ysis is a tedious mix of integration and solving subproblems for the mean correction
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Figure 3: The benefit of imposing symmetries on the numerical representation of a solution.

The flow here is pipe flow and the coordinate system is the cylindrical system (s, φ, z) where

the z-axis is aligned with the pipe axis. The indices m and ` refer to Fourier expansions in

φ and z respectively. In each diagram, the crosses refer to the complex coefficients which

need to be stored to represent the solution: the more symmetries which are satisfied by the

solution the less coefficients which need to be stored which means branch continuation is

more efficient (requires less storage and Newton-Raphson proceeds faster).

u0 and second harmonic u2 so usually skipped now). Better to just try a few guesses
and see if the algorithm converges to something non-zero (zero corresponds to the
unbifurcated solution with no z structure).

Assuming that something has converged at a given Re, continuation is the process
of tracing out the curve by using u(Re) as a guess for u(Re + δRe) where δRe is
supposed to be ‘small’ enough that the guess converges. This simple approach is fine
until the branch undergoes a saddle node bifurcation (a.k.a. turns back) where the
derivative of how the solution changes with the continuing parameter goes singular.
A better approach is to continue using the arc-length as a parameter since this is
guaranteed to monotonically increase as the solution branch develops. In fact, an
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Figure 4: The basins of attraction for Newton’s method corresponding to the 3 com-
plex roots of z3 = 1 form a well-known fractal (z = 0 is the centre of the picture).

Figure 5: Pseudo-Arclength continuation: u is the dependent variable, Re the pa-
rameter being varied and ds is the pseudo arclength (i.e. not the real arclength). The
open circles are the predicted solutions and the nearby filled circles are the corrected
solutions.

approximation to the arc-length is used in pseudo-arclength continuation which is
cheaper and works just as well: see figure 5 and §2.2 in [2] for a discussion.

The result of branch continuing the solutions out of the primary bifurcation from
the 1D base state ulam := yx̂ to 2D solutions is shown in figure 6 as a blue surface
existing at higher Re than that defining the neutral (bifurcation) curve - this indicates
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Figure 6: Bifurcation diagram for rotating plane Couette flow.

a supercritical bifurcation (nonlinear solutions exist where the base state is linearly
unstable).

1.6 Stability

A green 3D solution curve coming off the 2D surface (along the magenta cross-section)
is also shown in figure 6. This is produced by another symmetry-breaking instability
where the flow goes from being 2D to 3D. This secondary bifurcation is a linear
instability of the 2D solution u2D(y, z) to an x-dependent eigenfunction of the form

u(y, z)eiα(x−ct) where α ∈ R (33)

and c ∈ C is the eigenvalue. A bifurcation occurs where the imaginary part of c
vanishes (i.e. ci = 0) for a given α. In fact the solutions shown have cr = 0 so the 3D
solutions are steady as well.

This process can be repeated identifying tertiary, quaternary and further bifurca-
tions (Marc Avila will talk more about this) as they arise (typically with increasing
Re) and the picture complexifies as 1) solutions become more complicated (spatially
and temporally); and 2) multistability may arise (the number of attractors increases).
This is numerical bifurcation theory as its best: a constructive approach to generating
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Figure 7: Supercritical bifurcation in a sudden channel expansion. The middle sym-
metric state is the unstable base state and the top and bottom states are the stable
states on the pitchfork arms.

Figure 8: Phase diagram of patterns observed in Taylor-Couette flow as a function of
the inner Reynolds number Ri and the outer Reynolds number Ro. The heavy line
denotes the boundary between featureless flow below the line and patterned states
above the line. (Redrawn from [1], see also [3], figure 7.8).
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new solutions and determining attractors as a function of the parameters describing
the system; exemplified by sudden expansion flows (see figure 7), Rayleigh-Benard
convection and Taylor-Couette studies (see figure 8).

Figure 9: Heat flux in Rayleigh-Benard convection is usually discussed in terms of the Nus-
selt number Nu which is the ratio of convective heat flux across the layer to the equivalent
conductive flux. Left: Nu − 1 is plotted against Ra (a measure of the boundary heating)
for the primary bifurcation branch (red o; Nu−1 ∼ 0.143Ra0.28) and wavelength-optimized
branch (red *; Nu − 1 ∼ 0.115Ra0.31). Upper dash-dot green curve is 3D turbulent data
Nu−1 ∼ 0.23Ra0.28 and lower dash green curve is the 3D turbulent data Nu ∼ 0.088Ra0.32.
The line ‘fs’ is the free-slip upper bound Nu . 0.106Ra5/12and the ‘ns’ line is the no-slip
upper bound Nu . 0.0335Ra1/2 (this is figure 2 from [13]). Right: temperature field
(upper) and velocity (lower) for optimal 2D solution.

Unstable states can also be physically relevant. Figure 9 plots the heat flux asso-
ciated with the primary branch of convective rolls which bifurcate off the conductive
(fluid at rest) state [13]. Even though this solution is unstable, the heat flux asso-
ciated with it appears to closely resemble that measured on average for turbulent
convection. A plausible interpretation is that the flow is repeatedly attracted back to
the roll solution before being repelled so that on average, the turbulent flow approx-
imates it. Efforts are underway to substantiate this. More generally, the fact that
unstable solutions can have an important influence in fluid flows is a relatively recent
realisation (last 2 decades?). The next topic develops this further.

1.7 Saddle Node Bifurcations

Some canonical problems have a base solution which is always linearly stable (i.e.
even as Re → ∞): for example, plane Couette flow ([8] has a proof) and pipe flow
(no formal proof yet but see [5] for numerical verification up to Re = 107). In this
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Figure 10: Supercritical (top) and Subcritical (bottom) scenarios in fluid flows. Examples
of the former are Rayleigh-Benard convection and Taylor-Couette flow (when the inner
cylinder rotates faster than the outer), whereas shear flows such as plane Couette flow and
pipe flow typify the latter (formally, plane Poiseuille flow is a mixture - it has a linear
instability [7] but this is typically not important in the transition to turbulence seen in
experiments)

case, it is not clear how to progressively construct new solutions or even if they exist
(and are dynamically significant). The generic way phase space can complexify is
through saddle node bifurcations in which pairs of solutions spontaneously form: see
figure 10. Finding these bifurcations is very hard without some clue.

One very general approach is Homotopy in which solutions are smoothly continued
from one problem where they are known to (hopefully) another where they are not.
Typically, the problem of interest is embedded in a bigger problem which does have a
bifurcation to follow: see figure 11. Using this approach, Nagata [6] famously traced
steady 3D solutions in rotating plane Couette flow around in (Re,Ω) parameter space,
until they crossed the Ω = 0 plane for Re ≥ 125 (later more accurately computed to
be 127.7 [12]): see figure 6. These non-rotating steady 3D solutions (shown in red)
were the first discovery of exact solutions to plane Couette flow beyond the simple
constant shear state. The approach doesn’t always works, however: see figure 12.

It helps to have some understanding of what the underlying structure of the so-
lutions is. In unidirectional shear flows, we now know that solutions borne in saddle
node bifurcations generically have a tripartite structure consisting of streamwise rolls,
streaks and a streamwise-dependent wave [4, 11]: see figure 13. Knowing this helps to
design a homotopy which was what Waleffe [11] famously did following the suggestive
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Figure 11: Homotopy is the technique for linking solutions in one problem to another.
Typically, the problem of interest is embedded in a bigger problem with an extra homotopy
parameter where there is a nearby bifurcation. Ideally, the bifurcated (primary) branch
of solutions immediately bends towards and crosses the limiting situation of the original
problem of interest (homotopy parameter vanishes). If not, it might still be possible to
achieve this but after finding and tracking further (secondary, tertiary,...) bifurcations.

calculations of [4]. The key idea was to add an artificial forcing into the Navier-Stokes
equations (the embedding problem needn’t correspond to a physical system although
this is obviously preferable) to generate small-amplitude streamwise rolls (see figure
14). These then create much larger amplitude streaks - deviations of the streamwise
velocity field from the base flow - via advection of the base flow. If the added force is
large enough, these streaks are inflectionally unstable to streamwise-dependent waves.
Then if these waves are of the right structure to feed energy into the streamwise rolls,
the force can be reduced as the amplitude of the branch grows and ideally, the axis
of zero forcing is reached. At this point, a finite-amplitude solution to the unforced
Navier-Stokes equations is identified. Typically, the solution branch bends back to
recross the axis delivering two solutions representing he upper and lower branch so-
lutions of a saddle node bifurcation as in figure 15 but more complicated things can
happen yielding more solutions than expected: see figure 16.
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Figure 12: Failed homotopy in rotating pipe flow: solution branches bend away from the
non-rotating limit (the axis when Ω = Ωa = 0).
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Figure 13: The Self-Sustaining Process (SSP) [11]. Streamwise rolls advect the base shear
to produce streaks which, when they have largest enough amplitude, are inviscidly unstable
to (streamwise-dependent) waves. Some of the these waves can constructively interfere to
energise the streamwise rolls to close the dynamical cycle of structures.
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Figure 14: Homotopy procedure suggested by SSP. (U, V ) = (U(s, φ), V (s, φ)) are the
streamwise rolls (independent of the streamwise coordinate z). f is the artificial forcing
which initially drives the rolls which then generate streaks. Once these streaks reach a
certain amplitude, there is a bifurcation, which, if the instability is of the right type, can be
traced back to the f = 0 axis indicating an exact solution to the Navier-Stokes equations
in pipe flow [14].
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Figure 15: Successful homotopy: the artificial forcing f has been reduced to 0 thereby
identifying 2 solutions of the unforced Navier Stokes equations with pipe flow boundary
conditions and pressure gradient forcing [14].

Figure 16: Multiple crossings mean multiple new solutions. The inset cross-sections de-
tail the six solutions corresponding to the crossings (colours indicate streamwise anomaly
relative to the laminar state for constant pressure gradient flow [14].
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1.8 Summary

Here’s a quick recap of the topics covered in these two lectures.

(i) Weakly nonlinear analysis considers the first influence of nonlinearity to build
a solution branch out of a bifurcation based on the neutral eigenfunction.

(ii) Branch continuation extends weakly nonlinear analysis to finite amplitude.

(iii) Symmetry considerations are fundamental to branch continuation and identify-
ing bifurcations.

(iv) Flows where the base flow becomes linearly unstable offer a natural beechhead
to find new attractors.

(v) For linearly-stable base flows, saddle-node bifurcations are generic and homo-
topy is the main tool for finding them.
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