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1 Transient Dynamics: Non-Modal Analysis

Linear stability analysis does not necessarily give the whole picture of what the dy-
namics can be in the neighbourhood of a state. If the linear operator L is non-normal,
i.e.

L+L 6= LL+ (1)

(where L+ is the adjoint operator and so this property depends on the inner product
being used), then growth in the norm (e.g. kinetic energy) associated with the inner
product (e.g. the energy inner product) can occur despite L only having decaying
eigenvalues. Let’s look at a simple matrix example

d

dt

[
x1

x2

]
= L

[
x1

x2

]
:=

[
λ1 1
0 λ2

] [
x1

x2

]
(2)

where λ1, λ2 < 0 (assume real and negative for simplicity although the key thing
is that their real parts are negative). This L has eigenvalues λ1 and λ2 and so a
linear analysis (around the state x = 0) predicts exponential decay for all small
disturbances. However this is only true in a long time sense. Consider the energy
inner product,

E(t) := x(t)T · x(t) = x2
1(t) + x2

2(t), (3)

then
dE

dt
= 2xT

[
λ1

1
2

1
2

λ2

]
x. (4)

The eigenvalues of this symmetric matrix are

1
2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 1 (5)
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so there can be energy growth if√
(λ1 − λ2)2 + 1 > −(λ1 + λ2) > 0 (6)

which can easily be arranged (e.g. λ1, λ2 � 1). The point is that L is a non-normal
matrix and so its eigenvectors

e1 :=

[
1
0

]
& e2 :=

[
1

(λ2 − λ1)

]
(7)

are not orthogonal1: in fact eT2 ·e1 = 1 which is the same size as eT1 ·e1 and eT2 ·e2. This
means in general that there are initial conditions which are ‘inefficiently’ represented.
For example, the initial condition

x(0) =

[
0
1

]
=

1

λ2 − λ1

(e2 − e1) , (8)

gives rise to the solution

x(t) =
1

λ2 − λ1

(
e2e

λ2t − e1e
λ1t
)
, (9)

which, over a timescale O([max(−λ1,−λ2)]−1), will grow from O(1) energy to O(λ2−
λ1)−2) as the initial cancellation no longer occurs.

Calculating the largest possible energy growth

G(T ) := max
x(0)

E(T )

E(0)
(10)

some time T later is a more useful way of quantifying the phenomenon. The solution
of (2) is

x(t) = eLtx(0) =

[
eλ1t eλ1t−eλ2t

λ1−λ2
0 eλ2t

]
x(0), (11)

( show by induction that

Ln :=

[
λn1

λn1−λn2
λ1−λ2

0 λn2

]
& use eLt =

∑
n=0

(Lt)n

n!
),

so

G(T ) := max
x(0)

x(0)TA(T )x(0)

x(0)Tx(0)
(12)

where

A(T ) := eL
+T eLT =

 e2λ1T eλ1T
(
eλ1T−eλ2T
λ1−λ2

)
eλ1T

(
eλ1T−eλ2T
λ1−λ2

)
e2λ2T +

(
eλ1T−eλ2T
λ1−λ2

)2

 . (13)

Since A is real and symmetric (and coincidentally positive definite since G > 0), the
process of maximization is done simply by identifying the largest (real) eigenvalue of
A and the optimal initial condition x(0) is then simply the corresponding eigenvector.

1A normal matrix ⇔ ∃ a complete set of orthogonal eigenvectors.
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1.1 Matrix-based Approach

Returning to the Navier-Stokes equations, we can linearize around some solution U
so that

∂u

∂t
= Lu, (14)

where L is a linear operator, which has eigenvalues λj and eigenfunctions qj. Assum-
ing that the set qj is complete (but not necessarily orthogonal unless L is normal),
then

u0(x) =
∞∑
j=1

aj(0)qj(x) ⇒ u(x, t) =
∞∑
j=1

aj(t)qj(x) (15)

where aj(t) := aj(0) exp(λjt). Then

G(T ;Re) = max
a(0)

〈u∗ .u 〉
〈u∗0 .u0 〉

= max
a(0)

∑
i

∑
j a
∗
i (T )aj(T )〈q∗i .qj 〉∑

i

∑
j a
∗
i (0)aj(0)〈q∗i .qj 〉

. (16)

Truncating at some large but finite N (so things become finite-dimensional yet in-
sensitive to the exact value of N) then Mij := 〈q∗i .qj 〉 is a Hermitian n × n matrix
which can be reduced to another matrix F such that F ∗F = M , then

G(T ;Re) = max
a(0)

[Fa(T )]∗.Fa(T )

[Fa(0)]∗.Fa(0)
= max

a(0)

[FeΛTa(0)]∗.FeΛTa(0)

[Fa(0)]∗.Fa(0)
= ||FeΛTF−1||22

(17)

where eΛT = diag(eλ1T , eλ2T , . . . , eλNT ) [17]. This can handled by standard Singular
Value Decomposition (SVD) software to give the largest singular value. If L is normal,
M and F are diagonal and

G(T ;Re) = ||eΛT ||22 = max
j

∣∣eλjT ∣∣2 = max
j
e2<e(λj)T (18)

so there can be no transient growth when L is linearly stable i.e. <e(λj) ≤ 0 for all
j.

This method is straightforward but only really computationally feasible for one-
dimensional, or possibly two-dimensional problems because the size of the matrices
becomes unwieldy and then unmanageable for three-dimensional problems. A better
approach is the matrix-free method which, although incurring more start-up costs
(e.g. building a time stepping algorithm), is extendable to include nonlinearity.

1.2 Matrix-free Method

We now consider the use of a matrix-free variational method for finding the energy
growth which involves time-stepping the linearised Navier-Stokes equations. Since
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the problem is linear, the initial energy can be rescaled to 1 and we consider the
Lagrangian

G = G(u, p, λ,ν, π;T ) =

〈
1

2
|u(x, T )|2

〉
+ λ

{〈
1

2
|u(x, 0)|2

〉
− 1

}
+

∫ T

0

〈
ν(x, t) ·

{
∂u

∂t
+ (ulam · ∇)u + (u · ∇)ulam +∇p− 1

Re
∇2u

}〉
dt

+

∫ T

0

〈π(x, t)∇ · u〉 dt (19)

where λ, ν and π are Lagrangian multipliers imposing the constraints that the initial
energy is fixed, that the linearized Navier-Stokes equation holds over t ∈ [0, T ] and the
flow is incompressible (their corresponding Euler-Lagrange equations are respectively:〈

1

2
|u(x, 0)|2

〉
= 1, (20)

∂u

∂t
+ (ulam · ∇)u + (u · ∇)ulam +∇p− 1

Re
∇2u = 0, (21)

∇ · u = 0.) (22)

The Euler-Lagrange equation for the pressure p is

0 =

∫ T

0

〈
δG

δp
δp

〉
dt =

∫ T

0

〈(ν · ∇)δp〉 dt

=

∫ T

0

〈∇ · (νδp)〉 dt−
∫ T

0

〈δp(∇ · ν)〉 dt. (23)

which to vanish means

ν = 0 at boundary, (24)

∇ · ν = 0. (25)

Now, considering variations in u (with the condition that δu = 0 on the boundary):∫ T

0

〈
δG

δu
· δu

〉
= 〈u(x, T ) · δu(x, T )〉+ λ 〈u(x, 0) · δu(x, 0)〉

+

∫ T

0

〈
ν ·
{
∂δu

∂t
+ (ulam · ∇)δu + (δu · ∇)ulam −

1

Re
∇2δu

}〉
dt

+

∫ T

0

〈π∇ · δu〉 dt. (26)
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The first term in the second line of the above equation can be reexpressed as∫ T

0

〈
ν · ∂δu

∂t

〉
dt =

∫ T

0

〈
∂

∂t
(δu · ν)

〉
dt−

∫ T

0

〈
δu · ∂ν

∂t

〉
dt

= 〈δu(x, T ) · ν(x, T )− δu(x, 0) · ν(x, 0)〉 −
∫ T

0

〈
δu · ∂ν

∂t

〉
dt,

(27)

the second term as

〈ν · {(ulam · ∇)δu}〉 = 〈∇ · ((ν · δu)ulam)− δu · {(ulam · ∇)ν}〉
= −〈δu · {(ulam · ∇)ν}〉 , (28)

the third term as

〈ν · {(δu · ∇)ulam}〉 =
〈
δu ·

{
ν · (∇ulam)T

}〉
(= 〈δui νj ∂iulam,j〉). (29)

and the fourth term as〈
ν ·
(
− 1

Re
∇2δu

)〉
= −

〈
1

Re
δu · ∇2ν

〉
, (30)

and finally the last term as

〈π∇ · δu〉 = 〈∇ · πδu〉 − 〈δu · ∇π〉
= −〈δu · ∇π〉 . (31)

Combining all these gives∫ T

0

〈
δG

δu
· δu

〉
= 〈δu(x, T ) · {u(x, T ) + ν(x, T )}〉+ 〈δu(x, 0) · {λu(x, 0)− ν(x, 0)}〉

+

∫ T

0

〈
δu ·

{
−∂ν
∂t
− (ulam · ∇)ν + ν · (∇ulam)T −∇π − 1

Re
∇2ν

}〉
dt.

(32)

For this to vanish for all allowed δu(x, T ), δu(x, 0) and δu means

δG

δu(x, T )
= 0 ⇒ u(x, T ) + ν(x, T ) = 0 (33)

δG

δu(x, 0)
= 0 ⇒ λu(x, 0)− ν(x, 0) = 0 (34)

δG

δu
= 0 ⇒ ∂ν

∂t
+ (ulam · ∇)ν − ν · (∇ulam)T +∇π +

1

Re
∇2ν = 0. (35)

The last equation is the ‘dual (or adjoint) linearized Navier-Stokes equation’. This
equation can only be integrated backwards in time because of the negative diffusion
term. Figure 1 shows a diagram of a numerical method for iteratively solving these
variational equations in order to construct the initial condition with maximum growth
(e.g. [5]). The algorithm has the following steps.
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Step.1

Linearized Navier-Stokes equation

Incompressibility

Boundary condition

Step.3

Dual linearized Navier-Stokes equation

Incompressibility

Boundary condition

Step.2Step.4

Figure 1: Diagram of iterative method.

Step.0 Choose an initial condition of the iterative method u(0)(x, 0) such that〈
1

2

{
u(0)(x, 0)

}2
〉

= 1. (36)

Then we construct u(n+1)(x, 0) from u(n)(x, 0) as follows:

Step.1 Time integrate the linearized Navier-Stokes equation forward with incom-
pressibility ∇ · u = 0 and boundary condition u = 0 from t = 0 to t = T with
the initial condition u(n)(x, 0) to find u(n)(x, T ).

Step.2 Calculate ν(n)(x, T ) using (33) which is then used as the initial condition for
the dual linearized Navier-Stokes equation (35).

Step.3 Backwards time integrate the dual linearized Navier-Stokes equation (35)
with incompressibility (25) and boundary condition (24) from t = T to t = 0
with the ‘initial’ condition ν(n)(x, T ) to find ν(n)(x, 0).

Step.4 Using equation (34), a simple approach to calculating the correction of u(n)

is as follows:

u(n+1) = u(n) + ε

[
δG

δu(x, 0)

](n)

(37)

= u(n) + ε
(
λu(n)(x, 0)− ν(n)(x, 0)

)
, (38)
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1 2

decay

Figure 2: Initial noise is magnified as it passes through the pipe expansion before
eventually decaying.

Figure 3: Comparison between noise-driven flows (bottom halves) and the linear
optimal growth (top halves) for Re = 900 (upper) and Re = 1200 (lower) [1].

with λ chosen such that

1 =

〈
1

2

{
u(n+1)(x, 0)

}2
〉

(39)

=

〈
1

2

[
(1 + ελ)u(n)(x, 0)− εν(n)(x, 0)

]2〉
. (40)

Here ε is a parameter of this iterative method and must be sufficiently small.

This last step moves u(n)(x, 0) in the direction of maximum ascent in order to increase
G(T ). Iterating the last four steps typically converges to a local maximum of G(T )
[3], [5].

An example of the application of this method for finding linear optimum initial
conditions is the case of expansion flow in a pipe [1], see Figure 2. Flow through an
expansion in a pipe is a classical engineering problem which is not spatially homo-
geneous. The resulting linear-growth optimal can be compared with the numerical
result of perturbing the flow with random noise, see Figure 3. The dominant spatial
structure which grows out of the noise appears to agree well with the linear optimal.
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1.3 Nonlinear Extension

The matrix-free approach is, in principle, ‘easily’ extended to the non-linear problem.
There are only two changes that need to be made to the Lagrangian G: the nonlin-
earity is added back to the linearised Navier-Stokes equation and the initial energy
is explicitly set at E0 which joins T as a free parameter of the problem. So

G(T,E0;Re) = ...+

∫ T

0

〈ν · (u · ∇)u〉 dt+ λ

{〈
1

2
u2(x, 0)

〉
− E0

}
(41)

(notice now that G/E0 is the energy growth factor but it’s simpler to just do this
division after the optimization). The addition of the non-linear term means that the
part of the functional derivative of G with respect to u must be recalculated to get∫ T

0

〈
δG

δu
·δu
〉
dt = ...+

∫ T

0

〈ν·[δu · ∇u + u · ∇δu]〉 dt

= ...+

∫ T

0

〈
δu·[(∇u)T·ν − u · ∇ν]

〉
dt. (42)

Then the dual Navier-Stokes equation becomes

−∂ν
∂t

+ (∇[u + ulam])T·ν − (u + ulam)·∇ν −∇π − 1

Re
∇2ν = 0. (43)

The consequences of adding the non-linear term can be summarised as follows:

1. The full Navier-Stokes equations now need to be integrated forward in time.

2. The dual Navier-Stokes equation remains linear in ν but now depends on u(x, t).

3. The result depends on both E0 and T .

The added dependence of the dual equations on u(x, t) creates some problems nu-
merically as this suggests that u(x, t) must be stored at every step of the forwards
integration. For large systems the memory requirements associated with this are
unfeasible so a method called ‘checkpointing’ is used instead. This involves storing
u(x, t) at a reduced set of times or ‘checkpoints’ and then integrating forward in
time again from each checkpoint as required when calculating ν, see figure 4. This
method results in much reduced storage requirements but at the added cost of having
to perform the forward integration twice per iteration.

1.4 Minimal Seed Analysis

The simple idea is to examine G(T = ‘∞’, E0) as a function of E0 with the objective
of detecting a sudden jump in the value of G corresponding to initial conditions
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t=0 t=T

u(x,t)

ν(x,t)

Figure 4: Checkpointing: during the calculation of ν(x, t) the velocity u(x, t) is
recalculated in short sections from each checkpoint.

suddenly having access to a different basin of attraction. To illustrate this, let’s go
back to our trusty 2 ODE model

ẋ1 = f1(x1, x2) := −x1 + 10x2,

ẋ2 = f2(x1, x2) := x2(10e−0.01x21 − x2) (x2 − 1) ,
(44)

and define

L := x2(T )− λ[E0 − x2(0)] +

∫ T

0

ν(t) ·
[
dx

dt
− f(x)

]
dt (45)

where f(x) = (f1, f2) is the right hand side in (44). The Euler-Lagrange equations
for stationarizing L are

δL
δν

:=
dx

dt
−
[

−x1 + 10x2

x2(10e−x
2
1/100 − x2)(x2 − 1)

]
= 0, (46)

δL
δx

:=− dν

dt
+

[
ν1 + 1

5
x1ν2(x2

2−x2)e−x
2
1/100

−10ν1+ ν2(3x2
2−2x2)−10ν2(2x2−1)e−x

2
1/100

]
= 0, (47)

δL
δx(0)

:= 2λx(0)− ν(0) = 0, (48)

δL
δx(T )

:= 2x(T ) + ν(T ) = 0, (49)

The solution strategy is to start with a guess for the initial condition x1(0) which is
used to integrate the (forward) equation (??) across [0, T ]. This defines x1(T ) and
therefore ν1(T ) which ‘initiates’ the dual equation (47) so that this can be integrated
backward in time to t = 0. The ‘final’ dual state ν1(0) along with x1(0) is then used
to specify δL/δx(0) so that the initial condition can be moved in the direction which
increases L (λ is set by insuring that the new initial condition x2(0) still has the
initial energy E0: see step 4 above). The minimal seed is then given by

xms := arg min
x(0):x(t→∞)6=0

E(x(0)) (50)
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Figure 5: Local picture of the dynamics around x = 0 for the 2D model (44) revealed
by linear transient growth analysis. The dashed lines indicate where growth starts (the
trajectory begins to move away from the origin) and finishes (where the trajectory turns
back towards the origin). Notice that the environment is 2-fold rotationally symmetric
about the origin.

with the corresponding least energy needed to escape the basin being E(xms).
Figure 5 shows the behaviour of trajectories in the local environment of x = 0.

Linear transient growth analysis captures all the key features, for example, initial
conditions where energy growth starts and finishes (the dashed lines). The picture is
only local, however, as is highlighted by figure 6 which shows a more global picture
of the phase plane. The minimal seed analysis is a two-stage process. The first stage
- figure 7 - considers the maximum growth G(T,E0) over a time window T for initial
conditions which have a fixed energy E0: in 2D, this is just a circle of initial conditions
of radius

√
E0 centred on x = 0. The second stage is to then increase E0 until G

jumps in magnitude: see figure 8. Formally, using the definition (41),

G(∞, E0) =


Et E0 > Ec
Ee E0 = Ec
0 E0 < Ec

(51)

where Et is the energy of the turbulent attractor x ≈ (14, 1.4) and Ee is the energy
of the saddle point x = (10, 1). Practically, T is always finite and the discontinuities
are smoothed over where the smoothing is reduced by making T larger; see figure 10.
The critical E0 has one initial condition - the minimal seed xms = (0, 1) - outside the
basin of attraction of the laminar state: see figure 9.
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Figure 6: Global picture of the dynamics in the 2D model (44).

Figure 7: The constant-E0 set of initial condition competitors for maximizing the energy
growth at time T in the 2D model (44).
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Figure 8: The result of calculating G as a function of θ/π where the initial condition is
x(0) =

√
E0(cos θ, sin θ) for various E0. E0 = 10−8 reproduces the linear result which is

symmetric under the transformation θ → θ + π and notice the sudden jump in G when E0

crosses 1.

Figure 9: The minimal seed - here simply x = (0, 1) is the initial condition which first
leaves the basin of attraction of x = 0.
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Figure 10: G(T,E0) versus E0 for a variety of T for the 2D model (44): the larger T the
clearer the value of E(xms), the value of E0 for the minimal seed, becomes.

We now show that this also works in the Navier-Stokes setting by studying flow
in a pipe. Taking T as the time at which the maximum linear growth occurs
(0.0122ReD/U where D is the diameter and U is the bulk velocity), the optimal
which emerges as a function of E0 is shown in figure 11. For small E0, a recognizably
nonlinear version of the 2D linear optimal perturbation (LOP) is found (e.g. it stays
2D). This consists of streamwise rolls (see top left cross section in figure 12) which
subsequently drives a pair of fast and slow streaks via the lift-up mechanism (b′ and
c′ cross-sections in figure 12). Beyond a certain E0, a new optimal is selected which
is 3D and localized in both the radius and azimuth - see figure 12 below (it is also
localized in the axial direction if the pipe domain is long enough: see figure 15). This
so-called NLOP - nonlinear optimal perturbation - concatenates three well-known
linear growth mechanisms which operate over different timescales whereby producing
more growth (see right diagram in figure 11). A simple ODE model coupling two sub-
spaces which exhibit transient growth albeit over different timescales can reproduce
this effect very simply: see figure 13.

In pipe flow, this NLOP stays the optimal until a critical initial energy Ec is
reached which means it smoothly connects to the minimal seed defined at E0 = Ec.
The significance of Ec is that the streaks produced by the NLOP become unstable
and this instability leads to turbulence: see figure 14. In fact, because running the
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Figure 11: Left: A graph of growth G versus E0 for a pipe 5 diameters long at Re = 2400
(the E0 → 0 LOP limit is given by [18]). Right: The evolution of the NLOP shows the
concatenation of three linear processes: the Orr mechanism, oblique waves and the lift-up
mechanism which together produce more growth than the LOP [14].

optimization procedure for E0 > Ec leads to turbulent trajectories and so convergence
is then not possible due to the extreme sensitivity of the final energy to the initial
conditions, the green curve shown schematically on the left of figure 11 is an average
of G values found by the computations. However, practically this lack of convergence
is easily diagnosed (turbulent endstates are reached) and can be used to identify
Ec where convergence first appears (no turbulent endstates) as E0 is reduced. The
minimal seed as calculated in a long pipe 25 diameters long is shown in figure 15
confirming that it localizes in the axial direction too [15, 7]. NLOP calculations have
also been performed in boundary layer flow [2], plane Couette flow [10, 16] and plane
Poiseuille flow [4]: see the review [7].
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Figure 12: Top row: the linear optimal. The rest: the nonlinear optimal (the letters
correspond to those indicating specific times in figure 11 (from [13]). The bar chart shows the
ratio of energy in each streamwise Fourier mode of the NLOP to emphasize its nonlinearity
(a linear optimal is monochromatic in axial wavenumber).
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Figure 13: A simple model to explain the ‘shoulder’ in growth curve of figure 11. The
blue curve and cyan curve indicate the linear transient growth possible for each of the two
subspaces whereas the red curve is the nonlinear optimal produced when the coupling term
is added. In this latter situation the transient growth in the blue subspace bootstraps the
growth in the cyan subspace to produce much greater growth overall. Specifc parameters
choices are (a, b, c, d) = (1, 10, 2, 0, 1) from [8].

Figure 14: For E0 . Ec := E0(xms), the optimal looks very similar to the minimal seed
but in the ensuing evolution, the streaks do not break down (see left column of snapshots)
whereas for E0 & Ec := E0(xms), the streaks do break down and turbulence is triggered (in
fact, x(0) used to generate the right column of snapshots is a rescaled minimal seed).
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Figure 15: A 7-diameter section of the minimal seed from a 25-diameter pipe calculation
with Re = 2400, radial, azimuthal and axial resolutions of 64× 48× 256 and T = 29.35 (in
time units of diameter/bulk speed), the optimal growth time for linear transient growth.
Yellow & red contours indicate streaks and the white & green surfaces axial vorticity (from
[15]).

Figure 16: This plot illustrates that starting closer and closer to the stable manifold of a
saddle point will give more and more of a plateau in the energy (actually the amplitude
is plotted here). The plateau is where the dynamics hesitate in the neighbourhood of the
saddle point. Calculations are performed for the 2D model 44 [12].
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1.5 Probing Phase Space

The minimal seed procedure has been described above as a technique to find the
least amplitude disturbances which put a system into a new basin of attraction i.e.
to study transition between (at least) two attractors (for multiple attractors see [9]).
The procedure, however, can be used to probe phase space more generally. In the
below, we briefly discuss two different uses: searching for a) nearby saddle points and
b) alternate transition scenarios not mediated by the edge state.

To illustrate a) we go back (again) to our 2D model (44). One can imagine a
ball of radius

√
E0 gradually expanding around the base state and the optimization

algorithm latching on to any initial condition which approaches the stable manifold
of a nearby saddle. Figure 16 shows what happens as the initial condition (0, x2)
approaches the stable manifold of the edge state at (10, 1). The figure on the right
in 16 shows that the amplitude approaches and increasingly plateaus at

√
101 (the

amplitude of the edge state) as x2 → 1.
In the Navier-Stokes equations, there is particular interest in seeing if solutions

exist in certain parts of parameter space (particularly the gap between the energy
stability point and the currently known emergence of alternative solutions, e.g. in
plane Couette flow, this gap is 20.7 < Re < 127.7 [12]), and finding localized solutions.
We focus on the latter here2 and speculate that a typical situation would be like that
sketched in figure 17 where the stable manifold of a localised state should be closer to
the base state than the stable manifold of a global solution which has larger amplitude
and should be more distant. This at least seems the case for computations performed
in wide-domain plane Couette flow [12] where it is known both global and localised
solutions exist at Re = 180 [19]: see figure 18.

The calculations were performed in a wide domain 4π×2×16π and initiated with
random initial conditions (energy scattered in the lowest modes) normalized so that
the total kinetic energy was E0. If E0 is too small, only the immediate neighborhood
of the constant shear solution is explored with a nonlinear version of the 2D linear
optimal, a global set of streamwise rolls, emerging as the optimal. If E0 is too large,
the optimal perturbation leads to another global state resembling multiple copies of
Nagata’s solution (see the top cross-section in figure 18). At intermediary E0, the
optimal perturbation is more spanwise localized and stays spanwise localized as it
evolves into a state suggestive of a snake solution. Taking a snapshot from the energy
growth plateau (see the top right diagram in figure 19) and plugging this into a
Newton-Raphson solver gives the snake solution (lower cross-section in figure 18 and
lower right image in figure 19).

2For the former see [12].
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Figure 17: Phase space indicating that localized solutions should be closer (in an energy
norm) to the base state than a global solution in an extended domain and hence found first
as E0 is increased from 0.

Schneider, Marinc & Eckhardt 2010

Schneider, Gibson & Burke 2010

Nagata (1990) soln

Plane Couette flow

Figure 18: In plane Couette flow, the constant shear base state is provably a global attractor
for Re < 20.7 [6]. However global states only start to appear beyond Re = 127.7 [11, 20] in
saddle node bifurcations. Beyond this point, at about 175, localized solutions also appear
[19]. So certainly at Re = 180, both global and localized states co-exist with the base flow.
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Figure 19: A nonlinear energy optimal calculation which shows ‘plateauing’ which indicates
that an initial condition has been found near the stable manifold of a nearby saddle (here
a localized state). A typical velocity snapshot is taken from the plateau and converged as
the snake equilibrium of [19] from [12].
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Figure 20: Nonlinear optimization can be used to find different transition scenarios. The
schematic shows how a bursting transition can be found at higher disturbance energies than
the minimal seed (which goes through the edge state). The inset shows the energy as a
function of time for the two different scenarios: blue is the bursting situation and red is the
(generic) edge state-mediated transition (see [12]).

We now show an example where an alternative transition scenario can be revealed
- application b) - by optimising energy growth over different time scales. Figure 20
shows two evolutions obtained by optimising using T = 50 (blue line) and T = 100
(red line) for very weakly stratified plane Couette flow at Re = 400 and Richardson
number Rib = 1.0×10−6 in a box of size 2π×2×π [12]. The longer time computation
picks up the generic transition scenario mediated by the edge state whereas the shorter
time reveals a ‘bursting’ transition where the energy reaches a much larger level
during the transition than that achieved in the turbulent end state. A plausible
rationalisation of what is happening is shown schematically in figure 20.
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1.6 Summary 3

(i) Linear operators in shear flows are generically non-normal and therefore have
non-orthogonal eigenvectors. This typically gives rise to transient growth for
certain initial conditions.

(ii) The standard matrix-free approach to quantifying this can be easily extended
to treat finite-amplitude disturbances.

(iii) This nonlinear nonmodal analysis can be coupled to a outer search in initial
energy E0 to identify where the maximal energy growth undergoes a sudden
change in magnitude. The optimal initial condition at this point is the minimal
seed - the disturbance of least amplitude which does not asymptote to the base
state for large times.

(iv) The process of maximising energy growth over initial conditions of a given finite
energy can also be used to find ‘nearby’ saddles in phase space as well as finding
different routes of transition.

(v) Nonlinear optimization using the full Navier-Stokes equations as constraints is
very flexible and so many novel applications are possible.
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