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1 Importance of ECS

The importance of stable exact coherent structures (ECS) is obvious: they are attrac-
tors which attract all initial conditions in their basin of attraction. The importance
of unstable ECS is more subtle yet can be no less significant. Although they are not
asymptotic endstates, they influence the dynamics through their stable and unstable
manifolds which may be quite global in phase space. ECS with only a small number
of unstable directions (e.g 5 in a O(105) dimensional phase space), act as focuses in
phase space to which the flow is attracted along the (high-dimensional) stable man-
ifold before ultimately being expelled out along the (very low dimensional) unstable
manifold. If enough of these states exist together in phase space, this naturally gives
rise to chaotic dynamics in which the flow trajectory travels between them like a ball
in a pinball machine [10, 14, 15].

Given all the ECS which have now been found in pipe flow, an obvious thing to do
is compare their physical properties with that of the transitional or turbulent state.
Figure 1 plots the friction factor associated with each travelling wave (TW) together
with that for the base parabolic state and the transitional state. The lower branch
TWs have a friction factor generally closer to the base state whereas the upper branch
TWs have a friction factor near and above the transitional flow value. Given this,
it is clearly possible for a weighted sum of all the upper branch TW friction factors
to produce a time-averaged value commensurate with the transitional value. Figure
1 and particularly the inset also clearly show the multiple saddle node bifurcations
which occur as Re increases. It’s worth remarking that the first ECS to be borne as
Re increases appears at Re = 773 which is much lower than transitional turbulence
which appears at Re ≈ 1800− 2000 (e.g. [18]).

[12] carried out particle image velocimetry of pipe flow for turbulent puffs (1800 .
Re . 2500) and turbulent slugs for Re & 3000 and found evidence for the transient
realisation of TWs: see figure 2. This work has been repeated at Re = 35, 000 to
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Figure 1: Friction factor Λ against Re for various TW families. The lower dashed line
indicates the laminar value Λlam = 64/Re and the upper dashed-dotted line the log-law
parametrization of experimental data 1/

√
Λ = 2.0 log(Re

√
Λ). The labels show the rota-

tional symmetry of the TWs (e.g. 3 means invariance under rotation by 2π/3 around the
pipe axis). The inset shows the phase velocity (in units of the mean bulk velocity) versus
Re (this is figure 6 from [16]).

Figure 2: Comparison of experimentally-observed (top) and theoretically-calculated (bot-
tom) streak patterns (red/blue colours indicate speeds faster/slower than the parabolic base
profile). Velocity components in the plane are indicated by arrows. A is at Re = 2000, B
is at Re = 1250, C is at Re = 2500, D is at Re = 1360, E is at Re = 5300 and F is at
Re = 2900 (from [12]).
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confirm this picture in fully turbulent pipe flow [6]. The same, of course, can be
done for DNS of pipe flow turbulence. In [16], suitable indicator functions were de-
veloped to identify when an instantaneous velocity snapshot in such a DNS resembles
a known TW. Figure 3 shows a good example of a near correspondence with a 2-fold
rotationally symmetric TW. [16] estimated that an upper branch TW was visited
in phase space for roughly 10% of time at Re = 2400. This sounds fairly low but
crucially does not include other coherent structures like periodic orbits (see recurrent
flow analysis below). [16] also explored the dynamics in the neighbourhood of the
lower branch TWs by initiating DNS using a TW perturbed into the most unstable
direction in its unstable manifold. Performing this in one sense (using an initial con-
dition u = uTW +εv where v is the most unstable eigenfunction) led to the turbulent
attractor while the other (u = uTW − εv) caused the flow to smoothly relaminarise
to the base state: see figure 4. This behaviour was found for all lower branch TWs
tried indicating that they all sit in the laminar-turbulent boundary.

Figure 3: DNS of turbulent flow in a 5-diameter-long pipe transiently visits TWs. The
plot on the left shows a DNS velocity field identified to resemble the TW on the right
(cross-sections and full pipe images of the streamwise velocity anomaly are shown [16]).
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Figure 4: The perturbation kinetic energy of all the travelling waves (TWs) found in [28]
plotted against their wall shear stress (so the laminar state ulam := (1− s2)ẑ is represented
by the point (−2, 0) ). TWs with 2-fold rotational symmetry are marked with blue+, 3-fold
with red + and, 4-fold with a black +. The green solid line is the result of starting a DNS
run with a 2-fold TW uTW and adding a small amount of its most unstable eigenfunction
v whereas the dashed green line is the result of starting a DNS run with the same TW
but now subtracting a small amount of v. The former leads to turbulence and the latter
smoothly relaminarises implying that the TW is embedded in the laminar-turbulent basin
boundary. The inset shows a typical 3-fold rotationally symmetric TW on the left and its
most unstable eigenfunction on the right: note how the eigenfunction is concentrated at a
radius where the TW’s shear is focussed (data from [16]).

Finally, [13] managed to discover a periodic orbit buried inside a turbulent at-
tractor in small-box plane Couette flow: see the left plot in figure 5. The plot shown
projects the turbulent DNS down onto an energy input rate I vs energy output (dis-
sipation) rate D plane with the green dots indicating equally spaced points in time.
The closed red loop is the periodic orbit (period 64.7 h/U where 2U is the differential
speed between the planes and 2h is the separation between them) and the open yellow
loop is that part of the DNS used as an initial guess to converge the periodic orbit.
The plots on the right compare the mean flow and root mean square (rms) values of
the fluctuation fields for the DNS (averaged over 6× 104h/U) and the periodic orbit.
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The correspondence is astonishing (more on periodic orbits later).

Figure 5: Left: Two-dimensional projection - dissipation rate D vs. energy input I - of a
turbulent (grey line with green dots on equally spaced in time) and periodic orbit (closed
red curve) in plane Couette flow over a domain (Lx, Ly, Lz) = (5.5, 2, 3.8) at Re = 400,
15,000 degrees of freedom. The yellow open line is that part of the turbulent trajectory
which closely shadows the red periodic orbit and provides the initial guess to converge the
periodic orbit. Right: A comparison of the leading turbulent statistics and those of the
periodic orbit (turbulent averages taken over 6×104h/U and 64.7h/U for the periodic orbit)
from [13].

2 Identification: Edge Tracking

We’ve already discussed homotopy as a means for finding ECS. Now we consider
some alternative methods which have proved useful: edge tracking in this section and
recurrent flow analysis in the next. Edge tracking can be a very useful technique for
finding ECS in systems with bistability. Particularly important examples are shear
flows where the base state is linearly stable yet a turbulent attractor also exists.
Consider the simple 2D example

ẋ = −x+ 10y,

ẏ = y(10e−0.01x
2 − y) (y − 1) ,

(1)
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which has two stable equilibria and an unstable state. The line y = 1 separates

Figure 6: Phase plane of the 2D system (1) created using the free Matlab macro pplane6.m
written by John Polking (Rice University, 1995). The laminar state is at (0, 0), the edge
state at (10, 1) and the ‘turbulent’ state at ≈ (14, 1.4). The edge is the line y = 1.

initial conditions which will laminarise to (0, 0) and those which become ‘turbulent’
by spiralling into the fixed point at ≈ (14, 1.4): see figure 6. All points on y = 1 –
here the basin boundary for the laminar and turbulent states or more generally called
the ‘edge’ – are attracted to the relative attractor at (10, 1) which is called the ‘edge
state’ (this is a saddle point in 2D but an attractor for trajectories confined to the
1D edge).

Edge tracking consists of a simple bisection procedure starting with a pair of
initial conditions which are in different basins of attraction. By continuity, a line
joining these initial conditions in phase space must cross the separatrix between the
two basins so there must be at least one initial condition on this line which leads to
neither attractor (i.e. it stays in the separatrix). Explicitly, let u

(n)
0 be the nth initial

condition which leads to state 0 (i.e. (0, 0) ) and let u
(n)
1 be the nth to lead to state 1

(i.e. ≈ (14, 1.4)). The bisection procedure proceeds as follows: let u := 1
2
(u

(n)
0 +u

(n)
1 ),

find which basin u is in (so a time-stepper for the system is needed), then define a
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new pair of initial conditions as follows

(u
(n+1)
0 , u

(n+1)
1 ) =


(u

(n)
0 , u ) if u → state 1

(u, u
(n)
1 ) if u → state 0.

(2)

In our simple 2D example, we could take u
(0)
0 = (0, 1

2
) and u

(0)
1 = (0, 2), then it’s not

hard to see that the bisection will lead to an interval converging around the point
(0, 1) which is on the separatrix and leads to the relative attractor - or edge state -
(10, 1).

Figure 7: Perturbation energy traces of trajectories bounding the edge of chaos from [21].
Re=2875 and the pipe is 5D long.

This approach also works for the Navier-Stokes equations as first demonstrated by
[25] and then performed for pipe flow by [21]. All that is required is an initial condition
which triggers turbulence as the base state is clearly an acceptable initial condition
which (trivially) leads to the base state. Figure 7 shows one of the edge trackings from
[21] in a 5D pipe at Re = 2875. The first thing to notice is the characteristic way the
trajectories leave the edge to swing up in energy to the turbulent state. The trajectory
(d) and the relaminarising trajectory (e) both provide a good approximation to the
edge dynamics until about t ≈ 1800 when they start to separate. If the edge is
followed for longer, chaotic dynamics are obtained as the ‘edge state’ (the limiting
set).
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Figure 8: Edge tracking in pipe flow: energy contained in the axially dependent flow versus
time. The thick line indicates the edge trajectory and the thinner lines nearby trajectories
which either relaminarize (energy decrease) or become turbulent (energy increases to a
higher level). Pipe length is 2.5 diameters, Re = 2400 and the flow is calculated within
a 2-fold rotationally symmetric subspace (R2-subspace in the notation of [9]). The two
cross-sections on the right indicate (at least) two TWs which are stable on the edge (the
upper one corresponds to the trace on the left at large times).

Figure 9: Upper: energy contained in the axially dependent modes on the edge for 5D
pipe at Re = 2875. The thick line indicates the edge trajectory. Lower: Schematic view of
phase space. The surface separates initial conditions which relaminarize from those which
become turbulent. An edge trajectory visiting three pink states is shown schematically [9].

Ideally, the edge state is an ECS and so the bisection procedure leads to a guess
good enough for a Newton-Raphson solver, for example, to converge. If this doesn’t
occur initially, there is nothing to stop the procedure being repeated in a suitable
subspace, for example, a 2.5D-long pipe where the flow is forced to be symmetric
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under a π rotation about its axis at Re = 2400 [9]. The plot of E3d (energy in the
streamwise-dependent part of the flow) as a function of time is shown in figure 8. The
edge energy is seen to quickly level off indicating an edge state with constant E3d which
corresponds to a TW solution (labelled C3 1.25 in [9] and later renamed N2 in [19]).
This finding was significant in two ways. It was the first identification of a TW using
this technique (see also [23] who found a steady state in small geometry plane Couette
flow at about the same time) but it was not the expected TW. Calculations in [16]
had identified that a lower branch TW (in their nomenclature 2b 1.25, now known as
S2) only had one unstable direction indicating that this would be a relative attractor
in the edge. However, the TW found possessed an additional mirror symmetry never
seen before. Thus it was the first demonstration of multiple edge states. Secondly, the
realisation that such ‘highly symmetric’ TWs could exist led to whole new families of
TWs being quickly discovered thereafter [19]. As Re increases, these waves turn out
to appear before the original less-symmetric TWs found in [11, 28]. These latter waves
arise from the former in symmetry-breaking bifurcations ([19] shows an example of
this - S3 bifurcating off N3 - in their figure 8).

Figure 10: The small domain of [23] in which the edge state is a steady global state is
shown as the lower left green rectangle (flow is left to right). The short wide box of [24] is
shown as the lower left yellow rectangle (4 times wider than the green rectangle) with both
dwarfed by the 16 times longer, wide box which captures a fully localised edge state [24].
Underneath are shown the spanwise localised states found by edge tracking in the short
wide box.

[9] also noticed that the edge trajectory in the 5D case at Re = 2875 occasionally
dipped to low energy values and smoothened locally (see Figure 8 for an example).
They realised that the flows at these local energy minima turn out to be very close
to other (lower branch) TWs embedded in the edge but these are now saddles there

9



rather than relative attractors. This clearly reinforces the picture of lower branch
TWs embedded in the edge. The picture is then of the edge trajectory transiently
visiting the neighbourhood of these (saddle) TWs before ultimately reaching an edge
state (see figure 9).

Figure 11: The birth of a localized TW in pipe flow from a bifurcation off the N2 TW
[19] (3 copies in z). Main plot: E(z) :=

∫ 2π
0 dθ

∫ 1
0 sds

1
2u

2 demonstrating localization along
the continuation curve. Inset: Continuation in α = 2π/L against the friction factor Λ.
The branch moves towards smaller domains before turning in a saddle-node bifurcation and
localizing. The friction factor’s linear dependence upon α signals localization (from [4]).

2.1 Localized ECS

The bisection technique also works in larger geometries where the edge state turns out
to be localised. In plane Couette flow, spanwise-localised equilibrium and travelling
wave solutions were found [24] in short (streamwise) and wide (spanwise) domains.
These spanwise-localised solutions were later found to bifurcate off the spanwise-
periodic solutions already known [22] suggesting that all strictly periodic solutions
could have connected localised versions too. Opening up the flow even further by con-
siderably lengthening the domain leads to an edge state also localised in the stream-
wise direction, albeit now chaotic [7, 24]. Intriguingly, this edge state resembles a
turbulent spot (although the energies are lower) and highlights the large size of do-
mains needed to see streamwise localisation. Figure 10 illustrates this latter point by
comparing the small plane Couette flow domain originally used for edge-tracking [23]
(4π×2×2π being the streamwise, cross-stream and spanwise dimensions respectively)
with the short, wide domain (4π× 2× 8π) and long, wide domain (64π× 2× 16π) of
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Figure 12: Energy in streaks and rolls as a function of downstream position z for two
localized TWs in pipe flow (both invariant under a 2π/3 axial rotation). Slices across
solution i (black) are shown above (from [4]).

[24]. Localized ECS have also been found in channel flow [29], boundary layer flow
[8] and pipe flow [1, 4]. The latter pipe flow study [4] traces a localized TW found by
edge tracking back to find that it bifurcates off a global TW: see figures 11 and 12.
Unfortunately, turning this process around, it is a priori unclear which bifurcations
off the global TW will lead to localization without actually tracing them out.

3 Identification: Recurrent Flow Analysis

This is a fairly simple-minded technique to recognise nearly periodic motion in tur-
bulent or chaotic flows. It has the considerable advantage over systematic bifurcation
analysis in that any periodic orbits found have to be buried within the turbulent
attractor and therefore dynamically relevant. This avoids the possibility of tracking
Hopf bifurcations which turn out to be irrelevant for the turbulent flow. In 2001, [13]
first showed that this can work for weakly-turbulent flows and it has been used and
developed subsequently [27, 5, 3, 17].
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In flows with net advection in one direction, periodic orbits, defined as

u(x, t+ T ) = u(x, t) (3)

where T is the period, are actually rare. In this circumstance, the more common
scenario is the existence of relative periodic orbits which recur after a time T but also
with a shift s such that

u(x, t+ T ) = u(x + s, t) : (4)

see figure 13.

T

Figure 13: Relative periodic orbits: the flow recurs a time T later but with the the flow
field shifted downstream (flow is left to right) and posssibly in the cross-stream direction
too (the flow is periodic in both directions so repeats to fill the domain). A vorticity field
is shown for illustrative purposes from 2D Kolmogorov flow [3]).

We use the context of 2D Kolmogorov flow - a flow over a 2D torus forced by a
large-scale sinusoidal forcing - to illustrate recurrent flow analysis. Selecting a forcing
with 4 wavelengths in the domain [3], the Navier-Stokes equations are

∂u∗

∂t∗
+ u∗ · ∇∗u∗ +

1

ρ
∇∗p∗ = ν∇∗2u∗ + χ sin(8πy∗/Ly)x̂ (5)

where ρ is the density, ν the kinematic viscosity and χ is the forcing amplitude per
unit mass of fluid over a doubly-periodic domain [0, Lx] × [0, Ly]. The system is
non-dimensionalised by the lengthscale Ly/2π and timescale

√
Ly/2πχ so that the

equations become
∂u

∂t
+ u · ∇u +∇p =

1

Re
∇2u + sin 4yx̂ (6)

where the Reynolds number is

Re :=

√
χ

ν

(
Ly
2π

)3/2

(7)
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to be solved over the domain [0, 2π/α] × [0, 2π] (α := Ly/Lx). Given the doubly-
periodic boundary conditions, dealing with the cross-plane vorticity equation is more
natural and reduces simply to the scalar equation

∂ω

∂t
= −u · ∇ω +

1

Re
∇2ω − 4 cos 4y (8)

where ωẑ := ∇ × u. Dealing with this equation is analogous to working with the
streamfunction u = ∇×ψ(x, y)ẑ since spatially-constant velocity and vorticity fields
are not present so ψ = ∇−2ω. As always, knowing the symmetries of the problem is
important. There is a shift-&-reflect symmetry

S : [u, v, ω](x, y)→ [−u, v,−ω](−x, y +
π

4
) (9)

which shifts half a wavelength of the forcing function in y and reflects in x (u :=
ux̂ + vŷ and ω := ∂v/∂x − ∂u/∂y). Since there are 4 wavelengths in the domain,
this transformation forms a cyclic group of order 7. There is also a 2-fold rotational
symmetry

R : [u, v, ω](x, y)→ [−u,−v, ω](−x,−y) (10)

and the continuous group of translations

Tl : [u, v, ω](x, y)→ [u, v, ω](x+ l, y) for 0 ≤ l <
2π

α
. (11)

The vorticity is represented as follows

ω(x, y, t) =
Nx∑

j=−Nx

Ny∑
l=−Ny

Ωjl(t)e
i(αjx+ly) (12)

and we look for times t and values of T ∈ R, s ∈ [0, 2π/α), n ∈ {0, 1} and m ∈
{0, 1, 2, . . . , 7} for which

TsRnSmω(x, y, t+ T ) := ω((−1)n+mx+ s, (−1)n(y+mπ/4), t+ T ) = ω(x, y, t) (13)

i.e. the vorticity field recurs up to the symmetry group of the system. The key
to this search is to understand how approximately (13) should hold to signify the
presence of a recurrent flow structure nearby. The only way to answer this seems to
be to do computations and experiment. For simplicity in what follows, we assume
henceforth that n = 0 and m is even (near recurrences with n = 1 or m being odd are
‘pre’periodic to those with n = 0 and m and T doubled so in principle could still be
detected - see [3]) The search for near recurrences then proceeds by seeking minima
of the residual function

R(t, T ) := min
0≤s<2π/α

min
m∈0,2,4,6

∑
j

∑
l |Ωjl(t)e

iαjs+imlπ/2 − Ωjl(t− T )|2∑
j

∑
l |Ωjl(t)|2

(14)
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over the (t, T ) plane where
∑

j

∑
l |Ωjl|2 = α/(4π)2

∫ 2π/x

0

∫ 2π

0
ω2dxdy. There is a

search over the continuous shift s here but, in practice, this is of course discretized
over, say, 30 steps across the interval. A more elegant idea is to ‘pull back’ the state
to a known reference point to compare states [2]. One way to do this is by shifting
the state back until a chosen reference Fourier coefficient becomes purely real.

t-T

t

Figure 14: Example of R(t, T ) at Re = 40 in Kolmogorov flow contoured over t ∈ [95, 175]
(x-axis) and T ∈ [thres, 50] (y-axis). The R values above 0.55 are not drawn for clarity
(from [3]).

In terms of the ‘history’ over which to look, typically 0 < Tthres ≈ 0.5 < T < 50
where a threshold is necessary because R(t, 0) = 0. Figure 14 is a typical example of
how R(t, T ) looks as a function of t and T during a recurrent episode. The nine black
dots are guesses identified by the code (R < Rthres = 0.3) over this time interval. All
except one (the last dot at t ≈ 171) subsequently converged to an exactly recurrent
solution (the 4 dots for t < 130 to a periodic orbit with period 5.3807 and the next
4 dots with t ∈ [130, 160] to a TW with phase speed c = 0.0198. The threshold
Rthres needs to be chosen judiciously to give enough good quality guesses. Clearly the
use of the L2 norm in the residual definition is rather arbitrary and there are many
opportunities to try to improve the accuracy of predicting a recurrent flow (e.g. see
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[17]).
Once a near-recurrence has been found by the above stated criterion, a high-

dimensional root finding algorithm is needed to try to converge this into an exactly
recurrent state. To attempt this, a state vector is defined as

X =

 Ω
s
T

 (15)

which contains information about the potential recurrence (Ω is a vector containing
the scalars Ωjl arranged in some fashion). The shift s is included since it can be
adjusted continuously whereas the discrete shift m cannot and therefore is pre-set.
To set up the Newton-Raphson algorithm, it is convenient to define the infinitesimal
generators Tx and Ty of translations in x and y respectively

Tx ω(x, y, t)→∂ω

∂x
=

Ny∑
−Ny

Nx∑
−Nx

iαjΩjl(t)e
i(αjx+ly),

Ty ω(x, y, t)→∂ω

∂y
=

Ny∑
−Ny

Nx∑
−Nx

ilΩjl(t)e
i(αjx+ly)

as they act in spectral space

Tx Ω→ Ωx and Ty Ω→ Ωy (16)

where each element Ωjl of Ω is mapped to iαjΩjl in Ωx and ilΩjl in Ωy. Then, in
spectral space the recurrence condition (13) becomes

F(Ω0, s, T ;m) := exp(sTx + 1
4
πmTy)Ω̂(Ω0, T )−Ω0 = 0 (17)

since, for example, es∂xf(x) = f(x + s), where Ω0 = Ω(t) and Ω̂ = Ω(t + T ).
If X0 = (Ω0, s0, T0)

T is an initial guess for a solution, then a better (next) guess
X0 + δX0 = (Ω0 + δΩ, s0 + δs, T0 + δT )T is given by

∂F

∂Ω0

δΩ +
∂F

∂s
δs+

∂F

∂T
δT = −F(Ω0, s0, T0;m) (18)

These are dim(Ω) equations for dim(Ω) + 2 unknowns. The extra two equations
come from removing the degeneracy associated with these translational symmetries
(the system is invariant under (x, t)→ (x+ s, t+ T )). This can be done by imposing
that δΩ, has no component which shifts the solution infinitesimally in the x-direction
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Figure 15: The dissipation D (normalized by the laminar dissipation) versus the energy
input I (normalized in the same way) for a small number of recurrent flows uncovered at
Re = 40 in 2D Kolmogorov flow. The shading is the p.d.f. of the turbulence found via
direct numerical simulation (there are 11 levels 10β with β = −5,−4.5, . . . ,−0.5, 00 (from
[3]).

or the t−direction (i.e. just redefines the time origin of the flow). The Newton-
Raphson problem is then to solve



. . .
...

...

∂Ω̂s

∂Ω0

− I TxΩ̂s
∂Ω̂s

∂T
. . .

...
...

· · · (TxΩ0)
T · · · 0 0

· · · ∂Ω0

∂t

T

· · · 0 0





...

δΩ

...

δs

δT


= −



...

F(Ω0, s0, T0;m)

...

0

0


(19)

where Ω̂s := exp(sTx+ 1
4
πmTy)Ω̂ is the ‘back-shifted’ final state and I is the dim(Ω)×

dim(Ω) identity matrix. This is now in the standard form AδX = b with only the
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Jacobian matrix ∂Ω̂s/∂Ω not straightforward to evaluate (∂Ω̂s/∂T and ∂Ω0/∂t are
found by substituting Ω̂s or Ω0 into the Navier-Stokes equations).

Figure 16: The dissipation D (normalized by the laminar dissipation) versus the energy
input I (normalized in the same way) for the outer (magenta) recurrent flow infigure 15
(replotted here in green-sorry). Numbers indicate time along the orbit (period just over
37 time units) and velocity snapshots highlight the dynamics at different points long the
period (from [3]).

Typically, the size of the matrix A is too large to store explicitly let alone attempt
to solve AδX = b directly. As a result, the only way to proceed is iteratively and
GMRES [20, 26]. Here only the effect of A on an arbitrary vector is needed. The effect
of the troublesome Jacobian can be handled easily by a forward difference approach
since

∂Ω̂s

∂Ω0

y ≈ Ω̂s(Ω0 + εy)− Ω̂s(Ω0)

ε
(20)

where ε is chosen such that ||εy|| = 10−7||Ω0|| which balances truncation error with
round-off error using double precision arithmetic and || · || is the Euclidean norm.

Figure 15 shows some recurrent flows found at Re = 40 in 2D Kolmogorov flow
plotted on an energy out (dissipation rate) against energy input plot as in [13]’s origi-
nal paper together with the pdf of the turbulent simulation data. The recurrent flows
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Figure 17: A sampling of recurrent structures found at Re = 40 plotted over the zoomed
in box of figure 15. Symbols added to lines are to assist in their distinction and are spaced
1 time unit apart (nomenclature from [3]).

populate the heart of the pdf but some also capture infrequent but large excursions to
high energy input and out rates. The outer magenta recurrent flow is shown in detail
in figure 16 together with snapshots of the flow at certain times in its period. This
sort of analysis can be useful for unfolding the dynamics underpinning the turbu-
lence. Figure 17 zooms in on the dashed box drawn in figure 15 to show the variety of
dynamics across a spectrum of recurrent flows (nomenclature from [3]). In figure 18,
the part of the turbulent trajectory which was identified as showing nearly recurrent
flow is reproduced next to the successfully-converged periodic orbit underpinning the
behaviour. The final figure is from plane Couette flow [5]. Here the dynamics in 105

D is projected down to 3D in a way dependent on a frequently-visited equilibrium
and its symmetric counterparts to most clearly display what is going on. What is
interesting in this figure is how the five periodic orbits shown appear to marshal the
turbulent trajectory in phase space.
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Figure 18: Part of the simulation trajectory (left) synchronized with the subsequently
converged periodic orbit P4 (period 1.185) at Re = 100. The vorticity scale ranges from
-26 (dark/red) to 12 (white). (Side-by-side videos are much better here - see lecture.

3.1 Summary

(i) ECS which are stable are important as they represent possible attractors of
the dynamics. Unstable ECS can be just as important as they influence the
dynamics through their stable and unstable manifolds. They have also been
observed in experiments and numerical simulations albeit fleetingly.

(ii) In shear flows where the base state is linearly stable, ECS are born in saddle node
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Figure 19: State-space projection from 105 D down to 3D (axes constructed from frequently
visited ECS) for Re = 400 plane Couette flow. Top: several equilibria are indicated
(circles, dots and squares), their unstable manifolds (lines enamating from symbols) and a
typical turbulent trajectory (dotted). Bottom: five periodic orbits in the same state-space
projection. These orbits capture well the coherent structures observed in the turbulent flow
and appear to marshal the turbulent trajectory in state space. (from [5]).

bifurcations with the lower branch solutions embedded in the basin boundary
of the base state. The corresponding upper branch states sit in the basin of
attraction of the turbulent state and may even be embedded in the turbulent
attractor itself.

(iii) Edge tracking is a useful method for studying the basin boundary between two
attractors. At long times, edge tracking leads to a relative attractor on the
‘edge’ which may not be unique.
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(iv) Recurrent flow analysis identifies nearly recurrent flow episodes in turbulent/chaotic
dynamics which can then hopefully be converged to machine precision to rela-
tive periodic orbits of the Navier-Stokes equations. Although harder to perform,
this technique has the desirable feature of always finding dynamically relevant
ECS.
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